JPS6043644B2 - Manufacturing method of NiZn ferrite with high magnetic permeability in high frequency band - Google Patents

Manufacturing method of NiZn ferrite with high magnetic permeability in high frequency band

Info

Publication number
JPS6043644B2
JPS6043644B2 JP51126149A JP12614976A JPS6043644B2 JP S6043644 B2 JPS6043644 B2 JP S6043644B2 JP 51126149 A JP51126149 A JP 51126149A JP 12614976 A JP12614976 A JP 12614976A JP S6043644 B2 JPS6043644 B2 JP S6043644B2
Authority
JP
Japan
Prior art keywords
hip
sintered
ferrite
magnetic
density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51126149A
Other languages
Japanese (ja)
Other versions
JPS5351498A (en
Inventor
一憲 田原
志郎 村上
信行 山田
賢司 長谷川
勉 飯村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP51126149A priority Critical patent/JPS6043644B2/en
Publication of JPS5351498A publication Critical patent/JPS5351498A/en
Publication of JPS6043644B2 publication Critical patent/JPS6043644B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Magnetic Ceramics (AREA)
  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】 本発明は、極めて高い焼結密度を有し、結晶粒径が極
めて均一で、特に高周波帯域における透磁率の損失項が
小さく、著しく周波数特性に優れたNiZnフェライト
の製造方法に係るものである。
Detailed Description of the Invention The present invention is directed to the production of NiZn ferrite which has an extremely high sintered density, an extremely uniform crystal grain size, a small permeability loss term especially in a high frequency band, and an extremely excellent frequency characteristic. It is related to the method.

