JPS5925729B2 - Manufacturing method of MnZn ferrite - Google Patents

Manufacturing method of MnZn ferrite

Info

Publication number
JPS5925729B2
JPS5925729B2 JP51052203A JP5220376A JPS5925729B2 JP S5925729 B2 JPS5925729 B2 JP S5925729B2 JP 51052203 A JP51052203 A JP 51052203A JP 5220376 A JP5220376 A JP 5220376A JP S5925729 B2 JPS5925729 B2 JP S5925729B2
Authority
JP
Japan
Prior art keywords
sintering
temperature
hip
mnzn ferrite
density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51052203A
Other languages
Japanese (ja)
Other versions
JPS52135900A (en
Inventor
一憲 田原
勉 飯村
信行 山田
賢二 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP51052203A priority Critical patent/JPS5925729B2/en
Publication of JPS52135900A publication Critical patent/JPS52135900A/en
Publication of JPS5925729B2 publication Critical patent/JPS5925729B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は極めて高い焼結密度を有し、結晶粒径が極めて
均一であり、特に高周波において極めて優れた磁気特性
を有するMnZnフェライトの製造方法に係るものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing MnZn ferrite, which has extremely high sintered density, extremely uniform crystal grain size, and extremely excellent magnetic properties, especially at high frequencies.

近年、磁気記録技術の応用分野の拡大および進展にとも
なつて、磁気テープを主とした磁気記録媒体も著しい進
歩をとげ、高密度の記録が可能となつてきた。
BACKGROUND ART In recent years, with the expansion and progress of the field of application of magnetic recording technology, magnetic recording media, mainly magnetic tapes, have also made remarkable progress, and high-density recording has become possible.

記録媒体とともに、磁気記録に必要不可欠な磁気ヘッド
についても、高密度記録化に見合うだけの各種要求特性
は厳しさの一途をたどつている。こう七た中で、フェラ
イト磁気ヘッドは周波数特性および耐摩耗性に優れてい
るが、最近では特にMH1帯において、優れた周波数特
性を有する高密度磁気記録材料が要求される趨勢にある
。かかる要求特性を満足するためには、厳密な組成的検
討は勿論のこと、結晶粒径が均一で小さく、しかも焼結
密度がほぼ理論密度に等しい極めて高密度(緻密)の焼
結体でなければならない。通常の乾式法によつて得られ
た焼結体で、99%以上の相対密度を有し、同時に磁気
特性を満足するためには、最適焼結条件で焼結する必要
がある。MnZnフェライトではこの温度が工360〜
1400℃程度と高く、得られた焼結体の平均結晶粒径
は80−100μ程度になり、高周波における透磁率の
低下が著しい。また焼結密度も99.2%程度が限界で
ある。一刀、高密度フェライトを製造する従来の方法と
して、共沈法もしくは空気酸化法等の湿式法によつて作
成した粉末、および乾式法で得られた仮焼粉をホットプ
レスによつて焼結する方法がある。この方法は通常の乾
式法に比べて優れており、平均粒径20μ程度、相対焼
結密度99.0〜99.8%程度の焼結体を得ることが
できる。しかしながらホットプレス法の難点は、加圧方
向が静水圧的でないことから、複雑な形状の焼結体を得
ることができない。また、装置的な制約から大型の焼結
体を得ることも困難であり、連続ホットプレスを用いて
も工業的に得策ではない。この方法のさらに大きな欠点
は、フ工ライトをアルミナ等の粉末で被覆して熱間加圧
をおこなう必要があり、焼結時にフエライトとアルミナ
等の間で生じる固相反応を防止することが不可能な点で
ある。したがつて、焼結体の中心部と表面に近い部分と
では、組成的に大きなバラツキが生じ、特に表面近傍で
は他の化合物が生成するため、焼結体表面からかなりの
部分を除去しなければならず、収率も極めて悪い。前記
欠点を除去する方法として、熱間静水圧プレスによる方
法が特開昭49−128296により公知となつている
In addition to recording media, magnetic heads, which are indispensable for magnetic recording, are also required to have various characteristics that are required to meet the demands for higher-density recording. Under these circumstances, ferrite magnetic heads have excellent frequency characteristics and wear resistance, but recently there has been a trend in which high-density magnetic recording materials with excellent frequency characteristics are required, especially in the MH1 band. In order to satisfy these required properties, in addition to rigorous compositional considerations, the crystal grain size must be uniform and small, and the sintered body must have an extremely high density (fine) with a sintered density almost equal to the theoretical density. Must be. In order for a sintered body obtained by a normal dry method to have a relative density of 99% or more and at the same time satisfy magnetic properties, it is necessary to sinter under optimal sintering conditions. For MnZn ferrite, this temperature is 360 ~
The average crystal grain size of the obtained sintered body is about 80-100μ, and the magnetic permeability at high frequencies is significantly reduced. Further, the sintered density is also limited to about 99.2%. The conventional method for producing high-density ferrite is to sinter powder produced by a wet method such as a coprecipitation method or an air oxidation method, and calcined powder obtained by a dry method using a hot press. There is a way. This method is superior to the usual dry method, and can produce sintered bodies with an average particle size of about 20 μm and a relative sintered density of about 99.0 to 99.8%. However, the problem with the hot pressing method is that the pressing direction is not hydrostatic, and therefore a sintered body with a complicated shape cannot be obtained. Furthermore, it is difficult to obtain a large sintered body due to equipment limitations, and even if continuous hot pressing is used, it is not industrially advisable. A further disadvantage of this method is that it is necessary to coat ferrite with a powder such as alumina and then perform hot pressing, and it is impossible to prevent the solid phase reaction that occurs between ferrite and alumina during sintering. This is possible. Therefore, there is a large compositional variation between the center of the sintered body and the area near the surface, and other compounds are generated especially near the surface, so a considerable portion must be removed from the surface of the sintered body. Not only that, but the yield is also extremely poor. As a method for eliminating the above-mentioned drawbacks, a method using hot isostatic pressing is known from JP-A-49-128296.

