JP2865257B2 - シュヴアルツシルド光学系 - Google Patents

シュヴアルツシルド光学系

Info

Publication number
JP2865257B2
JP2865257B2 JP1054751A JP5475189A JP2865257B2 JP 2865257 B2 JP2865257 B2 JP 2865257B2 JP 1054751 A JP1054751 A JP 1054751A JP 5475189 A JP5475189 A JP 5475189A JP 2865257 B2 JP2865257 B2 JP 2865257B2
Authority
JP
Japan
Prior art keywords
optical system
reflectance
convex mirror
mirror
theta
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1054751A
Other languages
English (en)
Other versions
JPH02234100A (ja
Inventor
美来子 加藤
慶記 池滝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP1054751A priority Critical patent/JP2865257B2/ja
Priority to US07/489,006 priority patent/US5144497A/en
Publication of JPH02234100A publication Critical patent/JPH02234100A/ja
Application granted granted Critical
Publication of JP2865257B2 publication Critical patent/JP2865257B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K7/00Gamma- or X-ray microscopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/02Catoptric systems, e.g. image erecting and reversing system
    • G02B17/06Catoptric systems, e.g. image erecting and reversing system using mirrors only, i.e. having only one curved mirror
    • G02B17/0605Catoptric systems, e.g. image erecting and reversing system using mirrors only, i.e. having only one curved mirror using two curved mirrors
    • G02B17/061Catoptric systems, e.g. image erecting and reversing system using mirrors only, i.e. having only one curved mirror using two curved mirrors on-axis systems with at least one of the mirrors having a central aperture
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/02Objectives
    • G02B21/04Objectives involving mirrors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70233Optical aspects of catoptric systems, i.e. comprising only reflective elements, e.g. extreme ultraviolet [EUV] projection systems