近年、磁気記録応用分野の拡大および進展に伴なつて
、磁気テープを主体とした磁気記録媒体も著しい進歩を
とげ、高密度の記録が可能となつてきた。記録媒体と共
にトランスジューサ−として磁気記録に必要不可欠な磁
気ヘッドについても、高密度記録化に見合うだけの各種
磁気特性、高周波特性、耐摩耗性等の各種要求特性は厳
しさの一途を辿つている。こうした中で、フェライト磁
気ヘッドは、欠け、割れなどの脆さはあるが、周波 数
特性および耐摩耗性に優れており、最近では特にMH2
帯において優れた周波数特性を有する磁気記録材料が要
求される趨勢にある。かかる要求特性を満足するために
は、厳密な組成的検討は勿論のこと、結晶粒径が均一で
小さく、しかも焼結密度がほぼ理論密度に等しいような
極めて高密度の焼結体でなければならない。工業的なN
iZnフェライトの製造方法は、主として通常の乾式法
であるが、この場合焼結密度は99.2%程度が限度で
ある。前記焼結密度を有し、所定の磁気特性を満足する
ためには、最適焼結条件で焼成する必要があるが、かか
る条件で得られた焼結体の平均結晶粒径は大であり、し
ばしば50μ以上の結晶粒が焼結体中に含有される。と
ころで、高密度記録のためには、記録減磁の点から、記
録磁界の広がりをできるだけ狭くする必要があり、最近
では磁気ヘッド磁心のトラック巾も50μ以下、さらに
コアの厚さ自体が50μ以下のものまで実用化される趨
勢にある。したがつて、前記結晶粒径を有する”NiZ
nフェライトでかかる磁心を作成した場合、厚さ方向も
しくはトラック巾に添つて1〜3個程度の結晶粒から磁
心が構成されることになり、結晶粒の結晶方位による磁
気特性のバラツキと加工時における機械的強度とが問題
となつてくる。たしかに使用周波数が高ければ、結晶方
位による透磁率の実数部μ″は一定値に収斂する傾向は
あるが、結晶粒径の増大に伴なう高周波帯域でのμ″の
低下は否めす、強度上からも素材の結晶粒径を小さくす
る必要がある。ところで前記欠点を極力除去した高密度
のフェライトを製造する従来法として、共沈法もしくは
空気酸化法等の湿式法によつて作成した粉末、または乾
式法で得られた所定の組成を有する仮焼粉をホットブレ
スによつて焼結し高密度化する方法がある。この方法は
、通常の乾式法に比べて優れており、平均結晶粒径5〜
20μ程度、相対焼結密度99.0〜99.8%程度の
焼結体を得ることができる。しかしながら、ホットブレ
ス法の難点は、加圧方向が静圧的でないことから、複雑
な形状の焼結体を得ることができないこと、また装置的
な制約から大型の焼結体を得ることが困難であり、連続
ホットブレスを用いても工業的に得策ではない。この方
法のさらに大なる欠点は、フェライトをアルミナ等の粉
末で被覆して熱間加圧をおこなう必要があり、焼結時に
フェライトとアルミナ等の間で生じる固相反応を防止す
ることが不可能な点である。したがつて、焼結体の中心
部と表面に近い部分とでは組織的にバラツキが生じ、特
に表面近傍においては他の化合物が生成するため、焼結
体表面からかなりの部分を除去しなければならず収率も
低下する。前記欠点を除去する方法として、熱間静圧ブ
レス(以下HIPと略記する)を用いた製造法が特開昭
49−128296号により公知となつているが、細部
においてはまだ検討の必要がある。HIP法を用いた場
合、アルーミナ等の被覆材も不要でほぼ理論密度に近い
焼結体を得ることができるが、HIP後には加圧時に蓄
積される歪によつて磁気特性は著しく劣化する。したが
つて所定の磁気特性を得るためには、適当な条件下で歪
取り焼鈍をおこなわなければならな.い。熱処理条件は
一次焼結条件およびHIP条件と密接な関連があり、こ
の条件が不適当な場合には、残存する結晶粒界の応力に
より、特に構造依存性の強い透磁率μおよび抗磁力Hc
に著しい劣化をきたし、後述するように加工時に結晶粒
子が・脱落するなど機械的性質も著しく低下する。発明
者等はHIP法によるNiZnフェライトの製造方法に
ついて詳細な検討をおこない本発明に至つたものてある
。本発明による製造方法の概略は、試料内部から表面に
まで通じる空孔(オープンボア)が形成されない程度に
まで成形体の予備焼結を進行せしめ、次いでHIPによ
つて静圧的な熱間加圧によつて緻密化を図る方法である
BACKGROUND ART In recent years, with the expansion and progress of the field of magnetic recording applications, magnetic recording media, mainly magnetic tapes, have also made remarkable progress, making it possible to perform high-density recording. For magnetic heads, which are indispensable for magnetic recording as transducers along with recording media, various required characteristics such as various magnetic properties, high frequency properties, and abrasion resistance to meet the demands for high-density recording are becoming increasingly strict. Under these circumstances, ferrite magnetic heads have excellent frequency characteristics and wear resistance, although they are brittle such as chipping and cracking.
There is a trend in which magnetic recording materials having excellent frequency characteristics in the band are required. In order to satisfy these required properties, in addition to strict compositional considerations, the crystal grain size must be uniform and small, and the sintered body must be extremely dense, with a sintered density almost equal to the theoretical density. No. industrial N
The method for producing iZn ferrite is mainly a normal dry method, but in this case, the sintered density is limited to about 99.2%. In order to have the above-mentioned sintered density and satisfy predetermined magnetic properties, it is necessary to perform firing under optimal sintering conditions, but the average crystal grain size of the sintered body obtained under such conditions is large; Often grains of 50μ or more are contained in the sintered body. By the way, for high-density recording, it is necessary to make the spread of the recording magnetic field as narrow as possible from the point of view of recording demagnetization.Recently, the track width of the magnetic head core is 50μ or less, and the core thickness itself is 50μ or less. There is a trend towards even practical use of these products. Therefore, "NiZ" having the above-mentioned crystal grain size
