JP2861559B2 - Finishing method of film forming surface of film forming substrate - Google Patents
Finishing method of film forming surface of film forming substrateInfo
- Publication number
- JP2861559B2 JP2861559B2 JP3342465A JP34246591A JP2861559B2 JP 2861559 B2 JP2861559 B2 JP 2861559B2 JP 3342465 A JP3342465 A JP 3342465A JP 34246591 A JP34246591 A JP 34246591A JP 2861559 B2 JP2861559 B2 JP 2861559B2
- Authority
- JP
- Japan
- Prior art keywords
- film
- substrate
- film forming
- forming surface
- etching
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000758 substrate Substances 0.000 title claims description 44
- 238000000034 method Methods 0.000 title claims description 26
- 239000010408 film Substances 0.000 claims description 28
- 239000010409 thin film Substances 0.000 claims description 23
- 238000010438 heat treatment Methods 0.000 claims description 22
- 238000005530 etching Methods 0.000 claims description 16
- 230000008021 deposition Effects 0.000 claims description 12
- 230000015572 biosynthetic process Effects 0.000 claims description 10
- 239000012212 insulator Substances 0.000 claims description 9
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 8
- 229910052760 oxygen Inorganic materials 0.000 claims description 8
- 239000001301 oxygen Substances 0.000 claims description 8
- 239000011248 coating agent Substances 0.000 claims description 6
- 238000000576 coating method Methods 0.000 claims description 6
- 150000002500 ions Chemical class 0.000 claims description 6
- 238000009413 insulation Methods 0.000 claims 1
- 239000013078 crystal Substances 0.000 description 18
- 238000000151 deposition Methods 0.000 description 10
- 230000007547 defect Effects 0.000 description 9
- 229910002367 SrTiO Inorganic materials 0.000 description 4
- 238000005498 polishing Methods 0.000 description 4
- 239000002887 superconductor Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 238000000992 sputter etching Methods 0.000 description 2
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910000423 chromium oxide Inorganic materials 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 238000001020 plasma etching Methods 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Superconductor Devices And Manufacturing Methods Thereof (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、成膜用基板の成膜面の
仕上げ方法に関する。より詳細には、酸化物超電導薄膜
を作製する際に使用される基板の成膜面の仕上げ方法に
関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for finishing a film forming surface of a film forming substrate. More specifically, the present invention relates to a method for finishing a film-forming surface of a substrate used when producing an oxide superconducting thin film.
【0002】[0002]
【従来の技術】薄膜を成膜する際に使用する基板は、一
般に薄膜を構成する材料、薄膜に要求される特性等に合
わせて選択される。特殊な場合を除いて、基板と薄膜と
の間の反応や、相互拡散は起こらないことが好ましい。
その一方、薄膜の結晶状態、結晶方向には基板の結晶構
造が大きく影響する。即ち、所定の方向の単結晶または
所定の配向性を有する多結晶で構成された薄膜を作製す
る場合には、基板成膜面に現れている基板材料の結晶面
を選択する必要がある。2. Description of the Related Art In general, a substrate used for forming a thin film is selected according to a material constituting the thin film, characteristics required for the thin film, and the like. Except in special cases, it is preferable that no reaction or interdiffusion occurs between the substrate and the thin film.
On the other hand, the crystal state and crystal direction of the thin film are greatly affected by the crystal structure of the substrate. That is, when producing a thin film composed of a single crystal in a predetermined direction or a polycrystal having a predetermined orientation, it is necessary to select the crystal plane of the substrate material appearing on the substrate deposition surface.
【0003】酸化物超電導体は、その超電導特性に結晶
異方性があるので薄膜を作製する場合には、構成する酸
化物超電導体の結晶方向が重要である。また、酸化物超
電導体は比較的反応性が高く、さらに基板等と反応を起
こしたり、基板の成分元素が拡散した酸化物超電導薄膜
は超電導特性が大幅に劣化する。以上のことを考慮して
酸化物超電導薄膜の成膜には、MgO(100)基板、Sr
TiO3 (110)基板、YSZ基板等酸化物の基板が使
用されていた。An oxide superconductor has a crystal anisotropy in its superconducting characteristics. Therefore, when a thin film is formed, the crystal orientation of the constituent oxide superconductor is important. In addition, the oxide superconductor has relatively high reactivity, and further reacts with a substrate or the like, or the superconducting thin film in which the constituent elements of the substrate are diffused has significantly deteriorated superconductivity. In consideration of the above, an oxide superconducting thin film is formed on an MgO (100) substrate, Sr
An oxide substrate such as a TiO 3 (110) substrate or a YSZ substrate has been used.