しかしながら細部においては、まだ検討の必要があり、
発明者は特に予備焼結の条件について詳細に検討をおこ
なつて本発明に至つたものである。本発明の方法の概略
は成形体を試料内部から表面まで通じる空孔(オープン
ボア)が形成されない程度にまで予備焼結を進行せしめ
、次いで熱間静水圧プレス(以下HIPと記す)によつ
て静水圧的に緻密化を図る方法である。
However, the details still need to be considered.
The inventor has arrived at the present invention by conducting detailed studies, especially regarding the conditions of preliminary sintering. The outline of the method of the present invention is to advance the preliminary sintering of the molded body to the extent that no pores (open bores) communicating from the inside of the sample to the surface are formed, and then to perform hot isostatic pressing (hereinafter referred to as HIP). This is a method of achieving densification using hydrostatic pressure.

本方法で注意すべきことは、圧力が静水圧的に加わるた
め、試料中にオープンボアが存在する場合には緻密化が
進行しないことである。このため予備焼結時にオーフソ
ボアを生成させないことが肝要である。しかしながら予
備焼結時においてオープンボアの生成を防止することは
、それ程困難ではなく、予備焼結体の相対密度(以下d
/Dxと記す。d:焼結体の密度、Dx:理論密度)が
約93%以上であればオープンボアは生成されない。ま
たHIPによつて、MnZnフエライトのごとき延展性
に極めて乏しい焼結体が緻密化する詳細な機構は明らか
でないが、熱力学的に見て次式の関係が大まかな近似と
して成り立つと考えることができる。ここでPextは
外圧すなわちHIPの圧力(500−1500気圧)、
P,O,eは焼結体内部の空孔の圧力、γは空孔の界面
張力である。ところで、理論的計算によると、加圧によ
り物質に与えられるエネルギーは106気圧あるいはそ
れ以上の圧力において、初めて化学結合のエネルギーに
相当する値となる。また固体の相転移のエネルギーに相
当する圧力も通常104〜105気圧以上であることか
ら、HIPによる103気圧程度の圧力は、1000℃
程度の温度下においても、イオンが化学結合力によつて
配列している結晶粒子内にそれ程大なる影響を及ぼさな
いと考えられる。したがつて加圧時においては、結晶粒
子は化学結合力よりもはるかに弱い束縛力(つまり界面
張力)で釣合つている結晶粒界に沿つて廻ることにより
、大部分の緻密化が進行すると推定される。勿論、加熱
状態における加圧であるため、結晶粒子内の空孔も、あ
る程度空孔子の拡散等によつて結晶粒界へと離脱するで
あろうし、空孔内の気体が02の場合には、その拡散速
度はN2に比較して2桁程度大となる。事実,予備焼結
体がオープンボアの生成を伴なわない限り、結晶粒界が
多い程すなわち結晶粒径が小さい程.HIP時において
緻密化は容易に進行する。この事実は、高周波磁性材料
用MnZnフエライトとしては、極めて好都合である。
ところで、HIPによる緻密化が(1)式に従がつて起
るとするならば、(1)式のγは結晶粒界の界面張力に
相当する。また、P,OreはMnZnフエライトを空
気中等で予備焼結した場合、1気圧〜10気圧程度であ
るが、HIP後には2γ/rの項を考慮しても、PpO
r8は数百気圧程度となることが予想される。いま、空
孔内の気体を理想気体と仮定して、HIP前のル。Re
latmlHIP条件を1200′ClOOO気圧、H
IP後のP,Ore−500気圧また気体の拡散、脱離
は生じないとすれば、HIP後の空孔の体積は約1/1
00にまで減少する。勿論、酸化物内で拡散速度の大き
い02はHIP時に粒界から焼結体表面へと拡散離脱す
るであろうが、l次焼結を空気中でおこなつた場合、拡
散速度の遅いN2は、前述のように少く共その1部は高
圧状態で粒界に閉じ込められる。このような試料を、後
述するように所定の磁気特性を得るため、長時間焼鈍し
た時に圧縮された空孔の体積が再び膨張し、焼結密度を
再び低下させる場合がしばしば生じてくる。したがつて
予備暁結過程の一部を真空中でおこなうことによつて、
空孔内のガス圧P,O,Oを極力代下させておく必要が
ある。また、HlP後の焼結体は主として冷却時に発生
する歪応力が蓄積され、磁気特性とくに透磁率(以下μ
と記す)が著しく低下しているため、歪取り焼純が必要
である。この焼鈍は、空気中でおこなつた場合でも焼結
体が極めて高密度であるため、焼結体の表面層にごく僅
かα−Fe2O,が析出するのみであり、極めて容易で
ある。以下実施例に基づき本発明の態様を示す。
What should be noted in this method is that since pressure is applied hydrostatically, densification will not proceed if open bores exist in the sample. Therefore, it is important not to generate orthobores during preliminary sintering. However, it is not so difficult to prevent the formation of open bores during pre-sintering, and the relative density of the pre-sintered body (hereinafter d
/Dx. If d: density of sintered body, Dx: theoretical density) is about 93% or more, no open bore will be generated. Furthermore, although the detailed mechanism by which HIP densifies a sintered body with extremely poor malleability such as MnZn ferrite is not clear, from a thermodynamic point of view it can be considered that the following relationship holds true as a rough approximation: can. Here, Pext is the external pressure, that is, the HIP pressure (500-1500 atmospheres),
