JP2862692B2 - Manufacturing method of single crystal ferrite - Google Patents

Manufacturing method of single crystal ferrite

Info

Publication number
JP2862692B2
JP2862692B2 JP3036645A JP3664591A JP2862692B2 JP 2862692 B2 JP2862692 B2 JP 2862692B2 JP 3036645 A JP3036645 A JP 3036645A JP 3664591 A JP3664591 A JP 3664591A JP 2862692 B2 JP2862692 B2 JP 2862692B2
Authority
JP
Japan
Prior art keywords
single crystal
ferrite
temperature
firing
crystal ferrite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3036645A
Other languages
Japanese (ja)
Other versions
JPH04254497A (en
Inventor
龍一 大内
寛保 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON GAISHI KK
Original Assignee
NIPPON GAISHI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON GAISHI KK filed Critical NIPPON GAISHI KK
Priority to JP3036645A priority Critical patent/JP2862692B2/en
Publication of JPH04254497A publication Critical patent/JPH04254497A/en
Application granted granted Critical
Publication of JP2862692B2 publication Critical patent/JP2862692B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は固相反応を利用した熱間
静水圧処理により単結晶フェライト育成する単結晶フェ
ライトの製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a single crystal ferrite for growing a single crystal ferrite by hot isostatic pressure treatment utilizing a solid phase reaction.

【0002】[0002]

【従来の技術】従来から、多結晶フェライトと種子単結
晶フェライトとを接触させて加熱し、その固相反応によ
り単結晶フェライトを多結晶フェライト中に育成成長さ
せる単結晶フェライトの製造方法は種々のものが知られ
ている。
2. Description of the Related Art Conventionally, there have been various methods for producing a single crystal ferrite in which a polycrystal ferrite and a seed single crystal ferrite are brought into contact with each other and heated to grow the single crystal ferrite into the polycrystal ferrite by a solid phase reaction. Things are known.

【0003】このうち、特公昭62ー15518号公報におい
て、熱間加圧処理および/または熱間静水圧加圧処理
(以下、HIP処理とも記す)中で種子単結晶フェライ
トより単結晶フェライトを育成する技術が開示されてい
る。また、特開昭64ー4003 号公報では、第一次焼成を温
度T1 :1100< T1<1350℃で行い、第二次焼成を温度
2:T1 ー100℃< T2<T1 ー50 ℃でHIP中で行い
緻密化と粒成長を抑制し、第三次焼成を温度T3 :T2
より高い温度でHIP中で行うことにより、粒成長させ
る多結晶フェライトの製造方法が開示されている。さら
に、特開昭55ー43833号公報では、HIP処理後焼鈍して
多結晶を粒成長させる技術が開示されている。
[0003] Among them, in Japanese Patent Publication No. Sho 62-15518, single crystal ferrite is grown from seed single crystal ferrite in hot pressing and / or hot isostatic pressing (hereinafter also referred to as HIP). A technique for performing this is disclosed. Further, in JP 64 over 4003 JP, temperatures T 1 a primary firing: 1100 <T 1 <conducted at 1350 ° C., secondary firing temperature T 2: T 1 over 100 ℃ <T 2 <T inhibit densification and grain growth is performed in a HIP in 1 over 50 ° C., a temperature T 3 of the third primary firing: T 2
A method is disclosed for producing polycrystalline ferrite that grows in HIP at higher temperatures by grain growth. Furthermore, Japanese Patent Application Laid-Open No. 55-43833 discloses a technique of growing a polycrystal by annealing after HIP treatment.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上述し
た技術のうち、特公昭62ー15518号公報では、加圧接合が
必要であったり、得られた単結晶フェライトの保持力H
cが0.05Oeと大きく帯磁ノイズの影響を受ける問題が
あった。また、単結晶育成距離が12mm程度と短く、量産
に適さない問題もあった。さらに、特開昭64ー4003 号公
報や特開昭55ー43833号公報では、HIPで粒成長させる
ことにより歪がぬけることが開示されているが、対象が
多結晶フェライトに限定されるものであった。
However, of the above-mentioned technologies, Japanese Patent Publication No. Sho 62-15518 discloses that the pressure bonding is required or the holding force H of the obtained single crystal ferrite is high.
There was a problem that c was as large as 0.05 Oe and affected by magnetizing noise. In addition, there was a problem that the single crystal growing distance was as short as about 12 mm and was not suitable for mass production. Furthermore, Japanese Patent Application Laid-Open Nos. 64-4003 and 55-43833 disclose that strain is released by grain growth using HIP, but the target is limited to polycrystalline ferrite. there were.