If such a magnetic core is made of n-ferrite, the core will be composed of about 1 to 3 crystal grains along the thickness direction or track width, and there will be variations in magnetic properties due to the crystal orientation of the crystal grains and during processing. The mechanical strength of the steel becomes a problem. It is true that the real part μ'' of magnetic permeability due to crystal orientation tends to converge to a constant value when the operating frequency is high, but it cannot be denied that μ'' decreases in the high frequency band as the crystal grain size increases. It is also necessary to reduce the crystal grain size of the material. By the way, conventional methods for producing high-density ferrite with the above-mentioned defects removed as much as possible include powder prepared by a wet method such as a coprecipitation method or an air oxidation method, or a calcined powder having a predetermined composition obtained by a dry method. There is a method in which powder is sintered and densified by hot pressing. This method is superior to the normal dry method and has an average crystal grain size of 5 to 5.
A sintered body having a relative sintered density of about 20 μm and a relative sintered density of about 99.0 to 99.8% can be obtained. However, the drawbacks of the hot press method are that it is not possible to obtain sintered bodies with complex shapes because the pressing direction is not static pressure, and it is difficult to obtain large sintered bodies due to equipment limitations. Therefore, it is not industrially advisable to use continuous hot breath. A further disadvantage of this method is that it is necessary to coat the ferrite with a powder such as alumina and then apply hot pressure, making it impossible to prevent the solid phase reaction that occurs between the ferrite and alumina during sintering. This is a point. Therefore, there are variations in structure between the center of the sintered body and the areas near the surface, and other compounds are generated especially near the surface, so a considerable portion of the sintered body surface must be removed. In addition, the yield also decreases. As a method for eliminating the above-mentioned drawbacks, a manufacturing method using hot static pressure pressing (hereinafter abbreviated as HIP) is known from JP-A-49-128296, but the details still need to be investigated. . When the HIP method is used, it is possible to obtain a sintered body with almost theoretical density without the need for a covering material such as alumina, but after HIP, the magnetic properties are significantly deteriorated due to strain accumulated during pressurization. Therefore, in order to obtain the desired magnetic properties, strain relief annealing must be performed under appropriate conditions. stomach. The heat treatment conditions are closely related to the primary sintering conditions and the HIP conditions, and if these conditions are inappropriate, residual grain boundary stress will cause the magnetic permeability μ and coercive force Hc, which have strong structure dependence, to decrease.
This causes significant deterioration in mechanical properties, and as will be described later, crystal grains fall off during processing, resulting in a significant deterioration in mechanical properties. The inventors conducted a detailed study on a method for producing NiZn ferrite using the HIP method and arrived at the present invention. The outline of the manufacturing method according to the present invention is to proceed with preliminary sintering of the compact to such an extent that no pores (open bores) communicating from the inside of the sample to the surface are formed, and then subjected to hydrostatic hot processing by HIP. This method uses pressure to achieve densification.