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Lenses (AREA)
  • Optical Filters (AREA)
  • Optical Elements Other Than Lenses (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、X線顕微鏡の対物レンズ及びX線リソグラ
フィの縮小光学系として利用されるシュヴァルツシルド
(Schwarzshild)光学系に関するものである。
〔従来の技術〕
シュヴァルツシルド光学系は、第16図に示すように、
物点Oと像点Iの間に中心に開口を有する凹面鏡1と凸
面鏡2とを共軸に配置したものであって、物点Oに放射
源を置いた場合にはこの放射源から発した光が凹面鏡1,
凸面鏡2の順に反射されて像点Iに集束せしめられるよ
うに構成されているものである。
斯かるシュヴァルツシルド光学系において、近軸領域
においてコマ収差及び球面収差を補正するための条件は
エー・ケー・ヘッド(A.K.Head,Proc.Phys.Soc.70,945
(1957))により与えられており、それは次の3つ式 を満足することである。
但し、符号は第16図に示す通りであって、ρ0,l0
γ0及びρ,l,γは夫々光軸及び物点Oと像点Iとを結ぶ
光線に沿った、物点Oと凹面鏡1,凹面鏡1と凸面鏡2,凸
面鏡2と像点Iとの距離、θ,uは物点O及び像点Iにお
いて光軸と光線のなす角度、θ1は凹面鏡1への光線の
入射角、mはこのシュヴァルツシルド光学系の倍率であ
る。これらより、凹面鏡1,凸面鏡2の曲率半径γ1,γ2
が下記式(1),(2)のように求められる。
γ1=2ml0ρ0/(mρ0+ml0−γ0) ・・・・(1) γ2=2l0γ2/(γ0+l0−mρ0) ・・・・(2) 上記式(1),(2)を満たすシュヴァルツシルド光
学系は凹凸面鏡の曲率中心が一致した共芯型と呼ばれる
構成を有しており、各鏡への入射角(特に凹面鏡1への
入射角θ1)が小さいものである。共芯型シュヴァルツ
シルド光学系の設計法は、ピー・エルドス(P.Erdos,Op
t.Soc.America 49,877(1959))より提案されている。
即ち、倍率mを指定することにより以下の式から凹面鏡
1の曲率半径γ1,物点Oから凹凸両鏡共通の曲率中心
までの距離W,凸面鏡2の面頂Tから像点Iまでの距離γ
0が、凸面鏡2の曲率半径γ2との比で各々求められる。
即ち、γ2=1とすると、 となる。
エルドスの設計法以外にも所謂自動設計プログラムを
用いて収差が良好に補正されたシュヴァルツシルド光学
系(第18図)を得ることが可能であり、またSPIE Vol.3
16,316c(1981)に紹介されている光学系のようなもの
もある。これらは非共芯光学系であるが、二つの球面鏡
の曲率中心のずれは小さく、エルドスの設計法により得
られた共芯光学系(第19図,第20図)と良く似た性質を
持つものである。本件発明者等の検討した所では、
γ1,γ2が上記式(1),(2)で与えられる値の±10
%程度の範囲内即ち 2ml0ρ0/mρ0+ml0−γ0)×0.9γ12ml0ρ0/(m
ρ0+ml0−γ0)×1.1 2l0γ0/γ0+l0−mρ0)×0.9γ22l0γ0/(γ
0+l0−mρ0)×1.1 であれば、共芯光学系に関する議論がほぼそのまま通用
する。従って、以下においては共芯光学系について種々
検討を加えることとする。
シュヴァルツシルド光学系の作用は以下の通りであ
る。
第21図において、物点Oから放射された光は、光学系
の開口(斜線部)を通り、はじめに凹面鏡1の鏡面に入
射する。その後、該鏡面においてある反射率で反射され
た光は、次に凸面鏡2の鏡面に入射する。しかる後該鏡
面においてある反射率で反射された光は像点Iに集光す
る。
ところで、X線波長領域の光を鏡面の法線に対して微
小な角度で入射した時に大きな反射率を得る手段とし
て、多層膜を基板上に積層する考えが知られている。多
層膜は光の入射角に依存する分散性及び入射光の波長に
依存する分散性を有している。
多層膜には、例えば第22図に示すように、2種類の物
質a,bで層対を形成して同じ厚さの周期で基板3上に積
層するものがある。この場合、各々の物質a,bの厚さ
d1,d2は、波長λの光が膜表面に対してある角度θ0
入射した時に反射率が最大となるように、フレネルの漸
化式(波岡 武 精密工学会誌52/11/1986 P1843)によ
り最適化する。
第23図の(a)は、Ni−Sc 100 層対から成り、膜表
面に波長λ=39.8Åの光を入射した時に、θ0=0°と
なるように、層厚d1,d2をフレネルの漸化式により最適
化した多層膜において、同フレネルの漸化式より算出し
た反射率の入射角度分布を示したものである。同様に第
23図の(b),(c),(d)は、各々θ0=2.8°,7.4