【0004】[0004]
【発明が解決しようとする課題】薄膜の成膜に使用され
る上記の基板は、一般に薬品による化学的研磨と研磨材
を使用した機械的研磨とによりその成膜面が仕上げられ
ている。しかしながら、酸化物超電導薄膜の成膜に使用
される基板は、上記の化学的研磨および機械的研磨を組
み合わせた仕上げでは不十分であり、成膜時に歪、気孔
(ブローホール)、結晶欠陥等が成膜面で凝集されるこ
とがあった。The above-mentioned substrate used for forming a thin film generally has its film-formed surface finished by chemical polishing using a chemical and mechanical polishing using an abrasive. However, the substrate used for forming the oxide superconducting thin film is not sufficiently finished by a combination of the above-described chemical polishing and mechanical polishing. Aggregation sometimes occurred on the film formation surface.
【0005】酸化物超電導薄膜は、結晶性がよく、平滑
なものほど超電導特性が優れている。結晶がよく、平滑
な酸化物超電導薄膜を作製するためには、基板成膜面の
結晶性、平坦性およびそれらの均一性が重要である。[0005] The oxide superconducting thin film has good crystallinity, and the smoother the film, the better the superconducting properties. In order to produce a smooth oxide superconducting thin film with good crystallinity, the crystallinity, flatness and uniformity of the substrate deposition surface are important.
【0006】そこで本発明の目的は、上記の不具合が生
じないような基板成膜面の仕上げ方法を提供することに
ある。It is an object of the present invention to provide a method for finishing a film-formed surface of a substrate so as not to cause the above-mentioned problems.
【0007】[0007]
【0008】[0008]
【課題を解決するための手段】 本発明に従うと 、薄膜の
成膜に適するように仕上げられた成膜面を有する成膜用
基板の前記成膜面の仕上げ方法において、前記基板を酸
素雰囲気中で1050〜1500℃に加熱して熱処理する工程
と、成膜面に垂直でない角度でイオンを照射して該成膜
面をエッチングする工程と、該エッチングした成膜面に
絶縁体を被覆して平坦にする工程と、該絶縁体被覆をエ
ッチングして除去するとともに平滑な成膜面を形成する
工程とを含むことを特徴とする成膜用基板の成膜面の仕
上げ方法が提供される。 According to the present invention, there is provided a method for finishing a film forming surface of a film forming substrate having a film forming surface finished so as to be suitable for forming a thin film. a step of heat treatment by heating to 1,050-1,500 ° C. in
Etching the, etching the film forming surface is irradiated with ions at an angle not perpendicular to the deposition surface, a step of flattening by coating an insulator film-forming surface of the said etching, the insulator coating To form a smooth film deposition surface
Finishing method of film-forming surface of the deposition substrate which comprises a step is provided.
【0009】[0009]
【作用】本発明の成膜用基板の成膜面の仕上げ方法は、
前記基板を酸素雰囲気中で熱処理し、成膜面をいわゆる
斜めエッチングし、該エッチングした成膜面に絶縁体を
被覆して平坦にしてからこの絶縁体被覆をエッチバック
して、平滑な成膜面を形成するところにその主要な特徴
がある。本発明の方法においては、熱処理でブローホー
ル、結晶欠陥等を成膜面に凝集させる。この熱処理の
後、ブローホール、結晶欠陥等は凝集し、基板の成膜面
上に点在しており、これらを斜めエッチングで除去す
る。ブローホール、結晶欠陥を除去した成膜面は平滑で
はない場合が多いので、絶縁体を被覆して表面を平坦に
し、エッチバックすることで成膜面を平滑にする。ブロ
ーホール、結晶欠陥が少ない場合には、斜めエッチング
またはエッチバックいずれか一方だけで平滑な成膜面を
得られることもある。The method for finishing the film-forming surface of the film-forming substrate of the present invention is as follows.