本発明の方法て注意すべきことは、圧力が静圧的に印加
されるため、試料中にオープンボアが存在すれば緻密化
が進行しないので、一次焼結時にオープンボアを生成さ
せないことである。しかしながら、予備一次焼結)時に
おいてオープンボアの生成を防止することは、それ程困
難ではなく、一次焼結体の相対密度(以下d/DXと記
す。d:焼結体の密度、Dx:理論密度)がおよそ95
%以上であればオープンボアは生成されない。ところで
、従来HIPによつてフェライトを含む酸化物を緻密化
させる方法は、予備焼結温度よりも実効的に低い温度に
おいて熱間加圧する方法が採用されてきた。
What should be noted in the method of the present invention is that since pressure is applied statically, if open bores exist in the sample, densification will not proceed, so open bores should not be generated during primary sintering. . However, it is not so difficult to prevent the formation of open bores during preliminary sintering, and the relative density of the primary sintered body (hereinafter referred to as d/DX; d: density of the sintered body, Dx: theoretical density) is approximately 95
% or more, no open bore will be generated. By the way, in the conventional method of densifying an oxide containing ferrite by HIP, a method of hot pressing at a temperature effectively lower than the preliminary sintering temperature has been adopted.

HIP温度は、通常酸化物の融点の50〜80%程度で
ある。前記HIP条件下で酸化物のごとき展延性に極め
て乏しい焼結体が緻密化する詳細な機構は明らかではな
いが、熱力学的に見て(1)式が大まかな近似として成
り立つと考えることができる。PextΣPpOre+
2γ/r●●●●◆●(1)ここでPextは外圧すな
わちHIP圧力、PpOreは焼結体内部の空孔圧、r
は空孔半径、γは空孔の界面張力である。
The HIP temperature is usually about 50 to 80% of the melting point of the oxide. Although the detailed mechanism by which sintered bodies with extremely poor malleability such as oxides become densified under the above HIP conditions is not clear, it can be considered that equation (1) holds true as a rough approximation from a thermodynamic point of view. can. PextΣPpOre+
2γ/r●●●●◆●(1) Here, Pext is the external pressure, that is, the HIP pressure, PpOre is the pore pressure inside the sintered body, and r
is the hole radius, and γ is the interfacial tension of the hole.