【0005】本発明の目的は上述した課題を解消し、H
IP処理を利用して単結晶育成距離を長くすることがで
き、量産にも適した単結晶フェライトの製造方法を提供
しようとするものである。
An object of the present invention is to solve the above-mentioned problems,
An object of the present invention is to provide a method for producing a single crystal ferrite which can lengthen a single crystal growing distance by using IP processing and is suitable for mass production.

【0006】[0006]

【課題を解決するための手段】本発明の単結晶フェライ
トの製造方法は、酸化鉄としてスピネル構造を有する
か、あるいはその履歴を有する酸化鉄を主として用いた
フェライト原料から成形体を製造し、この成形体に対し
1100℃から1280℃の温度領域において減圧下で焼成した
後、0.1 〜3%の酸素を含むヘリウム雰囲気中で焼成し、
さらに窒素中で冷却する第一次焼成を行うことにより、
平均粒子径10μm 以下の多結晶フェライト焼結体を作製
し、この多結晶フェライト焼結体を種子単結晶フェライ
トに仮接合し、この仮接合体を熱間静水圧下で1300℃以
上1560℃未満の温度で処理することを特徴とするもので
ある。
According to the method for producing single crystal ferrite of the present invention, a compact is produced from a ferrite raw material mainly using iron oxide having a spinel structure or having a history as iron oxide. For molded objects
After firing under reduced pressure in a temperature range of 1100 ° C to 1280 ° C, firing in a helium atmosphere containing 0.1 to 3% oxygen,
By performing primary baking further cooling in nitrogen,
A sintered polycrystalline ferrite having an average particle diameter of 10 μm or less is produced, and the sintered polycrystalline ferrite is temporarily bonded to a seed single crystal ferrite, and the temporary bonded body is heated to a temperature of 1300 ° C. or more and less than 1560 ° C. under hot isostatic pressure. The treatment is carried out at the following temperature.

【0007】[0007]

【作用】上述した構成において、フェライト成形体に対
して第一次焼成を所定の低温及び低酸素雰囲気中で行
い、酸素空格子量を多くして多結晶体を作製し、種子単
結晶フェライトと接触させ、その後所定のHIP処理を
用いた条件において第一次焼成より処理温度を上げて行
い、第一次焼成より多結晶を粒成長させ粒界の界面をず
らし、気孔をバルク内外に拡散させ、さらに固相反応に
よる単結晶化を行うことにより、単結晶中に気孔が少な
く、結晶成長距離の長い単結晶を得ることができる。
In the above-described structure, the primary sintering of the ferrite molded body is performed in a predetermined low temperature and low oxygen atmosphere to increase the amount of oxygen vacancies to produce a polycrystal, and the seed single crystal ferrite is formed. The contact temperature is increased by increasing the processing temperature from the first baking under the condition using a predetermined HIP treatment. Further, by performing single crystallization by a solid phase reaction, a single crystal having a small number of pores and a long crystal growth distance can be obtained.