°,10°の多層膜における反射率の入射角度分布を示し
たものである。これらによれば、最大反射率を与える入
射角θ0が0に近い時、反射率分布は直入射近傍でほぼ
一定と見なせ、入射角θ0が大きくなるに従って反射率
分布の半値幅は狭くなる傾向にある。
他に波岡氏の提案する非周期構造を持つ多層膜(科学
研究費補助金研究成果報告書(1985))もある。
〔発明が解決しようとする課題〕
以上述べてきたように、シュヴァルツシルド光学系
は、光が小さな角度で鏡面に入射する直入射型の光学系
である。そのため、X線波長領域において本光学系を使
用する際には、鏡面上に多層膜を被覆して反射率を向上
させる必要がある。ところが、多層膜は、上記波長域に
おいて波長分散性と入射角度分散性を有しているため、
それらを考慮せずに被覆しても、光の波長並びに光学系
から決定される光の入射角との関係によっては各々の鏡
面において反射率が向上せず、結果として像面が暗くな
ってしまう。従来は、各々の鏡面に被覆する多層膜のパ
ラメータ、例えば膜を構成する物質,層数,層厚等の最
適値を求める努力はされていなかった。
本発明は、上記問題点に鑑み、像面をできるだけ明る
くするように、各々の鏡面に被覆する多層膜を設計する
ことによって、反射効率の良いシュヴァルツシルド光学
系を提供することを目的としている。
〔課題を解決するための手段及び作用〕
本発明は、凹面鏡と凸面鏡とからなるシュヴァルツシ
ルド光学系の多層膜の設計方法において、前記凸面鏡に
交互に積層される2種類の薄膜について、前記凸面鏡の
最大反射率を与える入射角θ02に対して、波長λの光に
対する前記凹面鏡の反射率と前記凸面鏡の反射率との積
の前記シュヴァルツシルド光学系の開口にわたる積分値
に基づいて得られる集光量αを下記の式に基づいて求め
る工程と、前記θ02を更新する工程と、前記αを求める
工程と前記θ02を更新する工程とを繰り返す工程と、前
記θ02に対する前記αがその最大値の1/2以上となるθ
02の範囲を求める工程と、求められたθ02の範囲内にお
けるθ02において、前記凸面鏡の反射率が最大となるよ
うに、前記2種類の薄膜の膜厚を決定する工程と、を含
むことを特徴とするシュヴァルツシルド光学系の多層膜
の設計方法である。
ただし、N.A.はシュヴァルツシルド光学系の物点側開口
数、ρ0は物点と前記凸面鏡との距離、γ1は前記凹面鏡
の曲率半径、γ0は像点と前記凸面鏡との距離、γ2は前
記凸面鏡の曲率半径、mは前記シュヴァルツシルド光学
系の倍率、βは多層膜の複素屈折率の虚部平均値であ
る。
以下、これらの諸条件について詳細に説明する。
(1)第21図において、シュヴァルツシルド光学系によ
り形成される像面における明るさを評価するために、こ
の光学系の集光量αとして以下のように定義する。
但し、Ωは物点Oが光学系の有効開口に対して張る立
体角、θmax.,θmin.は夫々物点から発してこの光学系
の有効開口に入射し得る光線が光軸となす角の最大値及
び最小値である。
式(7)は、また以下のようにも書ける。
ここで、θ=θmin.+j・Δθ(jは整数), Δφ=2π/nφ,Δθ=2π/nθ である。但し、Ie:単位立体角当り,単位時間当りに通
過する光のエネルギー強度 R(θk,θ0k):第k面(k=1,2) での反射率 θk=θk(θ):物点Oから角度θで放射された光が第
k面へ入射する際の入射角 θ0k:特定の波長λの光を第k面に入射した時、最大反
射率を与える入射角 である。
αは、正確には上記式(8)を用いて算出するもので
ある。即ち、θ0kを設定した後、物点Oから角度θで放
射された光を光線追跡して第k面への入射角θkを数値
計算し、それによってフレネルの漸化式から反射率Rを
求め、それを式(8)に代入し、θ,φについて総和
(summation)を取ればαが求まる。
θ0kの値を変えて同じ計算を行うと、集光量αとして異
なる値が求まるので、以下の計算を繰り返してαが最大
(αmax.)となるような入射角θ0kの組合わせを導き出
し、各反射面に形成する多層膜をこのθ0kに合わせて選
定すれば、明るい光学系を得ることができる訳である。
そこで、上記の計算を出来るだけ簡略化する方法を説
明する。
と近似する。但し、凸面鏡2の有効径Hは、ほぼ で与えられ、Hが上式の値より大きいと、物点Oからの
光線の一部は第2面でケラれ、Hが上式より小さいと、
光学系の有効なN.A.はHの値に対応して小さくなる。各
角度があまり大きくならない限り、これらは良い近似と
なる。尚、Hの値が以下に示す範囲であれば、像面の明
るさの劣化が無視できる。
以下 として説明していく。
前述のように、本光学系は原理的に共芯型であり、倍
率mからw,γ1,γ0はγ2の比として計算される。従っ
て、入射角θ01は倍率mとN.A.からその範囲を決定でき
る。ここで、αmax.を与えるθ0kが総和の範囲の上下限
θmax.,θmin.に対応する入射角θk max.とθk min.