The substrate is heat-treated in an oxygen atmosphere, the so-called oblique etching is performed on the film forming surface, the insulator is coated on the etched film forming surface, and the insulator coating is flattened. The main feature is where the surface is formed. In the method of the present invention, heat treatment aggregates blowholes, crystal defects, and the like on the film formation surface. After this heat treatment, blow holes, crystal defects, and the like are aggregated and scattered on the film-forming surface of the substrate, and are removed by oblique etching. Since the film formation surface from which blow holes and crystal defects have been removed is not smooth in many cases, the surface is flattened by covering with an insulator, and the film formation surface is smoothed by etching back. When there are few blow holes and crystal defects, a smooth film-formed surface may be obtained by only one of the oblique etching and the etch back.
【0010】本発明の方法では、熱処理により凝集した
ブローホール、結晶欠陥等をイオンを成膜面に対し直角
でない角度でイオン等を照射する斜めエッチングで除去
する。これは、通常の成膜面に対し直角にイオンを照射
するエッチングでは、ブローホール、結晶欠陥を除去で
きず、かえって拡大することがあるからである。斜めエ
ッチングを行った後の成膜面は、ブローホール、結晶欠
陥の除去された部分が凹んでいて平滑ではないので、窒
化Si等の絶縁体を表面が平坦になるよう被覆し、エッチ
バックして平滑な成膜面を得る。上記の各エッチングに
は、反応性イオンエッチング、Arイオンミリング等のド
ライエッチング法を使用することが好ましい。In the method of the present invention, blow holes, crystal defects and the like agglomerated by the heat treatment are removed by oblique etching in which ions are irradiated at an angle other than a right angle with respect to the film formation surface. This is because the etching in which ions are irradiated at right angles to the normal film-forming surface cannot remove blowholes and crystal defects, and may rather expand. After the oblique etching has been performed, the surface from which the blow holes and crystal defects have been removed is dented and not smooth, so an insulator such as silicon nitride is coated so that the surface becomes flat and etched back. To obtain a smooth film deposition surface. It is preferable to use a dry etching method such as reactive ion etching or Ar ion milling for each of the above etchings.
【0011】本発明の方法では、上記のエッチバックを
行って平滑な成膜面を形成した後に、2回目の熱処理を
行うことが好ましい。この熱処理は、成膜面の結晶状態
をさらに改善するために行うもので、最初の熱処理と同
様に酸素雰囲気中で行う。In the method of the present invention, it is preferable to perform the second heat treatment after the above-described etch-back is performed to form a smooth film-formed surface. This heat treatment is performed in order to further improve the crystal state of the film formation surface, and is performed in an oxygen atmosphere as in the first heat treatment.
【0012】本発明の方法において、上記各熱処理の加
熱温度は1050〜1500℃が好ましく、処理時間は5〜10時
間が好ましい。例えば、好ましい熱処理条件は加熱温度
1100℃、処理時間8時間である。上記の熱処理におい
て、加熱温度が1050℃未満では、ブローホール、結晶欠
陥等が十分に凝集せず、また、成膜面の結晶性および平
坦性も十分改善されない。また、加熱温度が1500℃を超
えると、反応器等からの蒸発物が付着し、基板成膜面が
荒れることがあるので好ましくない。In the method of the present invention, the heating temperature of each heat treatment is preferably 1050 to 1500 ° C., and the treatment time is preferably 5 to 10 hours. For example, a preferable heat treatment condition is a heating temperature.
1100 ° C, treatment time 8 hours. In the above heat treatment, if the heating temperature is lower than 1050 ° C., blow holes, crystal defects, and the like do not sufficiently aggregate, and the crystallinity and flatness of the film formation surface are not sufficiently improved. On the other hand, when the heating temperature is higher than 1500 ° C., evaporates from the reactor and the like adhere to the substrate, and the film formation surface of the substrate may be roughened.