P, O, and e are the pressures of the pores inside the sintered body, and γ is the interfacial tension of the pores. By the way, according to theoretical calculations, the energy given to a substance by pressurization reaches a value corresponding to the energy of chemical bonds for the first time at a pressure of 106 atmospheres or more. Furthermore, since the pressure corresponding to the energy of phase transition in solids is usually 104 to 105 atm or higher, the pressure of about 103 atm due to HIP is 1000℃.
It is thought that even at a certain temperature, ions do not have a significant effect on the crystal grains arranged by chemical bonding force. Therefore, when pressure is applied, most of the densification progresses as the crystal grains rotate along the grain boundaries, which are balanced by a binding force (that is, interfacial tension) that is much weaker than the chemical bonding force. Presumed. Of course, since the pressure is applied in a heated state, the pores in the crystal grains will also separate to the grain boundaries to some extent due to the diffusion of pores, and if the gas in the pores is 02. , its diffusion rate is about two orders of magnitude higher than that of N2. In fact, the more grain boundaries there are, that is, the smaller the grain size, the better, unless the pre-sintered body is accompanied by the formation of open bores. Densification progresses easily during HIP. This fact is extremely advantageous for MnZn ferrite for high frequency magnetic materials.
By the way, if densification by HIP occurs according to equation (1), γ in equation (1) corresponds to the interfacial tension at the grain boundary. In addition, P,Ore is about 1 atm to 10 atm when MnZn ferrite is pre-sintered in air, etc., but after HIP, even considering the term 2γ/r, PpO
r8 is expected to be around several hundred atmospheres. Now, assuming that the gas in the hole is an ideal gas, Re
latmlHIP conditions to 1200'ClOOOO atmosphere, H
If P, Ore after IP is 500 atm and no gas diffusion or desorption occurs, the volume of the pores after HIP is approximately 1/1
It decreases to 00. Of course, 02, which has a high diffusion rate in the oxide, will diffuse away from the grain boundaries to the sintered body surface during HIP, but when primary sintering is performed in air, N2, which has a low diffusion rate, , as mentioned above, at least a portion of it is confined in the grain boundaries under high pressure. When such a sample is annealed for a long time in order to obtain predetermined magnetic properties as described below, the volume of the compressed pores often expands again, causing the sintered density to decrease again. Therefore, by performing part of the pre-coldification process in a vacuum,
It is necessary to keep the gas pressures P, O, and O inside the holes as low as possible. In addition, the sintered body after HIP mainly accumulates the strain stress generated during cooling, and the magnetic properties, especially the magnetic permeability (hereinafter referred to as μ
) has decreased significantly, so strain relief sintering is necessary. Even when this annealing is performed in air, since the sintered body has an extremely high density, only a very small amount of α-Fe2O is precipitated on the surface layer of the sintered body, so it is extremely easy. Embodiments of the present invention will be illustrated below based on Examples.