間の値をとるものと仮定する。第23図に示した反射率の
入射角依存性を示す曲線からも明らかなように、このよ
うに仮定は十分な妥当性をもつものである。特に、第1
面について考えると、先に述べたように第1面への入射
角は非常に0°に近いため、θ1 min.θ01<θ1 max.
の範囲でθ01を設定した場合には、θ1 min.〜θ1 max.
の角度範囲内で反射率が最大値に近く、殆ど一定の値を
持つことが第23図からわかる。従って、R(θ1
θ01)=一定として、以下の考察を進めることができ
る。
上記式(7)に、前述のR(θ1,θ01)が一定であ
る条件を代入し、定数部分をまとめると、 と書ける。
式(12)を解析的に解くために、まず第2面の反射率
分布Rを次のようなローレンツ分布の重ね合わせで近似
する。
但し、 A:規格定数 (Rmax.はフレネルの漸化式から得た、R(θ02
θ02)の値即ちR(θ2,θ02)の最大値) (B.Henke.American Institute of Physics(1981)P
85参照) 更に、βav.は、以下の式より求めた、多層膜を構成
する物質の各々の吸収係数βの平均値である。
Na:単位体積中の原子数 re:古典電子半径 f2:ビー・ヘンケ(B.Henke)による吸収因子(B.Hen
ke,Atomic data and nuclear date tables 27,1−14(1
982)) 第1図の(a)は、Re−Alを周期的に100層対積層し
た多層膜を想定し、波長λ=39.8Åでθ02=7.4°とな
るように層厚d1,d2をフレネルの漸化式で最適化した
後、更に入射角からフレネルの漸化式によって反射率R
を算出したものである。
又、第1図の(b)は、式(13)で求めた近似反射率
分布であり、実際の分布(a)の良い近似となっている
ことがわかる。ここでθ2は、θの関数として以下のよ
うに近似できる。
式(12)に式(13)と式(15)を代入し、積分を実行
すると以下の式になる。
そして、θmax.,θmin.に上記式(10),(11)を代
入することにより、α(θ02)は倍率mと開口数N.A.で
その関数形が決定されることになる。
さて、現在X線フィルムを感光させるために必要な光
量をフォトンの数に直すと、約7〜8(Photons/sec・
μm2・1%BW)と言われている。
第17図においてm=100とした光学系において、N.A.
=0.2である時の像面Iに到達するフォトンの数を見積
もる。
使用波長:λ=17.6Å 光源の明るさ:Ie=4.2×1016 (Photons/sec・rad2・mm2・1%BW) 物点の照射範囲:30μm径 多層膜は、現在の製作技術を考慮して、Re−Baの層対
を同じ厚さの周期で40層(20層対)積層するものとす
る。第1面での反射率は、1.3%で一定として、第2面
での反射率は、αmax.を与える分布R(θ2,7.4°)を
用いて、式(8)に従って像面(30×100μm径)に到
達するフォトンの数を計算する。即ち、 α=1.23×108(Photons/sec・1%BW)である。従っ
て、像面における1μm径中のフォトン数は 1.23×108/(3000)2=13.7(Photons/sec・μm2・1
%BW) である。
以上のことよりα(θ02,N.A.)がαmax.からほぼ50
%劣化した時にフィルムの感光能力の限界となることが
わかる。従って、入射角θ02は、式(16)で与えられる
α(θ02,N.A.)が特定のN.A.に対して α(θ02,N.A.)/αmax.0.5・・・・(17) を満たす範囲で決定する。
入射光線の、同一物質で構成される多層膜に対する反
射率は、波長λが短くなるほど低下する。従って、使用
することを想定した波長の、短い方の値におけるフィル
ムの感光能力限界を用いて、θ02の満たすべき範囲を決
定した。
尚、式(17)より、α(θ02,N.A.)の定数部分は約
されることから、改めてα(θ02,N.A.)は以下のよう
に定義する。
(2)次に、第2図のように、前記(1)で設計された
多層膜を被覆して成るシュヴァルツシルド光学系の、物
点Oと像点Iを入れ替える。
物点Oから、空間的に等方に放射された光線の内、光
学系の開口を通るものに着目する。前記光線は、はじめ
に凸面鏡2の鏡面に、物点Oからの放射角uで決まる入
射角θ2で入射する。その後ある反射率R(θ2)で反射
された光は、次に凹面鏡1の鏡面に、やはり放射角uで
決まる入射角θ1で入射する。しかる後ある反射率R
(θ1)で反射された光は、像点Iに光軸となす角θで
入射して集光する。物点Oからの放射角u,鏡面への入射
角θ2,θ1及び像点Iへの入射角θは、幾何光学的に前
記(1)の場合と正確に一対一で対応するものである。
従って、前記(1)のように設計された多層膜を被覆
した反射光学系の物点Oと像点Iを入れ替えても、光線