【0013】一方、本発明の方法において、熱処理の処
理時間が5時間未満では、効果が十分ではなく、また、
処理時間が10時間を超えてもその効果に変わりがない。
従って、処理時間は5〜10時間が好ましい。On the other hand, in the method of the present invention, if the heat treatment time is less than 5 hours, the effect is not sufficient.
Even if the processing time exceeds 10 hours, the effect remains unchanged.
Therefore, the processing time is preferably 5 to 10 hours.
【0014】以下、本発明を実施例によりさらに詳しく
説明するが、以下の開示は本発明の単なる実施例に過ぎ
ず、本発明の技術的範囲をなんら制限するものではな
い。Hereinafter, the present invention will be described in more detail with reference to examples. However, the following disclosure is merely an example of the present invention and does not limit the technical scope of the present invention.
【0015】[0015]
【実施例】本発明の方法で仕上げた基板と、従来の方法
で仕上げた基板上に酸化物超電導薄膜を作製し、それぞ
れの超電導特性を比較した。基板には、MgO(10
0)、SrTiO3 (110)およびYSZを使用した。本
発明の方法では、それぞれの基板の成膜面を以下のよう
に仕上げた。EXAMPLE An oxide superconducting thin film was formed on a substrate finished by the method of the present invention and a substrate finished by a conventional method, and the superconducting characteristics of each were compared. The substrate contains MgO (10
0), SrTiO 3 (110) and YSZ. In the method of the present invention, the film forming surface of each substrate was finished as follows.
【0016】まず、最初に各基板を酸素雰囲気中で熱処
理した。熱処理条件を以下に示す。 加熱温度 時間 酸素流量 MgO(100) 1100℃ 8時間 30ml/分 SrTiO3 (110) 1200℃ 8時間 30ml/分 YSZ 1050℃ 8時間 30ml/分First, each substrate was heat-treated in an oxygen atmosphere. The heat treatment conditions are shown below. Heating temperature Time Oxygen flow rate MgO (100) 1100 ° C 8 hours 30ml / min SrTiO 3 (110) 1200 ° C 8 hours 30ml / min YSZ 1050 ° C 8 hours 30ml / min
【0017】この熱処理後、各基板成膜面には0.3 〜
0.6個/mm2 のブローホールが発生していることがわか
った。これらの基板をそれぞれ以下の条件でArイオンに
より斜めエッチングした。 加速電圧 入射角度 MgO(100) 5 kV 20° SrTiO3 (110) 5 kV 20° YSZ 5 kV 20°After this heat treatment, 0.3 to
It was found that 0.6 blow holes / mm 2 were generated. Each of these substrates was obliquely etched with Ar ions under the following conditions. Acceleration voltage Incident angle MgO (100) 5 kV 20 ° SrTiO 3 (110) 5 kV 20 ° YSZ 5 kV 20 °
【0018】次にそれぞれの基板成膜面上にCVD法に
より、厚さ100nmの窒化Si層を表面が平坦になるよう堆
積させた。この窒化Si層をArイオンエッチングにより、
エッチバックして除去し、基板成膜面を平滑にした。Ar
イオンエッチングの条件を以下に示す。 さらに、各基板の一部のものを再度酸素雰囲気中で熱処
理した。 加熱温度 時間 酸素流量 MgO(100) 1100℃ 8時間 30ml/分 SrTiO3 (110) 1200℃ 8時間 30ml/分 YSZ 1050℃ 8時間 30ml/分Next, a 100-nm-thick Si nitride layer was deposited on each substrate deposition surface by CVD so that the surface became flat. This silicon nitride layer is etched by Ar ion
The film was removed by etch-back, and the substrate deposition surface was smoothed. Ar
The conditions of ion etching are shown below. Further, a part of each substrate was heat-treated again in an oxygen atmosphere. Heating temperature Time Oxygen flow rate MgO (100) 1100 ° C 8 hours 30ml / min SrTiO 3 (110) 1200 ° C 8 hours 30ml / min YSZ 1050 ° C 8 hours 30ml / min
【0019】一方、従来の方法では、各基板成膜面を塩
酸で化学的に研磨した後、酸化クロム粉またはアルミナ
粉を使用して機械的に研磨して鏡面仕上げとした。これ
らの基板成膜面上にY1Ba2Cu3O7-X酸化物超電導薄膜を
オフアクシススパッタリング法で作製し、臨界温度、臨
界電流密度を測定した。成膜条件を以下に示す。 On the other hand, in the conventional method, each substrate film-forming surface is chemically polished with hydrochloric acid, and then mechanically polished using chromium oxide powder or alumina powder to obtain a mirror finish. A Y 1 Ba 2 Cu 3 O 7-X oxide superconducting thin film was formed on these substrate deposition surfaces by off-axis sputtering, and the critical temperature and critical current density were measured. The film forming conditions are shown below.