実施例 本発明の方法で製造するMnZnフエライトは、高周波
領域すなわち1MHz以上で使用する高μ材料、特に5
MHzでμ≧800を有する高密度材料の製造を主たる
目的としている。
EXAMPLE The MnZn ferrite produced by the method of the present invention is suitable for high μ materials used in the high frequency region, that is, 1 MHz or higher, especially 5
The main objective is to produce high-density materials with μ≧800 at MHz.

このため、MnZnフエライトの組成領域の内から、ス
ネークの限界、磁歪常数および異方性定数を考慮して第
1表に示す3種類の組成を選定した。以下組成はすべて
試料番号を以つて示す。第2表にこれらのMnZnフエ
ライトを1.5k9作成する場合の素原料ZnO.Mn
cO3およびα−Fe2O3の秤取例を示す。次いで通
常の乾式法によつて、予備焼結体を作成した。なお素原
料は、下記以外に、蓚酸塩、硝酸塩、硫酸塩、オキシ水
酸化物、塩化物、水酸化物等加熱により容易に酸化物に
なり得るものであればよい。製造条件は次のとうりであ
る。仮焼を空気中900℃±1『Cll時間でおこなつ
た。混合および粉砕を振動ミルで純水を媒体として、そ
れぞれ4時間および6時間でおこなつた。成形を油圧プ
レスにより5t/〜で30m7!LWX4OmlLXl
27n7!Lのプロツクを成形した。予備焼結を室温か
ら800℃まで空気中、800℃以上1200〜130
0℃まで真空中(〜104u1Hg)昇温もしくは昇温
および保持、引き続きN2中もしくは空気中で連続昇温
後空気中で保持、焼結温度が低い場合には真空中保持し
た後同温度で雰囲気を空気に切り替え、引きつづき保持
の各条件下でおこなつた。冷却をN2中でおこなつた。
なお予備焼結時における保持時間は4〜10時間、この
時の温度のバラツキは±5℃以下である。かくして得ら
れた予備焼結体のうち、組成1のミクロ組織写真を第1
図に示す。
For this reason, three types of compositions shown in Table 1 were selected from the composition range of MnZn ferrite in consideration of the snake's limit, magnetostriction constant, and anisotropy constant. All compositions below are indicated by sample numbers. Table 2 shows the raw material ZnO for producing 1.5k9 of these MnZn ferrites. Mn
An example of weighing cO3 and α-Fe2O3 is shown. Next, a preliminary sintered body was produced by a conventional dry method. In addition to the following, the raw materials may be those that can be easily converted into oxides by heating, such as oxalates, nitrates, sulfates, oxyhydroxides, chlorides, and hydroxides. The manufacturing conditions are as follows. Calcining was carried out in air at 900°C ± 1'Cll time. Mixing and grinding were carried out in a vibratory mill using pure water as a medium for 4 and 6 hours, respectively. Molding is done using a hydraulic press at 5t/~30m7! LWX4OmlLXl
27n7! A block of L was molded. Pre-sintering in air from room temperature to 800℃, 1200 to 130℃ above 800℃
Raise the temperature to 0℃ in vacuum (~104u1Hg) or raise the temperature and hold it, then continue to raise the temperature in N2 or air and then hold it in air.If the sintering temperature is low, hold it in vacuum and then hold it in the same temperature atmosphere. was then switched to air and continued under each holding condition. Cooling was done in N2.
The holding time during preliminary sintering is 4 to 10 hours, and the temperature variation at this time is ±5°C or less. Of the pre-sintered bodies thus obtained, the microstructure photograph of composition 1 is
As shown in the figure.

このときの予備焼結条件は真空中1250℃×4時間、
空気中1300℃×5時間である。図から、空孔がかな
り存在することがわかる。次いで、これら予備焼結体を
、MnZnフエライトの融点の55〜75%の温度範囲
(′::100『C−130『C)および500〜15
00気圧の圧力下において、Ar雰囲気中で熱間静水圧
プレスをおこなつた。保持時間はいずれもl時間である
。試料2についての結果を第3図に示す。
The pre-sintering conditions at this time were: 1250°C x 4 hours in vacuum;
1300°C in air for 5 hours. From the figure, it can be seen that there are a large number of pores. Next, these preliminary sintered bodies were heated in a temperature range of 55 to 75% of the melting point of MnZn ferrite ('::100'C-130'C) and 500 to 15% of the melting point of MnZn ferrite.
Hot isostatic pressing was carried out in an Ar atmosphere under a pressure of 0.000 atm. The holding time was 1 hour in all cases. The results for Sample 2 are shown in FIG.