【0008】本発明では、HIP中で単結晶を製造する
ため、第一次焼成で残留した気孔が外圧に対して圧縮さ
れているため、磁気特性の劣化が考えられる。しかしな
がら、多結晶フェライトのHIP処理前半では第一次焼
成温度以上の温度でHIP焼成しているため、多結晶の
粒成長に伴い粒界が移動することに着目し、第一次焼成
で生成される酸素空格子量を多くするとともに低い酸素
濃度を選ぶことにより、気孔はバルク内に一部拡散され
るとともに試料外部に排除されるため、磁気特性の劣化
がなく気孔も皆無に近い好適な単結晶フェライトを得て
いる。
In the present invention, since the single crystal is produced in the HIP, the pores remaining in the first firing are compressed with respect to the external pressure, so that the magnetic properties may be degraded. However, in the first half of the HIP treatment of the polycrystalline ferrite, the HIP is baked at a temperature equal to or higher than the primary calcination temperature. By increasing the amount of oxygen vacancies and selecting a low oxygen concentration, the pores are partially diffused into the bulk and eliminated outside the sample, so that there is no deterioration in magnetic properties and there is almost no pores. Crystal ferrite has been obtained.

【0009】本発明で酸素濃度を規定したのは、酸素濃
度がHe雰囲気中で0.1%未満であると加工性が悪化するた
めである。また、酸素濃度がHe雰囲気中で3%を越える
と、減圧下焼成によって生成された空格子が酸素によっ
て配位され、気孔拡散効果が減少するとともに単結晶化
が悪化するためである。
The reason why the oxygen concentration is specified in the present invention is that if the oxygen concentration is less than 0.1% in a He atmosphere, the workability deteriorates. On the other hand, if the oxygen concentration exceeds 3% in a He atmosphere, vacancies generated by firing under reduced pressure are coordinated by oxygen, and the pore diffusion effect decreases and single crystallization deteriorates.

【0010】すなわち、スピネル格子が空格子を持つこ
とにより不安定な状態になり、その後の加熱により界面
移動が容易になり、単結晶を容易に作ることができる。
また、上述したように気孔拡散効果が減少されると、試
料内に存在する僅かな気孔にHIP処理での圧縮応力が
かかり、歪が残留し磁気特性の良好なものが得られない
ばかりか、単結晶育成距離も小さくなる。
[0010] That is, the spinel lattice has an unstable state due to the presence of a vacancy, and the subsequent heating facilitates the movement of the interface, whereby a single crystal can be easily formed.
Further, when the pore diffusion effect is reduced as described above, compressive stress due to the HIP process is applied to a small number of pores present in the sample, and not only does the residual strain remain and good magnetic properties cannot be obtained. The single crystal growing distance is also reduced.

【0011】また、HIP処理の条件として温度及び圧
力を規定したのは、この範囲が実質的に粒成長が起きる
ことが可能な温度であるとともに、HIP処理で気孔低
減が可能な圧力であったためである。なお、本発明の温
度範囲で圧力を2000Kg/cm2まであげても、単結晶化に障
害となる液相物質のFeO の発生はなかった。なお、フェ
ライト成形体を作製するのに使用する酸化鉄原料として
は、従来から公知のように、スピネル構造を有するかあ
るいはその履歴を有することが単結晶フェライトの製造
に必須であるため、本発明でも原料を規定している。
[0011] Further, the reason why the temperature and the pressure are defined as the conditions of the HIP treatment is that this range is a temperature at which grain growth can substantially occur and a pressure at which pores can be reduced by the HIP treatment. It is. Even when the pressure was increased to 2000 kg / cm 2 within the temperature range of the present invention, there was no generation of FeO 2 as a liquid phase substance that would hinder single crystallization. In addition, as an iron oxide raw material used for producing a ferrite molded body, as is conventionally known, it is essential to have a spinel structure or to have a history of the spinel structure to produce a single crystal ferrite. But it specifies the raw materials.