ところで、理論的には、化学結合を切断するエネルギー
は、1Cf′Atm程度の静圧に相当し、固体の相転移
に要する静圧も通常101〜1CPatm程度であるた
め、HIPによる−ニ103atm程度の静圧は100
0℃程度においてもイオンが化学結合力によつて配列し
ている結晶粒子内にはそれ程大なる影響を及ぼさないと
考えられる。したがつて加圧時においては、結晶粒子は
化学結合力よりもはるかに弱い束縛力(つまり界面張力
)で釣合つている結晶粒界に沿つて辷ることにより、大
部分の緻密化が進行すると推定される。事実、予備焼結
体がオープンボアの生成を伴なわない限り、結晶粒界が
多い程、すなわち結晶粒径が小さい程、HIP時におい
て緻密化は容易に進行し、NlZnフェライトもこの方
法による高密度焼結体を得ることができる。しかしなが
ら、NiZnフェライトは、八面体占有傾向が極めて強
いNi2および四面体占有傾向が著しいZn2を含有し
ているため、還元雰囲気中で焼結した場合、これらのイ
オンはスピネル相から分離してそれぞれNi2過剰の場
合にはNaCf型、Zn2過剰の場合には六方晶Zin
cite型構造の第2相を形成する。これらの第2相が
、前述のごとく磁気特性を低下させ、また加工性を著し
く劣化させるために、NiZnフェライトは空気中もし
くは酸素中で焼結しなければならない。NiZnフェラ
イトは前記雰囲気中で一次焼結をおこなつた場合、焼結
体内部の空孔はおよそ数気圧の空気もしくは酸素を含有
すると推定される。一次焼結温度よりも低温側でHIP
をおこない、前記機構で緻密化が進行する場合には、(
1)式におけるHIP後のPpOreは数百気圧程度に
まで上昇し、空孔の体積は1/1(1)程度にまで減少
することになる。勿論酸化物内で拡散速度の大きい02
は、その一部がHIP時に結晶粒界から焼結体表面へと
拡散離脱するであろうが、一次焼結を空気中でおこなつ
た場合、拡散速度の遅いN2は、前述のように少く共そ
の一部は高圧状態で粒界に閉じ込められる。このような
試料を、後述するように所定の磁気特性を得る目的で長
時間焼鈍した場合には、圧縮された空孔の体積が再び膨
張することによつて、焼結密度を再び低下させる場合力
化ばしば生じてくる。かかる高圧ガスを内脆するNiZ
nフェライトを用いて磁気ヘッド等の磁心を製造する場
合、研削およびラップ等の加工時において、材料表面の
結晶粒子が高圧ガスによつて脱落せしめられ、あるいは
磁気ヘッドを形成した後も磁気ディスクもしくは磁気テ
ープとの接触による脱粒を伴なつて、摩耗、破損の問題
が生じ、磁気ヘッドの寿命は著しく短縮することになる
。したがつて、かかる機構によつて、NiZnフェライ
トの緻密化を進行せしめる場合には一次焼結を酸素中で
おこなうことが肝要である。前記欠点を除去するHIP
方法として次の方法がある。すなわち、比較的低温でオ
ープンボアを形成せしめない程度にまで一次焼結をおこ
なつたのち、HIP時の温度、圧力および雰囲気をすべ
て温度効果に換算した実効温度が、一次焼結温度以上の
条件で加圧することによつて、高密度のNiZnフェラ
イトを製造する方法である。この場合には、ホットブレ
スと同様にHIP時に若干の粒成長を伴なうが、この過
程で結晶粒界に残存する気体は、順次焼結体表面へと脱
離するため、得られた焼結体は比較的機械的強度にバラ
ツキが無く、著しく加工性に優れた高密度焼結体を得る
ことができる。以下実施例に基づき本発明の態様を示す
。実施例 本発明の方法を用いて製造をおこなつた磁心材料用のN
iZnフェライトはモル比でNiO:10〜25%、Z
nO:15〜40%、Fe2O3;45〜60%から成
る組成物である。
By the way, theoretically, the energy to break a chemical bond corresponds to a static pressure of about 1Cf'Atm, and the static pressure required for phase transition of a solid is usually about 101 to 1CPatm, so the energy required to break a chemical bond is approximately -2103atm due to HIP. The static pressure is 100
It is considered that even at a temperature of about 0° C., ions do not have a significant effect on crystal grains arranged by chemical bonding force. Therefore, when pressurized, most of the densification progresses as the crystal grains slide along the grain boundaries, which are balanced by a binding force (that is, interfacial tension) that is much weaker than the chemical bonding force. It is estimated that In fact, as long as the preliminary sintered body does not involve the formation of open bores, the more grain boundaries there are, that is, the smaller the grain size, the easier densification will progress during HIP, and NlZn ferrite can also be densified by this method. A dense sintered body can be obtained. However, since NiZn ferrite contains Ni2, which has a very strong tendency to occupy octahedrons, and Zn2, which has a strong tendency to occupy tetrahedrons, when sintered in a reducing atmosphere, these ions separate from the spinel phase and form Ni2, respectively. In case of excess, NaCf type, in case of excess Zn2, hexagonal Zin
A second phase having a cite type structure is formed. Since these second phases deteriorate magnetic properties and significantly degrade workability as described above, NiZn ferrite must be sintered in air or oxygen. When NiZn ferrite is primarily sintered in the above atmosphere, it is estimated that the pores inside the sintered body contain approximately several atmospheres of air or oxygen. HIP at a temperature lower than the primary sintering temperature
is carried out, and if densification progresses by the above mechanism, (
In formula 1), PpOre after HIP increases to about several hundred atmospheres, and the volume of the pores decreases to about 1/1 (1). Of course, 02 has a high diffusion rate in oxides.
A part of N2 will diffuse away from the grain boundaries to the surface of the sintered body during HIP, but if the primary sintering is performed in air, the slow diffusion rate of N2 will be reduced as mentioned above. A part of it is trapped in the grain boundaries under high pressure. When such a sample is annealed for a long time in order to obtain predetermined magnetic properties as described below, the volume of the compressed pores expands again, causing the sintered density to decrease again. Empowerment often occurs. NiZ internally embrittles such high-pressure gas.
When manufacturing magnetic cores such as magnetic heads using n-ferrite, crystal grains on the surface of the material may be removed by high-pressure gas during processing such as grinding and lapping, or even after the magnetic head is formed, magnetic disks or The particles come off due to contact with the magnetic tape, causing problems of wear and damage, and the lifespan of the magnetic head is significantly shortened. Therefore, in order to advance the densification of NiZn ferrite by such a mechanism, it is important to perform the primary sintering in oxygen. HIP to remove the above drawbacks
The following methods are available. In other words, after primary sintering is performed at a relatively low temperature to the extent that open bores are not formed, the effective temperature obtained by converting all the temperature, pressure, and atmosphere during HIP into temperature effects is a condition that is higher than the primary sintering temperature. This is a method of manufacturing high-density NiZn ferrite by pressurizing the NiZn ferrite. In this case, similar to hot pressing, some grain growth occurs during HIP, but in this process, the gas remaining at the grain boundaries is sequentially desorbed to the surface of the sintered body, so the resulting sintered A high-density sintered body with relatively uniform mechanical strength and excellent workability can be obtained. Embodiments of the present invention will be illustrated below based on Examples. Example N for magnetic core material manufactured using the method of the present invention
iZn ferrite has a molar ratio of NiO: 10 to 25%, Z
The composition consists of nO: 15-40% and Fe2O3: 45-60%.