図から明らかなように、500気圧では1250℃以上
、1000気圧では1150℃以上、また1500気圧
では11000C以上で99.5%以上の緻密化が達成
できる。試料1および3についても、ほぼ第3図と同様
の傾向を示し、達成される焼結密度も、同程度である。
しかしながら予備焼結時における最高保持温度が135
0℃以上では、試料中心部に空孔が残存し、特に100
0気圧、1100゜C以上でHIPをおこなつた場合に
は、試料表面近傍での粒成長が著しく、その粒径は試料
表面で2〜31mにも及ぶ。また予備焼結温度は122
0℃以上であれば、第3図と同様の傾向を示し、十分緻
密化が達成できる。一方、HIP後の磁気特性はμにお
いてその低下が著しく、100KHzないし5MHzの
間でμ?300〜500程度であり、歪取り焼鈍が必要
である。なお第3図でd/Dxが100%以上となる理
由は、試料表面に近い部分が一部還元されるためである
。第3図において明らかなように、Pextご500気
圧のとき、融点(上168『C)の約77%に相当する
1300℃程度でほぼ理論密度(組成2ではDx=5.
085g/〜、AO二8.489八)に相当する緻密化
が達成できる。
As is clear from the figure, densification of 99.5% or more can be achieved at 1250°C or higher at 500 atm, 1150°C or higher at 1000 atm, and 11000C or higher at 1500 atm. Samples 1 and 3 also show almost the same tendency as shown in FIG. 3, and the achieved sintered densities are also comparable.
However, the maximum holding temperature during pre-sintering is 135
At temperatures above 0°C, pores remain in the center of the sample, especially at 100°C.
When HIP is performed at 0 atmospheric pressure and above 1100° C., grain growth near the sample surface is remarkable, and the grain size reaches 2 to 31 m on the sample surface. Also, the pre-sintering temperature is 122
If the temperature is 0° C. or higher, the same tendency as shown in FIG. 3 is exhibited, and sufficient densification can be achieved. On the other hand, the magnetic properties after HIP deteriorate significantly at μ, and μ? between 100 KHz and 5 MHz. It is about 300 to 500, and strain relief annealing is required. The reason why d/Dx is 100% or more in FIG. 3 is that the portion near the sample surface is partially reduced. As is clear from FIG. 3, when Pext pressure is 500 atm, the theoretical density (Dx=5.
A densification corresponding to 0.085 g/~, AO28.4898) can be achieved.