の各鏡への入射角は変わらないので、各鏡で前記(1)
の場合と同じ反射率が得られる。
以上により、前記(1)の光学系の物点Oと像点Iを
入れ替えれば、反射効率の良い縮小光学系が得られ、こ
れをX線リソグラフィに用いることができる。
〔実施例〕
以下、図示した実施例に基づき本発明を詳細に説明す
る。
実施例1 まず、凸面鏡2として使用する多層膜反射鏡の設計手
順について第3図に示したフローチャートに従って説明
する。
倍率m=100とし、前記式(3)(4)(5)(6)
によって光学系の鏡設置位置を決定する。(第20図(m
=100)の光学系を得る。) 波長λ=39.8Åとする。
多層膜を構成する物質は、Re,Alとし、層対を同じ厚
さの周期で積層するものとする。層数はここでは100層
対とする。
ヘンケ他が測定した原子散乱因子の表(B.Henke Atom
ic data and nuclear data tables 27,1−144(1982)
からλ=39.8Åに対応するRe,Al各々のf2を引用した値f
2 Re=23.46,f2 Al=4.6を前記式(14)に代入し、βRe
=0.0113,βAl=0.0020を得る。
光学系のN.A.をN.A.=0.207とする。これによって光
学系のレイアウトは完成される。
θ02を、前記式(10),(11)及び(15)から得られ
るような、θ2 min.からθ2 max.程度の範囲で入力す
る。即ち、4°θ0210°とする。
前記式(18)に従って、集光量α(θ02)を算出す
る。
第4図の(a)は、上記,を繰り返して得た近似
のαのθ02依存性を示すグラフであり、以後このように
αのθ02依存性を示すグラフをA型図と呼ぶ。この図が
得られれば、特定のN.A.の光学系において第2反射鏡に
被覆する多層膜のθ02(最大反射率を与える入射角)を
どの程度に設定すれば良いかがわかる。
第4図の(b)は、第17図(m=100)の光学系にお
いて、式(8)よりαを算出した場合のαのθ02依存性
を示している。但し、R(θ1,θ01)は一定とし、R
(θ2,θ02)はフレネルの漸化式によって計算された
反射率分布を用いた。又、定数部分は式(18)に合わせ
て省略した。第4図(a),(b)を比較すれば明らか
なように、両者から得られるθ02の値は非常に近く、本
発明によって得た反射鏡を備えた光学系が極めて良好な
集光効率を有することがわかる。
N.A.を変えて、N.A.ごとのA型図を作成する。
N.A.ごとのA型図より、各々αmax.を与えるθ02,α
=αmax.×95%となる時のθ02,α=αmax.×80%,α
=αmax.×50%,α=αmax.×30%となる時のθ02を求
める。
第5図は横軸にθ02,縦軸にN.A.を夫々取った座標上
に、上記αmax.を与える(θ02,N.A.)をプロットし,
なめらかな曲線で結んだもの,同様にα=αmax.×95
%,α=αmax.×80%,α=αmax.×50%,α=αmax.
×30%を与える(θ02,N.A.)をプロットし、各々をな
めらかに結んだものを夫々示す。これらをθ02とN.A.の
近似相関曲線と呼ぶことにし、このような図をB型図と
する。この図によれば、種々の開口数のシュヴァルツシ
ルド光学系に対し、その開口数に応じてθ02の値をどの
程度に選定すれば良いかを知ることができる。また図
中、点Pは、第4図の(b)で求めた正確にαmax.を与
えるθ02とN.A.の関係をプロットしたものであるが、こ
の点は近似相関曲線でαmax.の95%以上の範囲にある。
このことは近似相関曲線が良好な近似であることを示す
ものである。
P点はθ02=7.4°に相当し、このとき第2反射鏡を
構成する、Al,Reの層厚は各々 DAl=7.28Å,DRe=12.9Å と定めることができる。
尚、第5図において、例えば近似相関曲線(A)はN.
A.=0.037θ02+0.02 近似相関曲線(B)は N.A.=0.027θ02−0.08 と夫々直線で近似できる。従って、この近似を用いれ
ば、N.A.の決められた光学系においてある集光量αを得
るためのθ02をB型図を度々見なくても計算によって求
めることもできる。
本実施例における光学系の諸元をまとめると、 (イ)光学系倍率 m=100 (ロ)波長 λ=39.8Å (ハ)多層膜 Al−Re 100層対 βAl=0.0020,βRe=0.0113 (ニ)N.A.=0.207,θ02=7.4° 各層厚 DAl=7.28Å,DRe=12.9Å である。このAl−Re多層膜から成る反射鏡の反射率は第
1図(a)に示した通りである。
以下、他の実施例を挙げるが、これらについては光学
系の諸元のみを示し、詳しい説明は実施例と同様なので
省略する。
