JPH02248304A - Production of superconductor thin film - Google Patents

Production of superconductor thin film

Info

Publication number
JPH02248304A
JPH02248304A JP1068701A JP6870189A JPH02248304A JP H02248304 A JPH02248304 A JP H02248304A JP 1068701 A JP1068701 A JP 1068701A JP 6870189 A JP6870189 A JP 6870189A JP H02248304 A JPH02248304 A JP H02248304A
Authority
JP
Japan
Prior art keywords
substrate
thin film
polishing
superconductor
superconductor thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1068701A
Other languages
Japanese (ja)
Inventor
Shuichi Fujino
藤野 修一
Takuo Takeshita
武下 拓夫
Tadashi Sugihara
杉原 忠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP1068701A priority Critical patent/JPH02248304A/en
Publication of JPH02248304A publication Critical patent/JPH02248304A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To obtain the thin film having a high orientated property as deposited at the time of forming a Bi-based oxide superconductor on a MgO single crystal substrate by specifying the surface roughness of the substrate and irradiating the polished substrate surface with a microwave. CONSTITUTION:The surface of an MgO single crystal substrate is mechanochemically polished instead of mechanical polishing to apply an ultra- accurate polishing of an atomic order, hence the damages (dislocation, etc.) on the surface caused by machining after the substrate is sliced are removed, and the surface roughness is controlled to <=10Angstrom . The polished surface is irradiated with a microwave. By this method, the Mg(OH)2 on the substrate surface formed by an alkaline processing soln. used in polishing is removed, and the substrate surface, on which a superconductor thin film having a high orientated property can be formed, is obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は超伝導体薄膜の製造方法、特にMgO単結晶薄
膜基板上にビスマス系酸化物超伝導体薄[従来の技術] 従来のこの種のビスマス系酸化物超伝導体薄膜の製造方
法にあっては、ビスマス系酸化物超伝導体の結晶体の原
子間距離と単結晶MgO基板のそれとがほぼ同じ程度で
あるところから、まず該単結晶基板を(100)面でス
ライスして、この表面を光学的に鏡面研磨していた。こ
の単結晶基板の表面粗さ(凹凸)は100A (=0.
 01 μm)程度であった。そして、このMgO基板
を、約700℃に加熱しスパッタリングにより、ビスマ
ス系の酸化物超伝導体薄膜(BiCaSrCu20x)
を形成していた。700°Cでの高温スパッタリングと
したのは、as−depos i tedで超伝導性を
示す薄膜を得るためである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for producing a superconductor thin film, particularly a method for producing a bismuth-based oxide superconductor thin film on an MgO single crystal thin film substrate [Prior art] In the method for producing a bismuth-based oxide superconductor thin film, since the interatomic distance of the bismuth-based oxide superconductor crystal is approximately the same as that of a single-crystal MgO substrate, A crystal substrate was sliced along the (100) plane, and the surface was optically mirror-polished. The surface roughness (unevenness) of this single crystal substrate is 100A (=0.
01 μm). Then, this MgO substrate is heated to about 700°C and sputtered to form a bismuth-based oxide superconductor thin film (BiCaSrCu20x).
was forming. The high-temperature sputtering at 700°C was used to obtain a thin film exhibiting superconductivity when deposited as-is.

[発明が解決しようとする課題] しかしながら、このような従来の超伝導体薄膜の製造方
法にあっては、単結晶基板上に堆積した薄膜はなかなか
単結晶化せず、その一部にC軸の方向のずれた結晶が残
って多結晶のような膜が生成されてしまうという問題点
があった。
[Problems to be Solved by the Invention] However, in such conventional methods for manufacturing superconductor thin films, the thin film deposited on a single crystal substrate does not easily become a single crystal, and some of the thin films have C-axis There is a problem in that crystals with a shifted direction remain, resulting in a polycrystalline film.

そこで、高温スパッタリング中に単結晶MgO基板表面
の(100)面の原子配列に沿ってビスマス系酸化物超
伝導体の原子が正確に配列し易くする必要がある。
Therefore, it is necessary to facilitate accurate alignment of the atoms of the bismuth-based oxide superconductor along the atomic alignment of the (100) plane on the surface of the single-crystal MgO substrate during high-temperature sputtering.

このためには、■基板の被堆積面(表面)が正確に(1
00)面によって形成され、■基板の被堆積面の近傍(
深さ方向)の転位、空孔の密度が低く、その結果、基板
の被堆積面にあって原子配列の乱れが少なく、■基板被
堆積面の表面粗さが原子オーダーで凹凸がなければよく
、ざらに■該基板被堆積面によごれがないことが重要で
ある。
For this purpose, ■ the deposition surface (surface) of the substrate must be accurately (1
00) plane, and ■near the deposition surface of the substrate (
The density of dislocations and vacancies (in the depth direction) is low, and as a result, there is little disorder in the atomic arrangement on the deposition surface of the substrate, and the surface roughness of the substrate deposition surface should be on the atomic order, with no irregularities. It is important that the surface on which the substrate is deposited is free from dirt.

そこで、この点に着眼しての実験の結果、■基板の結晶
面方位の誤差、および0表面のよごれは現在の基板製造
、表面ポリシング技術にあっては無視できる程度の範囲
に制御されているが、以下の点についてコントロールす
る必要がある。すなわち、■基板表面の転位密度が一定
値(その深さ方向にあって500人までの範囲で10ケ
/cTII2)以下であり、かつ、0表面粗さが10人
(0,001μm)以下であれば、完全な単結晶の成膜
が可能であることが判明した。
Therefore, as a result of experiments focusing on this point, it was found that: - Errors in the crystal plane orientation of the substrate and dirt on the surface are controlled to a negligible range with current substrate manufacturing and surface polishing technology. However, the following points need to be controlled. In other words, ■ the dislocation density on the substrate surface is below a certain value (10 cases/cTII2 in the depth direction up to 500 people), and the zero surface roughness is below 10 people (0,001 μm). It was found that complete single-crystal film formation is possible if this is the case.

具体的には、基板表面をメカノケミカルポリッシングに
よって非機械的に原子オーダーの超精密研磨加工を行う
ものである。これによりMgO基板のスライシング以降
の機械加工によって生じた表面の損傷(転位等)を取り
除くとともに、その表面粗さを10Å以下とするもので
ある。
Specifically, the substrate surface is non-mechanically polished to an atomic order using mechanochemical polishing. This removes surface damage (such as dislocations) caused by machining after slicing the MgO substrate, and also reduces the surface roughness to 10 Å or less.

しかしながら、このメカノケミカルポリッシングにあっ
ては、軟質パウダ(砥粒)とともにアルカリ性の加工液
を使用するので、この加工液によって基板表面にMg(
OH)2が生成、残留してしまい、超伝導体薄膜の成長
時にあってその単結晶化を阻害するという新たな課題が
生じていた。
However, in this mechanochemical polishing, an alkaline processing liquid is used together with soft powder (abrasive grains), so this processing liquid coats the substrate surface with Mg (
A new problem has arisen in that OH)2 is generated and remains, which inhibits single crystallization during the growth of superconductor thin films.

そこで、本発明は、基板表面の研磨後にマイクロ波を照
射することにより、配向性の高い超伝導体薄膜を基板上
に形成することのできる超伝導体薄膜の製造方法を提供
することをその目的とじている。
Therefore, an object of the present invention is to provide a method for manufacturing a superconductor thin film that can form a highly oriented superconductor thin film on a substrate by irradiating microwaves after polishing the surface of the substrate. It is closed.

[課題を解決するための手段] 本発明は、基板表面部の結晶面の配向性を高めた薄膜用
の単結晶基板を準備する工程と、該基板表面をポリシン
グすることにより、その表面粗さを10Å以下にし、そ
の転位密度を所定値以下にする工程と、基板表面に酸化
物超伝導体の薄膜を被着する工程と、を備えた超伝導体
薄膜の製造方法にあって、上記ポリシング後の基板表面
にマイクロ波を照射する工程、を備えた超伝導体薄膜の
製造方法である。
[Means for Solving the Problems] The present invention includes a step of preparing a single crystal substrate for a thin film in which the orientation of crystal planes on the surface of the substrate is improved, and polishing the surface of the substrate to improve the surface roughness. 10 Å or less and the dislocation density is below a predetermined value, and a step of depositing a thin film of an oxide superconductor on the surface of the substrate, the method comprises the steps of: This method of manufacturing a superconductor thin film includes a subsequent step of irradiating the surface of the substrate with microwaves.

[作用] 本発明に係る超伝導体薄膜の製造方法にあっては、例え
ばメカノケミカルボリジングによって単結晶基板の表面
を、その表面粗さが10A以下、転位密度が所定値以下
に制御する。例えば加工変質層を表面から除去するもの
である。そして、このポリシングの後に、例えば超伝導
体薄膜の基板表面へのデポジションの前に、一定波長範
囲のマイクロ波を基板表面に照射する。この結果、上記
ポリシングによって表面に残存した化合物のみが気化、
蒸発し、良好な薄膜の成長を達成することができた。な
お、このマイクロ波の発射装置はデポジション装置内に
設置してもよい。
[Function] In the method for producing a superconductor thin film according to the present invention, the surface of the single crystal substrate is controlled to have a surface roughness of 10 A or less and a dislocation density of not more than a predetermined value, for example, by mechanochemical boriding. For example, a process-affected layer is removed from the surface. After this polishing, for example, before a superconductor thin film is deposited on the substrate surface, the substrate surface is irradiated with microwaves in a certain wavelength range. As a result, only the compounds remaining on the surface due to the polishing mentioned above are vaporized.
It was possible to evaporate and achieve good thin film growth. Note that this microwave emitting device may be installed within the deposition device.

[発明の効果] 以上説明してきたように、本発明に係る超伝導体薄膜の
製造方法にあっては、単結晶基板上にas−depos
itedで配向性の高い超伝導体薄膜を形成することが
できる。
[Effects of the Invention] As explained above, in the method for producing a superconductor thin film according to the present invention, as-depos
It is possible to form a superconductor thin film with high orientation.

[実施例] 次表の実施例では、700℃におけるスパッタリングを
施している。また、このスパッタリングの前に一定波長
範囲のマイクロ波を基板表面に照射している。
[Example] In the example shown in the following table, sputtering was performed at 700°C. Furthermore, before this sputtering, microwaves within a certain wavelength range are irradiated onto the substrate surface.

(続き)(continuation)

Claims (1)

【特許請求の範囲】[Claims] (1)基板表面部の結晶面の配向性を高めた薄膜用の単
結晶基板を準備する工程と、 該基板表面をポリシングすることにより、その表面粗さ
を10Å以下にし、その転位密度を所定値以下にする工
程と、 基板表面に酸化物超伝導体の薄膜を被着する工程と、を
備えた超伝導体薄膜の製造方法にあって、上記ポリシン
グ後の基板表面にマイクロ波を照射する工程、を備えた
ことを特徴とする超伝導体薄膜の製造方法。
(1) A step of preparing a single-crystal substrate for a thin film with improved orientation of crystal planes on the surface of the substrate, and polishing the surface of the substrate to reduce the surface roughness to 10 Å or less and reduce the dislocation density to a predetermined level. A method for producing a superconductor thin film comprising the steps of: reducing the oxide superconductor to a value equal to or less than the above polishing value; and depositing a thin film of an oxide superconductor on the surface of the substrate, the method comprising: irradiating the surface of the substrate after polishing with microwaves; A method for producing a superconductor thin film, comprising the steps of:
JP1068701A 1989-03-20 1989-03-20 Production of superconductor thin film Pending JPH02248304A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1068701A JPH02248304A (en) 1989-03-20 1989-03-20 Production of superconductor thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1068701A JPH02248304A (en) 1989-03-20 1989-03-20 Production of superconductor thin film

Publications (1)

Publication Number Publication Date
JPH02248304A true JPH02248304A (en) 1990-10-04

Family

ID=13381336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1068701A Pending JPH02248304A (en) 1989-03-20 1989-03-20 Production of superconductor thin film

Country Status (1)

Country Link
JP (1) JPH02248304A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05148066A (en) * 1991-11-30 1993-06-15 Sumitomo Electric Ind Ltd Finishing method of film surface on substrate for film formation
WO2005015575A1 (en) * 2003-08-06 2005-02-17 Sumitomo Electric Industries, Ltd. Superconducting wire and its production method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05148066A (en) * 1991-11-30 1993-06-15 Sumitomo Electric Ind Ltd Finishing method of film surface on substrate for film formation
WO2005015575A1 (en) * 2003-08-06 2005-02-17 Sumitomo Electric Industries, Ltd. Superconducting wire and its production method
JP2005056754A (en) * 2003-08-06 2005-03-03 Sumitomo Electric Ind Ltd Superconductive wire and its manufacturing method

Similar Documents

Publication Publication Date Title
US6933065B2 (en) High temperature superconducting thick films
US5968877A (en) High Tc YBCO superconductor deposited on biaxially textured Ni substrate
US7608335B2 (en) Near single-crystalline, high-carrier-mobility silicon thin film on a polycrystalline/amorphous substrate
US7736761B2 (en) Buffer layer for thin film structures
Oliveira et al. High textured AlN thin films grown by RF magnetron sputtering; composition, structure, morphology and hardness
JPH0360171B2 (en)
US5080753A (en) Laser deposition of crystalline boron nitride films
Myers et al. Growth of low dislocation density CdTe films on hydroplaned CdTe substrates by molecular beam epitaxy
US5139591A (en) Laser deposition of crystalline boron nitride films
US8303745B2 (en) Process for transferring films
JPH02248304A (en) Production of superconductor thin film
Balashev et al. Growth of Fe 3 O 4 films on the Si (111) surface covered by a thin SiO 2 layer
CN109830429A (en) A kind of double light path pulse laser is in Si(100) method of deposition on substrate InGaN film
US5264296A (en) Laser depositon of crystalline boron nitride films
JPH0280562A (en) Production of iron garnet layer and waveguide and integrated optoelectronics element
Hayek et al. The effect of amorphous intermediate layers on nucleation and epitaxial growth of fcc metals on sodium chloride
Agrawal et al. Nucleation and growth of DyBa2Cu3O7− x thin films on SrTiO3 substrates studied by transmission electron microscopy and atomic force microscopy
JPS62197395A (en) Manufacture of structural epitaxial layer on substrate
Padilla et al. Epitaxial Growth of SrTiO 3 Films on Cube-Textured Cu-Clad Substrates by PLD at Low Temperature Under Reducing Atmosphere
JPH03250622A (en) Forming method for thin semiconductor film
Shinohara et al. ICB deposition and epitaxial growth of GaAs thin films
JPH01145397A (en) Production of oxide superconducting thin film
RU2657674C1 (en) METHOD FOR PRODUCING HETEROSTRUCTURE Mg(Fe1-XGaX)2O4/SI WITH STABLE INTERPHASE BOUNDARY
Cheng et al. Influence of the characteristics of a SrTiO3 buffer layer on the superconductivity of laser-ablated YBa2Cu3O7− ϖ films
Kuech et al. Growth and properties of thin GaAs epitaxial layers on Al2O3