【0012】[0012]

【実施例】以下、実際の例について説明する。酸化鉄原
料として湿式合成されたマグネタイトを焙焼し、これを
MnO 31.0mol%、ZnO 16.4mol%、Fe2O3 52.6mol%の組成に
調合し、混合、1050℃で仮焼、粉砕を経由した後、3500
0psiで成形した。
An actual example will be described below. Roasting the magnetite synthesized by wet process as iron oxide raw material,
MnO 31.0mol%, after ZnO 16.4mol%, formulated into Fe 2 O 3 52.6mol% of the composition, mixing, via the calcined, pulverized at 1050 ° C., 3500
Molded at 0 psi.

【0013】得られた成形体をロータリーポンプを用い
て150 ℃/hの昇温速度で800 ℃まで昇温した後、40℃/h
の昇温速度に切り替えて1000℃まで昇温した。この温度
で8時間保持した後、10℃/hの昇温速度で1100℃まで昇
温し、この温度で8時間保持した。さらに、10℃/hの昇
温速度で以下に示す表1の本発明範囲内および範囲外の
一次焼成温度まで焼成し、この温度で8時間真空雰囲気
中で保持した。この後、表1に示すようにHe雰囲気また
は低濃度の酸素を含むHe雰囲気中で4時間保持後、窒素
雰囲気に切り換えて冷却した。得られた多結晶体の一例
の気孔率は0.5%で、結晶粒子径は6.7 μm であった。
The obtained molded body is heated to 800 ° C. at a rate of 150 ° C./h using a rotary pump, and then heated to 40 ° C./h
And the temperature was raised to 1000 ° C. After maintaining at this temperature for 8 hours, the temperature was raised to 1100 ° C. at a rate of 10 ° C./h, and maintained at this temperature for 8 hours. Further, it was fired at a heating rate of 10 ° C./h to a primary firing temperature within and outside the range of the present invention shown in Table 1 below, and kept at this temperature in a vacuum atmosphere for 8 hours. Thereafter, as shown in Table 1, the sample was kept in a He atmosphere or a He atmosphere containing low-concentration oxygen for 4 hours, and then switched to a nitrogen atmosphere and cooled. One example of the obtained polycrystal had a porosity of 0.5% and a crystal particle diameter of 6.7 μm.

【0014】得られた多結晶フェライトを従来から行わ
れているフェライトの加工条件で切削研磨した20x8x20m
m 形状の多結晶フェライトと、20x8x1mm形状の種子単結
晶フェライトとを、硝酸で仮接合し、内側をフェライト
で覆ったアルミナ匣鉢中に入れ、N2ガスを使用したGr-H
IPで300 ℃/hの昇温速度で昇温し、表1に示す本発明の
範囲内及び範囲外の温度及び圧力で単結晶フェライトを
育成した後、同雰囲気中で冷却した。
The obtained polycrystalline ferrite was cut and polished under the conventional ferrite processing conditions by 20 × 8 × 20 m.
polycrystalline ferrite m shape and a seed single crystal ferrite 20x8x1mm shape, temporarily bonded with nitric acid, placed inside an alumina sagger was covered with ferrite was used N 2 gas Gr-H
The temperature was raised at a heating rate of 300 ° C./h by IP, a single crystal ferrite was grown at a temperature and pressure within and outside the range of the present invention shown in Table 1, and then cooled in the same atmosphere.