実施例2 (イ)m=100 (ロ)λ=39.8Å (ハ)Ni−Sc,100層対 βNi=0.00412,βSc=0.000574 (ニ)N.A.=0.207,θ02=7.4° DNi=8.28Å,DSc=11.9Å 実施例3 (イ)m=50 (ロ)λ=39.8Å (ハ)Ni−Sc,100層対 βNi=0.00412,βSc=0.000574 (ニ)N.A.=0.207,θ02=7.4° DNi=8.28Å,DSc=11.9Å 実施例4 (イ)m=10 (ロ)λ=39.8Å (ハ)Ni−Sc,100層対 βNi=0.00412,βSc=0.000574 (ニ)N.A.=0.207,θ02=7.4° DNi=8.28Å,DSc=11.9 実施例5 (イ)m=20 (ロ)λ=39.8Å (ハ)Ni−Sc,100層対 βNi=0.00412,βSc=0.000574 (ニ)N.A.=0.207,θ2=7.8° DNi=8.08Å,DSc=12.1Å 第6,7,8,9図は夫々実施例2,3,4,5のB型曲線図である。
尚、実施例3,4は物点,像点及び2枚の反射鏡の基本
配置として第17図のm=50,m=10として示したものを用
いている。また実施例5は第18図のものを用いている。
実施例3乃至5から明らかなように、本発明は二つの反
射鏡の曲率中心が若干ずれた系においても良好な結果を
与えることがわかる。
実施例6 (イ)m=100 (ロ)λ=39.8Å (ハ)Re−Ba,100層対 βRe=0.0113,βBa=0.000594 (ニ)N.A.=0.207,θ2=7.4° DRe=6.45Å,DBa=13.7Å 実施例7 (イ)m=100 (ロ)λ=17.6Å (ハ)Re−Ba,100層対 βRe=0.0227,βBa=0.000145 (ニ)N.A.=0.207,θ02=7.4° DRe=3.91Å,DBa=4.98Å 実施例8 (イ)m=100 (ロ)λ=39.8Å (ハ)Mo−Si,100層対 βMo=0.00663,βSi=0.00209 (ニ)N.A.=0.207,θ02=7.4° DMo=8.47Å,DSi=11.7Å 実施例9 (イ)m=100 (ロ)λ=39.8Å (ハ)W−C,100層対 βW=0.0104,βC=0.00323 (ニ)N.A.=0.207,θ02=7.4° DW=8.07Å,DC=12.1Å 実施例10 (イ)m=100 (ロ)λ=27.4Å (ハ)Ni−Ti,100層対 βNi=0.00136,βTi=0.000327 (ニ)N.A.=0.207,θ02=7.4° DNi=6.51Å,DTi=7.34Å 実施例11 (イ)m=100 (ロ)λ=27.4Å (ハ)Os−Sb,100層対 βOs=0.00597,βSb=0.00416 (ニ)N.A.=0.207,θ02=7.4° DOs=6.37Å,DSb=7.48Å 第10乃至第15図は、夫々実施例6乃至11のB型曲線図
である。
波長約17〜60Åの範囲内では、αmax.の95%の集光量
を与える近似相関曲線のうち直入射側のものを(A)、
αmax.の50%の集光量を与える近似相関曲線を(B)と
するとき、曲線(A)と(B)の間の領域内でN.A.とθ
02の関係を設定することが望ましい。
尚、曲線(A),(B)は夫々直線 N.A.=0.037θ02+0.02 N.A.=0.027θ02−0.08 で近似できる。
〔発明の効果〕
上述の如く、本発明によるシュヴァルツシルド光学系
は反射効率が極めて良いという実用上重要な利点を有し
ている。
【図面の簡単な説明】
第1図はRe−Alを周期的に積層し層厚をフレネルの漸化
式で最適化した多層膜の入射角に対する反射率分布を示
す図、第2図は上記光学系の物点と像点を入れ替えた場
合の構成を示す図、第3図は凸面鏡として使用する多層
膜反射鏡の設計手順を示すフローチャート、第4図は第
17図の光学系の集光量αの入射角θ02の依存性を示す
図、第5図は第17図の光学系のαmax.を与えるθ02とN.
A.の近似相関曲線図、第6図乃至第15図は夫々実施例1
乃至10のαmax.を与えるθ02とN.A.の近似相関曲線図、
第16図はシュヴァルツシルド光学系の基本構成を示す
図、第17図はシュヴァルツシルド光学系の構成と自動設
計プログラムで設計した複数組のパラメータを示す図、
第18図は最も反射鏡の曲率中心のずれた光学系とそのパ
ラメータを示す図、第19図は反射鏡の曲率中心が一致し
た光学系とそのパラメータを示す図、第20図は本発明光
学系と式(4)(5)(6)で設計した複数組のパラメ
ータを示す図、第21図は該光学系の開口及び入射角の範
囲を示す図、第22図は多層膜反射鏡の概略断面図、第23
図はNi−Scを周期的に積層し層厚をフレネルの漸化式で
最適化した多層膜の入射角に対する反射率分布を示す図
である。 1…凹面鏡、2…凸面鏡、3…基板。
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 Alan G.Michetta, “OPTLCAL SYSTEMS F OR SOFTX RAYS”(1986) Plenum Rress (米)P P.258−260