一方Pext=1500気圧のとき融点の約50%に相
当する850℃程度から明らかに緻密化が進行する。ま
た長時間保持する場合には.HIP温度は前記より低温
でも緻密化が進行することが期待される。HIP時の温
度は、焼結温度と同様のMnZnフエライトの結晶粒径
に極めて大なる影響を与えるため、本発明で取り上げた
以外の組成ではHIP時において低温で長時間保持する
必要が生じることも十分子想される。本発明の組成では
、Pext′::500〜1500気圧で保持時間1時
間の場合に限定した場合、最適HIP温度は、融点の6
5%ないし75%に相当する1000〜126『Cであ
る。歪取り焼鈍については温度および雰囲気等について
詳細に検討した結果、本発明の材料では1050〜11
50℃の温度で2〜5時間空気中で保持したのち、N2
中で冷却をおこなうことによつて、極めて優れた磁気特
性を有することがわかつた。しかしながら優れた磁気特
性を得るための歪取り焼鈍の条件は、組成、予備焼結条
件およびHIP条件によつて微妙に変化するため、前処
理条件に合わせて選択する必要がある。また本発明の方
法によつて得られた焼結体は、予備焼結過程において、
真空焼結を経ているため、内部空孔の圧力が極めて代く
、したがつて歪取り焼鈍後も残存ガス圧による空孔体積
の膨張も見られず、d/Dxも焼鈍前後で変化しない。
第2図AおよびBに歪取り焼鈍後における試料3の空孔
分布状態および試料2のミクロ組織をそれぞれ示す。尚
、試料3の予備焼結は真空中1250℃×4h1空気中
1300′C×5h1試料2の予備焼結は1250℃×
4h1空気中125『C×5hでそれぞれ行つた。第1
図および第2図から明らかなように、HIP後焼鈍をお
こなつた試料は、HIP前のそれと比べて、極めて緻密
化が進行しており、相対密度もほぼ100%であること
がわかる。本発明の方法によつて、種々の製造条件で作
成した材料の内、予備焼結条件(真空中125『CX4
時間+空気中1300℃×5時間)、HIP条件(Ar
中12000CX1時間、1000気圧)、歪取り焼鈍
(空気中1100℃×3時間、N2中冷却)の過程で得
た平均結晶粒径20〜30μ、d/DxC::99.8
〜99。9%の材料1,2および3のμの周波数特性を
第4図に示す。
On the other hand, when Pext=1500 atm, densification clearly progresses from about 850° C., which corresponds to about 50% of the melting point. Also, if you want to hold it for a long time. It is expected that densification will proceed even if the HIP temperature is lower than the above. The temperature during HIP has an extremely large effect on the crystal grain size of MnZn ferrite, similar to the sintering temperature, so compositions other than those mentioned in the present invention may need to be held at a low temperature for a long time during HIP. It makes me think of a child enough. In the composition of the present invention, when limited to Pext'::500 to 1500 atmospheres and a holding time of 1 hour, the optimum HIP temperature is 6
1000-126'C, which corresponds to 5% to 75%. As a result of detailed study on temperature, atmosphere, etc. for strain relief annealing, it was found that the material of the present invention has a temperature of 1050 to 11
After being kept in air for 2-5 hours at a temperature of 50°C, N2
It was found that by cooling inside, it has extremely excellent magnetic properties. However, the strain relief annealing conditions for obtaining excellent magnetic properties vary slightly depending on the composition, pre-sintering conditions, and HIP conditions, and therefore must be selected in accordance with the pretreatment conditions. In addition, the sintered body obtained by the method of the present invention has the following properties in the preliminary sintering process:
Since the material undergoes vacuum sintering, the pressure in the internal pores varies considerably; therefore, even after strain relief annealing, no expansion of pore volume due to residual gas pressure is observed, and d/Dx does not change before and after annealing.
Figures 2A and 2B show the pore distribution state of sample 3 and the microstructure of sample 2 after strain relief annealing, respectively. Preliminary sintering of sample 3 was conducted at 1250°C x 4h in vacuum, 1300'C x 5h1 in air, and 1250°C x 100°C for sample 2.
4h1 air 125'C x 5h each. 1st
As is clear from the figure and FIG. 2, the sample subjected to post-HIP annealing is extremely densified compared to the sample before HIP, and the relative density is almost 100%. Of the materials produced under various manufacturing conditions by the method of the present invention, pre-sintering conditions (125"CX4 in vacuum")
time + 1300°C in air x 5 hours), HIP conditions (Ar
Average grain size 20-30 μ, d/DxC: 99.8 obtained during strain relief annealing (1100°C in air for 3 hours, cooling in N2)
The frequency characteristics of μ for materials 1, 2 and 3 with a content of ~99.9% are shown in FIG.