【0020】また、作製されたY1Ba2Cu3O7-X酸化物超
電導薄膜の超電導特性を以下に示す。The superconducting properties of the produced Y 1 Ba 2 Cu 3 O 7-X oxide superconducting thin film are shown below.
【0021】[0021]
【表2】 [Table 2]
【0022】以上のように、本発明の方法で仕上げられ
た成膜面を有する基板上に作製された酸化物超電導薄膜
は、いずれも従来の基板上に作製された酸化物超電導薄
膜よりも優れた超電導特性を示す。これは、本発明の方
法により仕上げられた成膜面は平坦度、結晶性が優れて
いるため、その上に成膜された酸化物超電導体の平滑
性、結晶性が良好になるからである。本実施例では、成
膜面を斜めエッチングする工程と、絶縁体を被覆してエ
ッチバックして平坦化する工程とを連続して実施した
が、どちらかの工程だけでを選択する方法も可能であ
る。As described above, the oxide superconducting thin film formed on the substrate having the film-formed surface finished by the method of the present invention is superior to the oxide superconducting thin film formed on the conventional substrate. It shows superconducting characteristics. This is because the film-formed surface finished by the method of the present invention has excellent flatness and crystallinity, so that the oxide superconductor formed thereon has good smoothness and crystallinity. . In this embodiment, the process of obliquely etching the film formation surface and the process of covering the insulator and etching back to flatten it were performed continuously, but a method of selecting only one of the processes is also possible. It is.
【0023】[0023]
【発明の効果】以上詳述のように、本発明の方法で仕上
げた成膜面を有する基板上には優れた特性の薄膜を成膜
することが可能である。これは、本発明の方法により、
基板成膜面の歪、結晶欠陥を除去することができるから
である。本発明の方法は、特に酸化物超電導薄膜を成膜
する酸化物単結晶基板に適用すると効果的である。As described in detail above, a thin film having excellent characteristics can be formed on a substrate having a film-formed surface finished by the method of the present invention. This is achieved by the method of the present invention.
This is because distortion and crystal defects on the substrate deposition surface can be removed. The method of the present invention is particularly effective when applied to an oxide single crystal substrate on which an oxide superconducting thin film is formed.
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) C01G 1/00 - 57/00 C30B 29/22 501 H01L 39/00 - 39/24──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int. Cl. 6 , DB name) C01G 1/00-57/00 C30B 29/22 501 H01L 39/00-39/24
Claims (2)
成膜面を有する成膜用基板の前記成膜面の仕上げ方法に
おいて、前記基板を酸素雰囲気中で1050〜1500℃に加熱
して熱処理する工程と、成膜面に垂直でない角度でイオ
ンを照射して該成膜面をエッチングする工程と、該エッ
チングした成膜面に絶縁体を被覆して平坦にする工程
と、該絶縁体被覆をエッチングして除去するとともに平
滑な成膜面を形成する工程とを含むことを特徴とする成
膜用基板の成膜面の仕上げ方法。1. A method for finishing a film forming surface of a film forming substrate having a film forming surface finished so as to be suitable for forming a thin film, wherein the substrate is heated to 1050 to 1500 ° C. in an oxygen atmosphere.