なお所定の電気抵抗値を得る目的で、特に重量比でMn
O2O.OOl〜3.0%を配合しているが、MnO2
を配合しなくとも同様に高密度焼結体を得ることができ
る。かかる混合物を所望の形状に加圧成形後、二段工程
により焼結をおこない、さらに熱処理を施した工程を含
むものから構成される。すなわち、各素原料を上記組成
となるように配合したのち、ボールミルもしくは振動ミ
ルによつて十分に混合をおこない、空気中もしくは酸素
中で800〜1100℃で3紛以上仮焼したのち、再度
ボールミルもしくは振動ミル等により十分な粉砕をおこ
なつた。
In addition, for the purpose of obtaining a predetermined electrical resistance value, especially Mn in terms of weight ratio.
O2O. Although OOl~3.0% is blended, MnO2
A high-density sintered body can be obtained in the same manner without blending. It is comprised of a process in which the mixture is pressure-molded into a desired shape, sintered in a two-step process, and then heat-treated. That is, after blending each raw material to have the above composition, thoroughly mixed in a ball mill or vibration mill, calcined at least 3 powders at 800 to 1100°C in air or oxygen, and then ball milled again. Alternatively, sufficient pulverization was performed using a vibrating mill or the like.

次いで粉砕粉を加圧により金型成形もしくはラバープレ
ス成形したのち、空気中もしくは酸素中1250℃以下
で3紛以上一次焼結をおこない、続いてN雰囲気下で5
00〜20001tm11000〜1250℃の条件下
でHIPをおこなつた。さらに最終工程として前記一次
焼結もしくは熱間静圧ブレスの各温度のうちの高い温度
以下で焼鈍(熱処理)を施すことによつて所定の磁気特
性を有し、結晶粒径20p以下でしかも焼結密度がほぼ
100%のNiZnフェライトを製造することができた
。上記素原料としては、一般に酸化物を用いられるが、
本発明においては、必ずしもかかる酸化物に限定される
ものではなく、その他酸化物の代りに焼結時に容易に酸
化物に変化し得る例えば炭酸塩、硝酸塩、硫酸塩および
蓚酸塩の如き化合物を用いることもできる。第1表は、
組成がモル比でそれぞれA(NiOl7.5、ZnO3
2.5、Fe2O35O.O)および(NiOl8.O
、ZnO32.5、Fe2O349.5)である各素原
料にMnO2を0.18Wt%添加した混合粉末を前記
製造工程にしたがい、焼:空気中900℃、一次焼結:
酸素中1120℃、焼鈍:酸素中1080℃の条件で製
造した焼結体の諸特性である。
Next, the pulverized powder is molded into a mold or rubber press by pressure, and then primary sintering of 3 or more powders is performed at 1250°C or less in air or oxygen, and then sintered in an N atmosphere for 50 minutes.
HIP was performed under conditions of 00-20001 tm11000-1250°C. Furthermore, as a final step, annealing (heat treatment) is performed at a temperature lower than the higher of the temperatures of the primary sintering or hot isostatic pressing, so that the crystal grain size is 20p or less and the sintered It was possible to produce NiZn ferrite with a condensation density of approximately 100%. Oxides are generally used as the raw materials, but
In the present invention, compounds such as carbonates, nitrates, sulfates, and oxalates, which can be easily converted into oxides during sintering, may be used in place of other oxides, but are not necessarily limited to such oxides. You can also do that. Table 1 is
The composition is A (NiOl7.5, ZnO3
2.5, Fe2O35O. O) and (NiOl8.O
, ZnO32.5, Fe2O349.5), a mixed powder in which 0.18 wt% of MnO2 was added to each raw material was sintered at 900°C in air, and primary sintered:
These are various properties of a sintered body manufactured under the conditions of 1120° C. in oxygen and annealing: 1080° C. in oxygen.