【0015】得られた単結晶フェライトの一例をあげる
と、単結晶化が20mmであり、サブグレイン及び1μm 以
上の気孔が発見されなかったものがあった。また、還元
に伴うFeO の存在も観察されなかった。なお、HIP中
での1300℃未満の温度では単結晶化が起こらなかった。
表1に結果を示す。表1中、単結晶育成距離は、種子単
結晶フェライトと多結晶フェライトとの接合界面からの
単結晶フェライトの育成した距離として求めた。また、
気孔数は高速ラップ研磨機で仕上げた面を、1000倍のス
ケール視野内の1μm 以上の気孔を光学顕微鏡で肉眼観
察して求めた。観察されたサブグレインの大きさは10〜
20μm であった。
As an example of the obtained single-crystal ferrite, there was a single-crystal ferrite having a single crystallization of 20 mm, in which no sub-grains and pores of 1 μm or more were found. Also, the presence of FeO due to the reduction was not observed. At a temperature lower than 1300 ° C. in HIP, single crystallization did not occur.
Table 1 shows the results. In Table 1, the single crystal growth distance was determined as the distance at which the single crystal ferrite was grown from the joint interface between the seed single crystal ferrite and the polycrystalline ferrite. Also,
The number of pores was determined by visually observing pores of 1 μm or more in a 1000-fold scale visual field on a surface finished with a high-speed lapping machine using an optical microscope. Observed subgrain size is 10 ~
It was 20 μm.

【0016】[0016]

【表1】 [Table 1]

【0017】表1の結果から、一次焼成条件及びHIP
処理条件の両者を満たす本発明範囲内の試験No1〜15
は、いずれかの点で本発明を満たさない比較例試験No16
〜23と比べて、単結晶育成距離が長く、単結晶中の気孔
数及びサブグレインも少ないことがわかる。また、一次
焼成前に減圧焼成しなかったものは、単結晶育成距離が
小さく、気孔が多かった。さらに、一次焼成の条件とし
て酸素がないものは切断加工において試料にクラックが
入ってしまい、実用的ではなかった。
From the results in Table 1, the primary firing conditions and HIP
Test Nos. 1 to 15 within the scope of the present invention that satisfy both of the processing conditions
Is a comparative example test No. 16 which does not satisfy the present invention in any point
It can be seen that the single crystal growth distance is longer and the number of pores and the number of sub-grains in the single crystal are smaller than those of Nos. To 23. In the case of not firing under reduced pressure before the primary firing, the single crystal growth distance was short and the number of pores was large. Furthermore, when there was no oxygen as a condition for the primary firing, cracks occurred in the sample during the cutting process, which was not practical.

【0018】なお、例えば得られた本発明試験No2の単
結晶フェライトの交流特性として、5 φx3 φx1.5tmm
の形状のμで0.1MHz=4800 、1MHz=1100 となり、比較例
試験No17では0.1MHz=1800 、1MHz=1100 となり、本発明
例では比較例に比べて磁気特性が大幅に改善されている
ことがわかる。また、直流特性として、本発明範囲内の
5 φx3 φx1.5tmm形状のHc1は、0.01〜0.02 Oe であ
った。
Incidentally, for example, the AC characteristics of the obtained single-crystal ferrite of Test No. 2 of the present invention were 5 φ × 3 φ × 1.5 tmm
0.1 μm = 4800, 1 MHz = 1100 in μ of the shape, and 0.1 MHz = 1800, 1 MHz = 1100 in Comparative Example Test No. 17, which shows that the magnetic properties of the present invention example are significantly improved as compared with the comparative example. Recognize. In addition, as a DC characteristic, within the scope of the present invention
5 φx3 φx1.5tmm H c1 shape was 0.01 to 0.02 Oe.

【0019】[0019]

【発明の効果】以上の説明から明らかなように、本発明
の単結晶フェライトの製造方法によれば、所定のフェラ
イト成形体に対し、所定温度及び雰囲気の第一次焼成、
その後の種子単結晶と多結晶接合後の所定温度及び圧力
のHIP処理による固相反応のための加熱処理を行うこ
とにより、育成した単結晶中の気孔数を減らすことがで
きるとともに、単結晶育成距離を大きくすることができ
るため、良好な磁気特性を有する単結晶フェライトを量
産することができる。
As is apparent from the above description, according to the method for producing single crystal ferrite of the present invention, the first firing at a predetermined temperature and atmosphere is performed for a predetermined ferrite molded body.
By performing the heat treatment for the solid phase reaction by the HIP treatment at a predetermined temperature and pressure after the subsequent bonding of the seed single crystal and the polycrystal, the number of pores in the grown single crystal can be reduced and the single crystal can be grown. Since the distance can be increased, single crystal ferrite having good magnetic characteristics can be mass-produced.