尚、測定は内径4mmφ、外径8m!φ,厚さ0.16
5m71の両面鏡面仕上したリング状試料に10回巻線
を施し、温度20℃にて行つた。比較のため、通常の真
空焼結によつて、d/Dx=98〜99%程度まで緻密
化した同組成の材料についてのμの周波数特性を第5図
に示す。尚、このときの平均結晶粒径は80〜100μ
である。第4図および第5図を比較して明らかなように
、本発明の方法で得たMnZnフエライトは、通常焼結
で製造したそれらに比べて特に1MHz以上でのμの値
が大である。この傾向は組成2において著しく、5MH
zでのμは1050〜1100と極めて大きな値を示す
。また本発明の方法による最適な製造条件は組成によつ
て異なるため、組成に適した製造条件を厳密に選定する
ならば、組成1および3のμ特性は十分に向上させ得る
ことが期待できる。第6図は、第4図に示す各組成のB
−H曲線である。図中の61は150eの磁場中で測定
した磁束密度の値であり62は保磁力測定のための曲線
である。図から明らかなように、B:一4800〜52
000eと高く、特に最適製造条件に極めて近い条件で
得られた組成2は、高周波で高μ材であると同時に高B
材であることがわかる。また、本発明の方法を用いるな
らば、平均結晶粒径が通常焼結法の80〜100μに比
べて20〜30μと小さいため、結晶粒の形状効果が問
題となるようなより高い周波数領域で用いる材料として
も極めて有望であることがわかる。因みに、本発明の材
料は15MHzにおいてもμ≧500と極めて高い値を
有している。以上述べたことから、本発明の方法を用い
るならば、結晶粒径が小さく、極めて優れた磁気特性を
有するMnZnフエライトが、ほぼ理論密度に等しい状
態で製造することができる。
In addition, the inner diameter is 4mmφ and the outer diameter is 8m! φ, thickness 0.16
A ring-shaped sample measuring 5m71 with a mirror finish on both sides was wound 10 times, and the test was carried out at a temperature of 20°C. For comparison, FIG. 5 shows the frequency characteristics of μ for a material of the same composition densified to about d/Dx=98 to 99% by ordinary vacuum sintering. In addition, the average crystal grain size at this time is 80 to 100μ
It is. As is clear from a comparison of FIGS. 4 and 5, the MnZn ferrite obtained by the method of the present invention has a larger μ value especially at frequencies of 1 MHz or higher than those produced by ordinary sintering. This tendency is remarkable in composition 2, and 5MH
μ at z shows an extremely large value of 1050 to 1100. Further, since the optimum manufacturing conditions according to the method of the present invention differ depending on the composition, it is expected that the μ characteristics of compositions 1 and 3 can be sufficiently improved if manufacturing conditions suitable for each composition are strictly selected. Figure 6 shows the B of each composition shown in Figure 4.
-H curve. In the figure, 61 is the value of magnetic flux density measured in a magnetic field of 150e, and 62 is a curve for measuring coercive force. As is clear from the figure, B: 14800-52
In particular, composition 2, which was obtained under conditions extremely close to the optimum manufacturing conditions, is a high frequency, high μ material, and at the same time has a high B
You can see that it is made of wood. Furthermore, if the method of the present invention is used, the average crystal grain size is smaller at 20 to 30μ compared to 80 to 100μ in the normal sintering method, so it can be used in higher frequency ranges where the shape effect of crystal grains becomes a problem. It can be seen that it is extremely promising as a material to be used. Incidentally, the material of the present invention has an extremely high value of μ≧500 even at 15 MHz. From the above, if the method of the present invention is used, MnZn ferrite having a small crystal grain size and extremely excellent magnetic properties can be produced in a state almost equal to the theoretical density.

また本発明で用いた素原料は、通常の安価な工業用原料
であり、焼結および焼鈍も通常の乾式法が適用され、し
かも予備焼結温度は、通常の焼結温度に比べて100℃
程度低温でよい。さらに、通常のホツトプレスのように
、成形体をアルミナ等で被覆する必要もなく、熱間加圧
時にしばしば特性劣化につながる固相反応も生じない。
また熱間加圧が静水圧的であるため、複雑な形状のもの
および大型の材料がクラツク等の発生を伴なうことなく
、容易に緻密化することができる。このように数多くの
特長を有しており、通常の市販のHIPを用いるならば
一度に15kg程度の材料が製造可能であるため、極め
て小型で使用される磁気ヘツド等の材料としてヒ量産的
であり、材料の歩留りも極めて良好である。
In addition, the raw materials used in the present invention are ordinary inexpensive industrial raw materials, and the ordinary dry method is applied for sintering and annealing, and the preliminary sintering temperature is 100°C compared to the ordinary sintering temperature.
A moderately low temperature is sufficient. Furthermore, there is no need to cover the molded body with alumina or the like, unlike in normal hot pressing, and solid phase reactions that often lead to property deterioration do not occur during hot pressing.
In addition, since the hot pressing is hydrostatic, it is possible to easily densify complex-shaped materials and large-sized materials without causing cracks or the like. It has many features as described above, and if ordinary commercially available HIP is used, it is possible to manufacture about 15 kg of material at a time, making it suitable for mass production as a material for extremely small magnetic heads, etc. The material yield is also very good.

したがつて本発明の方法は、安価な原料から優れた特性
を有するMnZnフエライトを容易に量産することが可
能であり、省資源的な見地からもその工業的価値は極め
て大なるものがある。
Therefore, the method of the present invention makes it possible to easily mass-produce MnZn ferrite having excellent properties from inexpensive raw materials, and has extremely great industrial value from the standpoint of resource conservation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法の内、真空中焼結を含む予備暁結
で得られたMnZnフエライトの内、組成1のミクロ組
織写真、第2図は本発明の方法で製造したMnZnフエ
ライトの内、組成3の空孔分布Aおよび組成2のミクロ
組織写真B1第3図は本発明の方法で製造したMnZn
フエライトの内、組成2のHIP条件による相対密度d
/Dxの変化を示す図、第4図は本発明の方法で製造し
たMnZnフエライトのμの周波数変化を示す図、第5
図は通常の焼結法で製造したMnZnフエライトのμの
周波数特性図、第6図は本発明の方法で製造したMnZ
nフエライトのB−H曲線図である。
Figure 1 is a microstructure photograph of composition 1 of MnZn ferrite obtained by pre-sintering including vacuum sintering in the method of the present invention, and Figure 2 is a microstructure photograph of MnZn ferrite produced by the method of the present invention. Among them, vacancy distribution A of composition 3 and microstructure photograph B1 of composition 2 Figure 3 shows the MnZn produced by the method of the present invention.
Relative density d of ferrite under HIP conditions for composition 2
FIG. 4 is a diagram showing changes in μ of MnZn ferrite produced by the method of the present invention, and FIG.
The figure is a frequency characteristic diagram of μ of MnZn ferrite manufactured by the normal sintering method, and Figure 6 is the μ frequency characteristic diagram of MnZn ferrite manufactured by the method of the present invention.
It is a BH curve diagram of n-ferrite.