表中HIP温度1100℃、HIP圧力100〔Tmの
条件下では、HIP時の実効温度は一次焼結温度よりも
若干高温であると考えられ、結晶粒径もそれぞれA,B
両組成において1.2〜1.3μ程度大となる。一方1
050℃、1000atmの田P条件は、実効温度が一
次焼結温度よりも低温と考えられ、HIP時において結
晶粒成長は伴なわず、結晶粒界の辷りによつて緻密化が
進行する。表から明らかな如く、HIP後の焼結密度は
、実効温度が一次焼結温度よりも高い場合、より高密度
となることがわかる。磁気特性の内、磁束密度団。、抗
磁力Hcおよびキューリ点Tcは、HIPの実効温度に
よる顕著な差異は見られないが、初透磁率μ″およびそ
の損失項μ″の周波数特性は著しく異なる。第1図は第
1表に示す試料Aのμ″およびμ″の周波数特性である
。図に示すよ.うに、HIP温度1100℃で得られた
焼結体1は、1050℃で得られたそれ2によりも高周
波領域においてμ″が大であり、高周波材料として好適
である。図の3は、1と同条件でHIPをおこなつたの
ち、1320℃で焼鈍を施した焼結体Aのμ″および−
μ2の周波数特性であるが、1に比較してμ″著しく低
下している。第2図は第1表の試料B(HIP条件11
00℃、10001tm1)3M圧におけるμ″,μ2
および平均結晶粒径を焼鈍温度に対してプロットしたも
のである。図から明らかなように、B試料においても焼
鈍温度がHIP実効温度以上になると共に急激な結晶粒
の成長が生じ、高周波でのμ″が急速に低下する。第1
図に示す焼結体1および3を用いて3MHz近傍で使用
する磁気ヘッドを製造したところ、両材料共ほぼ100
%の焼結密度を有するにもかかわらず、焼結体1では優
れた特性を示す反面、焼結体3では結晶粒径が著しく大
なることに起因して、磁心間の出力電圧のバラツキが著
しく、安定して良好なる特性を得ることができなかつた
。さらに、結晶粒径が著しく大なる材料では、材料自体
が脆くなり、加工時にクラックの発生ならびに大なる脱
粒を伴ない極めて歩留が低下する。以上述べたごとく、
本発明による方法を用いるならば、高周波領域において
著しく優れた磁気特性を有し、極めて加工性に優れたN
iZnフェライトが、通常のHIP装置を用いることに
よつて容易に製造することができる。
In the table, under the conditions of HIP temperature 1100℃ and HIP pressure 100 [Tm, the effective temperature during HIP is considered to be slightly higher than the primary sintering temperature, and the crystal grain sizes are also A and B, respectively.
In both compositions, it becomes larger by about 1.2 to 1.3 μ. On the other hand 1
Under the P conditions of 050° C. and 1000 atm, the effective temperature is considered to be lower than the primary sintering temperature, and grain growth does not occur during HIP, and densification progresses due to the stretching of grain boundaries. As is clear from the table, the sintered density after HIP becomes higher when the effective temperature is higher than the primary sintering temperature. Among magnetic properties, magnetic flux density group. , the coercive force Hc and the Curie point Tc do not show any significant difference depending on the effective temperature of HIP, but the frequency characteristics of the initial permeability μ″ and its loss term μ″ are significantly different. FIG. 1 shows the μ'' and μ'' frequency characteristics of Sample A shown in Table 1. It is shown in the figure. In other words, the sintered body 1 obtained at the HIP temperature of 1100°C has a larger μ″ in the high frequency region than the sintered body 2 obtained at the HIP temperature of 1050°C, and is suitable as a high frequency material. After HIPing under the same conditions, μ'' and -
The frequency characteristic of μ2 is significantly lower than μ2 compared to 1. Figure 2 shows sample B in Table 1 (HIP condition 11
μ″, μ2 at 00℃, 10001tm1) 3M pressure
and the average grain size is plotted against the annealing temperature. As is clear from the figure, as the annealing temperature becomes higher than the HIP effective temperature in sample B as well, rapid crystal grain growth occurs, and μ'' at high frequency rapidly decreases.First
When a magnetic head used at around 3 MHz was manufactured using sintered bodies 1 and 3 shown in the figure, both materials had approximately 100 MHz.
Despite having a sintered density of Remarkably, stable and good characteristics could not be obtained. Furthermore, in a material with a significantly large crystal grain size, the material itself becomes brittle, causing cracks to occur during processing and large grain shedding, resulting in an extremely low yield. As stated above,
Using the method of the present invention, N
iZn ferrite can be easily produced using a conventional HIP device.

また安価な工業用原料を用いて、所定の磁気特性を有す
る材料を容易に量産できるため、工業的価値も大なるも
のがある。
Furthermore, since materials having predetermined magnetic properties can be easily mass-produced using inexpensive industrial raw materials, they have great industrial value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法で得られた組成Al,2および従
来のHIPの方法で得られた同組成3の透磁率の周波数
変化を示す図、第2図は、組成りの焼鈍温度に対する平
均結晶粒径ならびに3MHzにおけるμ″,μ2の変化
を示す図である。
Figure 1 shows the frequency change in magnetic permeability of composition Al, 2 obtained by the method of the present invention and composition 3 obtained by the conventional HIP method, and Figure 2 shows the change in frequency of magnetic permeability with respect to the annealing temperature of the composition. FIG. 3 is a diagram showing changes in average crystal grain size and μ″ and μ2 at 3 MHz.