A step of heat treatment in the step of etching the film forming surface is irradiated with ions at an angle not perpendicular to the deposition surface, a step of flattening by coating an insulator film-forming surface of the said etching
And etching the insulator coating to form a smooth film-forming surface and forming a smooth film-forming surface.
雰囲気中で熱処理することを特徴とする請求項1に記載
の成膜用基板の成膜面の仕上げ方法。2. A method of finish film formation surface of the deposition substrate according to claim 1, characterized in that the heat treatment again in an oxygen atmosphere after removing the insulation coating.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3342465A JP2861559B2 (en) | 1991-11-30 | 1991-11-30 | Finishing method of film forming surface of film forming substrate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3342465A JP2861559B2 (en) | 1991-11-30 | 1991-11-30 | Finishing method of film forming surface of film forming substrate |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05148066A JPH05148066A (en) | 1993-06-15 |
JP2861559B2 true JP2861559B2 (en) | 1999-02-24 |
Family
ID=18353952
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3342465A Expired - Lifetime JP2861559B2 (en) | 1991-11-30 | 1991-11-30 | Finishing method of film forming surface of film forming substrate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2861559B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3398638B2 (en) * | 2000-01-28 | 2003-04-21 | 科学技術振興事業団 | LIGHT EMITTING DIODE, SEMICONDUCTOR LASER AND METHOD FOR MANUFACTURING THE SAME |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01302845A (en) * | 1988-05-31 | 1989-12-06 | Sumitomo Electric Ind Ltd | Package of integrated circuit |
JPH02248304A (en) * | 1989-03-20 | 1990-10-04 | Mitsubishi Metal Corp | Production of superconductor thin film |
JP2605148B2 (en) * | 1989-10-20 | 1997-04-30 | 財団法人国際超電導産業技術研究センター | Manufacturing method of oxide thin film |
-
1991
- 1991-11-30 JP JP3342465A patent/JP2861559B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH05148066A (en) | 1993-06-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4906594A (en) | Surface smoothing method and method of forming SOI substrate using the surface smoothing method | |
US6022410A (en) | Alkaline-earth metal silicides on silicon | |
JP3113141B2 (en) | Ferroelectric crystal thin film coated substrate, method of manufacturing the same, and ferroelectric thin film device using ferroelectric crystal thin film coated substrate | |
JPH08279599A (en) | Preparation of ferroelectricity capacitor | |
US6432546B1 (en) | Microelectronic piezoelectric structure and method of forming the same | |
JPH081899B2 (en) | Method for planarizing semiconductor device | |
JP2861559B2 (en) | Finishing method of film forming surface of film forming substrate | |
US6139971A (en) | Stratified structure with a ferroelectric layer and process for producing the same | |
JPH03119517A (en) | Recording disk substrate and its production | |
JPH01222483A (en) | Method of building up tunnel oxide on substrate | |
US5843811A (en) | Method of fabricating a crystalline thin film on an amorphous substrate | |
JPS6161556B2 (en) | ||
JPH03295239A (en) | Manufacture of semiconductor device | |
US6482538B2 (en) | Microelectronic piezoelectric structure and method of forming the same | |
JP2916116B2 (en) | Platinum thin film forming method, substrate manufactured by the method, electronic device using the substrate, and method of manufacturing the electronic device | |
JPH05148094A (en) | Finishing of film-forming surface on film-forming base | |
JPH1056011A (en) | Method and product for improving mutual connecting characteristic of aluminum | |
JPS60132344A (en) | Semiconductor device | |
JP2000286396A (en) | Ferroelectric memory and manufacture thereof | |
CN115835768B (en) | Protective layer for preparing superconducting quantum chip and superconducting quantum chip | |
JP2993451B2 (en) | Surface flattening method for oxide superconducting thin film | |
JP2880415B2 (en) | Non-mirror silicon wafer and method of manufacturing the same | |
JPH06291253A (en) | Formation of dielectric film of electric charge storage section of semiconductor element | |
JPS59188957A (en) | Manufacture of capacitor for semiconductor device | |
JPH01196130A (en) | Method of silicon oxide film growth |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19981110 |