Claims (1)

【特許請求の範囲】[Claims] 1 昇温過程または保持過程の一部を真空中で行なう予
備焼結の過程と、500〜1500気圧の圧力下でかつ
1000〜1260℃の温度範囲における熱間静水圧プ
レスによる緻密化の過程と、前記熱間静水圧プレス温度
もしくはそれ以下の温度で行なう焼純過程とからなるM
nZnフェライトの製造方法。
1. A preliminary sintering process in which part of the temperature raising process or holding process is carried out in a vacuum, and a densification process by hot isostatic pressing under a pressure of 500 to 1500 atm and in a temperature range of 1000 to 1260°C. , and a sintering process carried out at the hot isostatic pressing temperature or a temperature lower than that.
Method for manufacturing nZn ferrite.
JP51052203A 1976-05-10 1976-05-10 Manufacturing method of MnZn ferrite Expired JPS5925729B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51052203A JPS5925729B2 (en) 1976-05-10 1976-05-10 Manufacturing method of MnZn ferrite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51052203A JPS5925729B2 (en) 1976-05-10 1976-05-10 Manufacturing method of MnZn ferrite

Publications (2)

Publication Number Publication Date
JPS52135900A JPS52135900A (en) 1977-11-14
JPS5925729B2 true JPS5925729B2 (en) 1984-06-20

Family

ID=12908209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51052203A Expired JPS5925729B2 (en) 1976-05-10 1976-05-10 Manufacturing method of MnZn ferrite

Country Status (1)

Country Link
JP (1) JPS5925729B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5462157U (en) * 1977-10-12 1979-05-01

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4867799A (en) * 1971-12-10 1973-09-17
JPS49128296A (en) * 1973-04-12 1974-12-09
JPS5226390A (en) * 1975-08-26 1977-02-26 Toyota Motor Corp Oxidation catalyst used for the purification of exhaust gas

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4867799A (en) * 1971-12-10 1973-09-17
JPS49128296A (en) * 1973-04-12 1974-12-09
JPS5226390A (en) * 1975-08-26 1977-02-26 Toyota Motor Corp Oxidation catalyst used for the purification of exhaust gas

Also Published As

Publication number Publication date
JPS52135900A (en) 1977-11-14

Similar Documents

Publication Publication Date Title
US5352522A (en) Composite material comprising metallic alloy grains coated with a dielectric substance
US5122317A (en) Method of superplastically deforming zirconia materials
EP0503639B1 (en) Polycristalline ferrite materials
Ewais et al. In-situ synthesis of magnetic Mn-Zn ferrite ceramic object by solid state reaction
US4093688A (en) Method of making manganese-zinc ferrite
US3078234A (en) Magnetostrictive ferrite
US4277356A (en) Soft lithium-titanium-zinc ferrite
US3948785A (en) Process of manufacturing ferrite materials with improved magnetic and mechanical properties
JPS5925729B2 (en) Manufacturing method of MnZn ferrite
JPH021793B2 (en)
JPS6043643B2 (en) Manufacturing method of MnZn ferrite with high magnetic permeability in high frequency band
JPS6043644B2 (en) Manufacturing method of NiZn ferrite with high magnetic permeability in high frequency band
JPH0433756B2 (en)
JPS6054972A (en) Manufacture of high strength zirconia sintered body
JPH0768114A (en) Metallic sintered filter and production thereof
JPS6051245B2 (en) Manufacturing method of NiZn ferrite
JPS6224379B2 (en)
JPS605045B2 (en) Manufacturing method of high-density ferrite
JPS63168007A (en) Manufacture of high density ferrite
JPS63157407A (en) Manufacture of high-density ferrite
JPH0660061B2 (en) Recording film magnetic head slider and method of manufacturing the same
JPS6047727B2 (en) Manufacturing method of high-density ferrite
JP2622078B2 (en) Manufacturing method of non-magnetic ceramics for magnetic head
JPH0468277B2 (en)
JPS5814050B2 (en) Manufacturing method of high-density ferrite