Claims (1)

【特許請求の範囲】[Claims] 1 フェライト材を焼結してオープンポア(試料表面か
ら中心部までに通じる空孔)を形成させない程度にまで
一次焼結をおこなう工程と、該一次焼結後のフェライト
材を熱間静圧プレスする工程と該熱間静圧プレス後のフ
ェライト材を前記一次焼結もしくは熱間静圧プレスの各
温度のうちの高い温度以下で焼鈍して高周波でのμが劣
化しないようにする工程とを有して成る高周波帯域にお
ける透磁率が高いNiZnフェライトの製造方法。
1 A process of sintering the ferrite material to the extent that no open pores (pores extending from the sample surface to the center) are formed, and a process of hot static pressure pressing the ferrite material after the primary sintering. and a step of annealing the ferrite material after hot isostatic pressing at a temperature lower than the higher of the temperatures of the primary sintering or hot isostatic pressing to prevent μ from deteriorating at high frequency. A method for producing NiZn ferrite having high magnetic permeability in a high frequency band.
JP51126149A 1976-10-22 1976-10-22 Manufacturing method of NiZn ferrite with high magnetic permeability in high frequency band Expired JPS6043644B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51126149A JPS6043644B2 (en) 1976-10-22 1976-10-22 Manufacturing method of NiZn ferrite with high magnetic permeability in high frequency band

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51126149A JPS6043644B2 (en) 1976-10-22 1976-10-22 Manufacturing method of NiZn ferrite with high magnetic permeability in high frequency band

Publications (2)

Publication Number Publication Date
JPS5351498A JPS5351498A (en) 1978-05-10
JPS6043644B2 true JPS6043644B2 (en) 1985-09-30

Family

ID=14927878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51126149A Expired JPS6043644B2 (en) 1976-10-22 1976-10-22 Manufacturing method of NiZn ferrite with high magnetic permeability in high frequency band

Country Status (1)

Country Link
JP (1) JPS6043644B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6311443U (en) * 1986-07-09 1988-01-25
JPH048116Y2 (en) * 1986-05-30 1992-03-02
JPH048115Y2 (en) * 1986-05-30 1992-03-02
JPH0412050Y2 (en) * 1986-06-05 1992-03-25

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5555612Y2 (en) * 1978-04-19 1980-12-23

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH048116Y2 (en) * 1986-05-30 1992-03-02
JPH048115Y2 (en) * 1986-05-30 1992-03-02
JPH0412050Y2 (en) * 1986-06-05 1992-03-25
JPS6311443U (en) * 1986-07-09 1988-01-25

Also Published As

Publication number Publication date
JPS5351498A (en) 1978-05-10

Similar Documents

Publication Publication Date Title
JP2687683B2 (en) Composite material and method for producing the same
US8206606B2 (en) Oxide magnetic material
JPS61158862A (en) Magnetic head slider material
JPS6043644B2 (en) Manufacturing method of NiZn ferrite with high magnetic permeability in high frequency band
Ewais et al. In-situ synthesis of magnetic Mn-Zn ferrite ceramic object by solid state reaction
US4093688A (en) Method of making manganese-zinc ferrite
JPS6043643B2 (en) Manufacturing method of MnZn ferrite with high magnetic permeability in high frequency band
JPH06333726A (en) Manufacture of high-density mn-zn ferrite
JPS5925729B2 (en) Manufacturing method of MnZn ferrite
JPS6051245B2 (en) Manufacturing method of NiZn ferrite
JPH0433756B2 (en)
EP0490345B1 (en) Non-magnetic substrate of magnetic head, Magnetic head and method for producing substrate
JP2925775B2 (en) Method of manufacturing composite magnetic head
KR0137076B1 (en) Non-magnetic ceramic substrate for magnetic head
JP2627637B2 (en) Oxide magnetic material
KR100191350B1 (en) High density mn-zn magnetic powder producing method
JPS5967611A (en) Manufacture of polycrystalline ferrite
JPH097814A (en) Oxide magnetic material and its manufacturing method
JPH01253210A (en) Polycrystalline ferrite material and manufacture thereof
JP2622078B2 (en) Manufacturing method of non-magnetic ceramics for magnetic head
JPS6224379B2 (en)
JPS5814050B2 (en) Manufacturing method of high-density ferrite
JPS6358781B2 (en)
JPH0717765A (en) Production of cao-tio2 series ceramic
JPH0122228B2 (en)