Claims (1)

    (57)【特許請求の範囲】
  1. 【請求項1】凹面鏡と凸面鏡とからなるシュヴァルツシ
    ルド光学系の多層膜の設計方法において、前記凸面鏡に
    交互に積層される2種類の薄膜について、前記凸面鏡の
    最大反射率を与える入射角θ02に対して、波長λの光に
    対する前記凹面鏡の反射率と前記凸面鏡の反射率との積
    の前記シュヴァルツシルド光学系の開口にわたる積分値
    に基づいて得られる集光量αを下記の式に基づいて求め
    る工程と、前記θ02を更新する工程と、前記αを求める
    工程と前記θ02を更新する工程とを繰り返す工程と、前
    記θ02に対する前記αがその最大値の1/2以上となるθ
    02の範囲を求める工程と、求められたθ02の範囲内にお
    けるθ02において、前記凸面鏡の反射率が最大となるよ
    うに、前記2種類の薄膜の膜厚を決定する工程と、を含
    むことを特徴とするシュヴァルツシルド光学系の多層膜
    の設計方法。 ただし、N.A.はシュヴァルツシルド光学系の物点側開口
    数、ρ0は物点と前記凸面鏡との距離、γ1は前記凹面鏡
    の曲率半径、γ0は像点と前記凸面鏡との距離、γ2は前
    記凸面鏡の曲率半径、mは前記シュヴァルツシルド光学
    系の倍率、βは多層膜の複素屈折率の虚部平均値であ
    る。
JP1054751A 1989-03-07 1989-03-07 シュヴアルツシルド光学系 Expired - Fee Related JP2865257B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP1054751A JP2865257B2 (ja) 1989-03-07 1989-03-07 シュヴアルツシルド光学系
US07/489,006 US5144497A (en) 1989-03-07 1990-03-06 Swchwarzschild optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1054751A JP2865257B2 (ja) 1989-03-07 1989-03-07 シュヴアルツシルド光学系