【0020】また、本発明により得た単結晶フェライト
は、その製造に当たって埋粉を必要とせず、還元によっ
て機械強度が低下するといった問題はなかった。さら
に、製造に当たってはサブグレインも消滅したものがあ
った。また、HIP処理後焼鈍する必要もなく、帯磁ノ
イズに寄与するHc1は上限とされている0.05 Oe 未満の
0.01〜0.02 Oe であった。なお、酸化鉄原料としてスピ
ネル構造以外の酸化鉄を使用した場合、結晶粒子径が20
μm 以上に成長し、単結晶育成距離も1mmと小さく、単
結晶中の気孔も多かった。
Further, the single crystal ferrite obtained by the present invention does not require embedded powder for its production, and there is no problem that the mechanical strength is reduced by reduction. In addition, some sub-grains have disappeared during production. Further, there is no need to perform annealing after the HIP treatment, and H c1 that contributes to the magnetizing noise is less than 0.05 Oe, which is the upper limit.
It was 0.01 to 0.02 Oe. When iron oxide other than the spinel structure is used as the iron oxide raw material, the crystal particle diameter is
It grew to more than μm, the single crystal growth distance was as small as 1 mm, and there were many pores in the single crystal.

【0021】以上のように、得られた単結晶フェライト
は、従来の固相反応で得られた単結晶フェライトと比べ
て気孔が格段に少ないため、寸法仕様が厳しいRDD 用基
板あるいはVTR 用基板として使用するのに好適である。
As described above, the obtained single-crystal ferrite has much less pores than the single-crystal ferrite obtained by the conventional solid-phase reaction, so that it can be used as an RDD substrate or a VTR substrate having strict dimensional specifications. Suitable for use.

フロントページの続き (56)参考文献 特開 昭55−43833(JP,A) 特開 昭64−4003(JP,A) 特公 昭61−3313(JP,B2) 特公 昭61−10438(JP,B2) 特公 昭62−15518(JP,B2) 特公 昭62−49647(JP,B2) (58)調査した分野(Int.Cl.6,DB名) C30B 28/00 - 35/00 H01F 1/34Continuation of the front page (56) References JP-A-55-43833 (JP, A) JP-A-64-4003 (JP, A) JP-B-61-3313 (JP, B2) JP-B-61-10438 (JP) , B2) JP-B 62-15518 (JP, B2) JP-B 62-49647 (JP, B2) (58) Fields investigated (Int. Cl. 6 , DB name) C30B 28/00-35/00 H01F 1/34

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 酸化鉄としてスピネル構造を有するか、
あるいはその履歴を有する酸化鉄を主として用いたフェ
ライト原料から成形体を製造し、この成形体に対し1100
℃から1280℃の温度領域において減圧下で焼成した後、
0.1 〜3%の酸素を含むヘリウム雰囲気中で焼成し、さら
に窒素中で冷却する第一次焼成を行うことにより、平均
粒子径10μm 以下の多結晶フェライト焼結体を作製し、
この多結晶フェライト焼結体を種子単結晶フェライトに
仮接合し、この仮接合体を熱間静水圧下で1300℃以上15
60℃未満の温度で処理することを特徴とする単結晶フェ
ライトの製造方法。
Claims: 1. An iron oxide having a spinel structure,
Alternatively, a molded body is manufactured from a ferrite raw material mainly using iron oxide having its history, and 1100
After firing under reduced pressure in the temperature range from ℃ to 1280 ℃,
Firing in a helium atmosphere containing 0.1 to 3% oxygen, and further performing primary firing by cooling in nitrogen, thereby producing a polycrystalline ferrite sintered body having an average particle diameter of 10 μm or less,
This polycrystalline ferrite sintered body is temporarily joined to a seed single crystal ferrite, and this temporarily joined body is heated to a temperature of 1300 ° C. or more under hot isostatic pressure.
A method for producing a single crystal ferrite, wherein the method is performed at a temperature of less than 60 ° C.
【請求項2】 前記熱間静水圧処理の温度が1450℃以上
である請求項1記載の単結晶フェライトの製造方法。
2. The method for producing single crystal ferrite according to claim 1, wherein the temperature of the hot isostatic pressure treatment is 1450 ° C. or higher.
【請求項3】 前記熱間静水圧処理の温度が第一次焼成
の温度以上であるとともに、前記熱間静水圧処理の圧力
が60Kg/cm2以上である請求項1記載の単結晶フェライト
の製造方法。
3. The single crystal ferrite according to claim 1, wherein the temperature of the hot isostatic pressure treatment is equal to or higher than the temperature of the first firing, and the pressure of the hot isostatic pressure treatment is equal to or greater than 60 kg / cm 2 . Production method.
JP3036645A 1991-02-07 1991-02-07 Manufacturing method of single crystal ferrite Expired - Lifetime JP2862692B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3036645A JP2862692B2 (en) 1991-02-07 1991-02-07 Manufacturing method of single crystal ferrite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3036645A JP2862692B2 (en) 1991-02-07 1991-02-07 Manufacturing method of single crystal ferrite

Publications (2)

Publication Number Publication Date
JPH04254497A JPH04254497A (en) 1992-09-09
JP2862692B2 true JP2862692B2 (en) 1999-03-03

Family

ID=12475589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3036645A Expired - Lifetime JP2862692B2 (en) 1991-02-07 1991-02-07 Manufacturing method of single crystal ferrite

Country Status (1)

Country Link
JP (1) JP2862692B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5676751A (en) * 1996-01-22 1997-10-14 Memc Electronic Materials, Inc. Rapid cooling of CZ silicon crystal growth system

Also Published As

Publication number Publication date
JPH04254497A (en) 1992-09-09

Similar Documents

Publication Publication Date Title
KR102557206B1 (en) Oriented AlN sintered body and its manufacturing method
JP2862692B2 (en) Manufacturing method of single crystal ferrite
JPH021793B2 (en)
JP2777679B2 (en) Spinel ceramics and manufacturing method thereof
JPH0796475B2 (en) Method for producing single crystal ferrite
JP2742619B2 (en) Silicon nitride sintered body
JP3007732B2 (en) Silicon nitride-mixed oxide sintered body and method for producing the same
JP3141505B2 (en) Aluminum nitride sintered body and method for producing the same
JPS6241797A (en) Single crystal ferrite and production thereof
JP2799238B2 (en) Method for producing Mn-Zn ferrite joined body
JP2925775B2 (en) Method of manufacturing composite magnetic head
JP2811493B2 (en) Silicon nitride sintered body
JPS6043644B2 (en) Manufacturing method of NiZn ferrite with high magnetic permeability in high frequency band
JPH06279108A (en) Production of high density polycrystalline yig ferrite
JP3345941B2 (en) Magnetic ceramics and manufacturing method thereof
JPS63151682A (en) Silicon nitride sintered body and manufacture
JP2694369B2 (en) Silicon nitride sintered body
JP2783702B2 (en) Silicon nitride sintered body
JPH01253210A (en) Polycrystalline ferrite material and manufacture thereof
JP2862694B2 (en) Manufacturing method of composite ferrite
JPH0597507A (en) Ferrite material
JPH0742172B2 (en) Method for manufacturing piezoelectric ceramics
JPH08172223A (en) Iron silicide thermoelectric conversion material and manufacture thereof
JPH01234357A (en) Polycrystalline ferrite and magnetic head using said ferrite
JP2000138117A (en) Manufacture of ferrite material for power source

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19981110