Publications (2)

Publication Number Publication Date
JPH02234100A JPH02234100A (ja) 1990-09-17
JP2865257B2 true JP2865257B2 (ja) 1999-03-08

Family

ID=12979475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1054751A Expired - Fee Related JP2865257B2 (ja) 1989-03-07 1989-03-07 シュヴアルツシルド光学系

Country Status (2)

Country Link
US (1) US5144497A (ja)
JP (1) JP2865257B2 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0782117B2 (ja) * 1989-02-23 1995-09-06 オリンパス光学工業株式会社 反射型結像光学系
US5854713A (en) * 1992-11-30 1998-12-29 Mitsubishi Denki Kabushiki Kaisha Reflection type angle of view transforming optical apparatus
US5737137A (en) * 1996-04-01 1998-04-07 The Regents Of The University Of California Critical illumination condenser for x-ray lithography
US5903386A (en) * 1998-01-20 1999-05-11 Northrop Grumman Corporation Tilted primary clamshell lens laser scanner
JP3728495B2 (ja) * 2001-10-05 2005-12-21 独立行政法人産業技術総合研究所 多層膜マスク欠陥検査方法及び装置
DE50313254D1 (de) * 2002-05-10 2010-12-23 Zeiss Carl Smt Ag Reflektives roentgenmikroskop zur untersuchung von objekten mit wellenlaengen = 100nm in reflexion
JP3919599B2 (ja) * 2002-05-17 2007-05-30 キヤノン株式会社 光学素子、当該光学素子を有する光源装置及び露光装置
JP2004343082A (ja) * 2003-04-17 2004-12-02 Asml Netherlands Bv 凹面および凸面を含む集光器を備えたリトグラフ投影装置
DE10319268A1 (de) * 2003-04-25 2004-12-02 Carl Zeiss Sms Gmbh Diffraktiver Strahlteiler für Abbildungssysteme
DE10319269A1 (de) * 2003-04-25 2004-11-25 Carl Zeiss Sms Gmbh Abbildungssystem für ein, auf extrem ultravioletter (EUV) Strahlung basierendem Mikroskop
JP4848510B2 (ja) * 2005-03-24 2011-12-28 国立大学法人東北大学 投影光学装置
DE102009044751B4 (de) 2008-12-04 2014-07-31 Highyag Lasertechnologie Gmbh Spiegel-Objektiv für Laserstrahlung
US8139289B2 (en) 2010-07-27 2012-03-20 Corning Incorporated Precision optical mount
KR102520120B1 (ko) 2017-01-05 2023-04-07 아이피지 포토닉스 코포레이션 추가 레이저 기계가공 시스템 및 방법

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4370750A (en) * 1981-05-15 1983-01-25 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Extended range X-ray telescope
US4693933A (en) * 1983-06-06 1987-09-15 Ovonic Synthetic Materials Company, Inc. X-ray dispersive and reflective structures and method of making the structures
US4562583A (en) * 1984-01-17 1985-12-31 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Spectral slicing X-ray telescope with variable magnification
US4812030A (en) * 1985-01-03 1989-03-14 The Boeing Company Catoptric zoom optical device
US4941163A (en) * 1985-08-15 1990-07-10 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Multispectral glancing incidence X-ray telescope
US4863253A (en) * 1987-09-25 1989-09-05 Spectra-Tech, Inc. High magnification reflecting microscope objective having a dual magnification mode and zoom magnification capability

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Alan G.Michetta,"OPTLCAL SYSTEMS FOR SOFTX RAYS"(1986)Plenum Rress (米)PP.258−260

Also Published As

Publication number Publication date
US5144497A (en) 1992-09-01
JPH02234100A (ja) 1990-09-17

Similar Documents

Publication Publication Date Title
JP2865257B2 (ja) シュヴアルツシルド光学系
US9897924B2 (en) Illumination optical unit for projection lithography
US5604782A (en) Spherical mirror grazing incidence x-ray optics
CN100498531C (zh) 光学元件、包括这种光学元件的光刻设备及器件制造方法
US7248667B2 (en) Illumination system with a grating element
US20050168820A1 (en) Achromatic fresnel optics for ultraviolet and x-ray radiation
Mangus et al. Optical design of a glancing incidence x-ray telescope
US7084412B2 (en) Collector unit with a reflective element for illumination systems with a wavelength of smaller than 193 nm
Dabagov et al. On the interference of X-rays in multiple reflection optics
JP2945431B2 (ja) 結像型x線顕微鏡
TW530164B (en) Illumination system with a grating element
Lider Kirkpatrick–Baez and Wolter X-ray focusing optics
JPH0782117B2 (ja) 反射型結像光学系
US8575577B1 (en) Grazing incidence neutron optics
Lee Uniform and graded multilayers as x-ray optical elements
Simon et al. A New Type of X‐ray Condenser Lenses with Large Apertures Fabricated by Rolling of Structured Films
Akhsakhalyan et al. Multilayer mirror systems to form hard X-ray beams
US5241426A (en) Condenser optical system
JP2634661B2 (ja) X線用多層膜反射鏡
Hoover et al. Design of an imaging microscope for soft X-ray applications
Takeo et al. Design of two-stage soft-X-ray nano-focusing system with a ring-focusing mirror and quasi-Wolter mirror
Spiga et al. Computation of the off-axis effective area of the New Hard X-ray Mission modules by means of an analytical approach
JPH09113697A (ja) 多層膜反射鏡
RU2238576C1 (ru) Способ фокусировки волнового поля и устройство для его осуществления
JPH03160400A (ja) エックス線結像素子

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees