JP2855645B2 - Superconducting constant current regulator circuit - Google Patents

Superconducting constant current regulator circuit

Info

Publication number
JP2855645B2
JP2855645B2 JP1091225A JP9122589A JP2855645B2 JP 2855645 B2 JP2855645 B2 JP 2855645B2 JP 1091225 A JP1091225 A JP 1091225A JP 9122589 A JP9122589 A JP 9122589A JP 2855645 B2 JP2855645 B2 JP 2855645B2
Authority
JP
Japan
Prior art keywords
constant current
resistance
superconducting
regulator circuit
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1091225A
Other languages
Japanese (ja)
Other versions
JPH02268474A (en
Inventor
隆 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP1091225A priority Critical patent/JP2855645B2/en
Publication of JPH02268474A publication Critical patent/JPH02268474A/en
Application granted granted Critical
Publication of JP2855645B2 publication Critical patent/JP2855645B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、超伝導デバイス等に用いられることが期待
される、構造が簡単で製造プロセスが簡単な、定電流レ
ギュレータ回路に関するものである。
Description: TECHNICAL FIELD The present invention relates to a constant current regulator circuit which is expected to be used for a superconducting device or the like and has a simple structure and a simple manufacturing process.

(従来の技術) 超伝導素子、とくにジョセフソン・ゲートは定電流駆
動を必要とするために、まず、電源供給ラインは定電圧
を保障し、ここから抵抗を通して各ゲートに電流を供給
する。この場合に用いられる定電圧レギュレータは、ジ
ョセフソン接合のトンネル特性のギャップの立ち上がり
を利用している。第4図(a)は、定電流源Ibにジョセ
フソン接合Jと純抵抗RLとを並列に接続した回路図で、
通常のジョセフソン回路を一般化したモデルになってい
る。第4図(b)のAは、ジョセフソン接合Jの非線形
I−V特性、B及びCは、接合Jの両端にかかる電圧に
対して接合Jを流れる電流IJをプロットした回路の特性
線であるが、CはBに比して抵抗RLが大きい場合を示し
ている。BまたはCとAとの交差点は、接合Jが電圧状
態のときの回路の動作点を示している。これより、交差
点が特性Aの立ち上がりの激しいギャップ領域にある限
り、抵抗RLが多少変動しても、接合Jの両端の電圧はほ
ぼ一定に保たれることがわかる。第5図は、第4図に示
した従来のジョセフソン定電圧レギュレータ回路の具体
例を示す。(参考文献としては、P.C.arnett and D.J.H
errell,“Regulated AC Power for Josephson Interfer
ometers for Latching Logic Circuits",IEEE Trans.on
Magn.,MAG−15,pp544,1979.) (発明が解決しようとする課題) このジョセフソン定電圧レギュレータ回路は、スイッ
チングする各論理ゲートが電源ラインに並列に接続され
るタイプのデバイスには定電流源として適用できるが、
直列に接続されるタイプのデバイスには適用できないと
いう課題がある。また、ジョセフソン接合をシリーズに
連結して作製するのは製造プロセス上手間がかかり、望
む特性を得るのが難しいという課題もある。
(Prior Art) Since a superconducting element, particularly a Josephson gate, requires constant current drive, first, a power supply line guarantees a constant voltage, from which current is supplied to each gate through a resistor. The constant voltage regulator used in this case utilizes the rise of the gap in the tunnel characteristic of the Josephson junction. FIG. 4A is a circuit diagram in which a Josephson junction J and a pure resistor RL are connected in parallel to a constant current source Ib.
It is a generalized model of a normal Josephson circuit. In FIG. 4 (b), A is a nonlinear IV characteristic of the Josephson junction J, and B and C are characteristic lines of a circuit in which a current I J flowing through the junction J is plotted against a voltage applied across the junction J. Where C indicates the case where the resistance RL is greater than B. The intersection of B or C with A indicates the operating point of the circuit when junction J is in a voltage state. From this, it can be seen that as long as the intersection is in the gap region where the rise of the characteristic A is sharp, the voltage across the junction J is kept substantially constant even if the resistance RL fluctuates somewhat. FIG. 5 shows a specific example of the conventional Josephson constant voltage regulator circuit shown in FIG. (References include PCarnett and DJH
errell, “Regulated AC Power for Josephson Interfer
ometers for Latching Logic Circuits ", IEEE Trans.on
Magn., MAG-15, pp544, 1979.) (Problems to be Solved by the Invention) This Josephson constant voltage regulator circuit is not suitable for a device in which each switching logic gate is connected in parallel to a power supply line. Applicable as a current source,
There is a problem that it cannot be applied to devices of the type connected in series. In addition, there is also a problem that it is troublesome to manufacture a Josephson junction by connecting the series to a series, and it is difficult to obtain desired characteristics.

本発明の目的は、以上の課題を解決するため、定電流
駆動される論理ゲートが電源ラインに直列に接続される
タイプのデバイスに適用でき、構造が簡単で製造プロセ
スが容易な定電流レギュレータ回路を提供することであ
る。
SUMMARY OF THE INVENTION An object of the present invention is to provide a constant current regulator circuit having a simple structure and a simple manufacturing process, which can be applied to a device in which a logic gate driven by a constant current is connected in series to a power supply line. It is to provide.

(課題を解決するための手段) 本発明においては、第2図のような、酸化物高温超伝
導体などのバルク第2種超伝導体の混合状態における著
しい非線形効果を利用して、定電流駆動される論理ゲー
トが電源ラインに直列に接続されるタイプのデバイスに
対して安定に給電すること、ならびに、バルク超伝導体
を利用することから製造プロセスが簡単であること、を
特徴としている。
(Means for Solving the Problems) In the present invention, as shown in FIG. 2, the constant current is controlled by utilizing a remarkable nonlinear effect in a mixed state of a bulk type 2 superconductor such as an oxide high-temperature superconductor. It features stable power supply to devices of the type in which driven logic gates are connected in series to power supply lines, and the simplicity of the manufacturing process due to the use of bulk superconductors.

(作用) 第2図(a)はバルク第2種超伝導体に電流Iを流し
た時に発生する抵抗値Rを示している。印加電流が少な
いときには、系は超伝導のままでゼロ抵抗を示している
が、印加電流値が系の臨界電流値IOを越えると、系には
鋭い立ち上がりで常伝導抵抗が現れる。抵抗値の立ち上
がり途中では、ミクロスコピックにみると系は超伝導状
態と定伝導状態の混合した“混合状態”になっている。
(Action) FIG. 2 (a) shows a resistance value R generated when a current I flows through the bulk type 2 superconductor. When the applied current is small, the system remains superconducting and shows zero resistance. However, when the applied current value exceeds the critical current value IO of the system, normal conduction resistance appears in the system with a sharp rise. During the rise of the resistance value, the system is in a “mixed state” in which the system is mixed with the superconducting state and the constant conducting state in microscopic view.

(b)は、試料系として、第2種超伝導体に純抵抗Δ
Rが直列に接続された場合のI−R特性を示す。
(B) shows a sample system having a pure resistance Δ
4 shows an IR characteristic when R is connected in series.

(c)は、系に給電する電源の電圧をV、電源が供給
する電流をI、電源からみた系側の負荷抵抗をRとした
とき、試料系側が電圧状態のときの試料系側が示す電流
−抵抗の特性 R=V/I (1) を示したものである。
(C) is the current indicated by the sample system when the sample system is in a voltage state, where V is the voltage of the power supply that feeds the system, I is the current supplied by the power, and R is the load resistance of the system viewed from the power supply. -Characteristic of resistance R = V / I (1) is shown.

試料系側に一定電圧Vを印加し、試料系が電圧状態に
なったときに、試料系に流れる電流Iと現れる抵抗R
は、試料系が第2種超伝導体のとき、グラフ(a)とグ
ラフ(c)との交差点で、また、試料系が第2種超伝導
体に純抵抗ΔRが直列に接続されたもののとき、グラフ
(b)とグラフ(c)との交差点で決定される。(ここ
で、純抵抗が接続されない場合に、電流が臨界電流値を
とっている領域での抵抗の最大値をR2、純抵抗が接続さ
れている場合に、電流が臨界電流値をとっている領域で
の抵抗の最小値をR1とする。ΔR<R2でなければならな
い。) 従って、第2種超伝導体のみからなる系に混合状態が
生じ、第2図のように交差点がグラフの立ち上がりが鋭
く、電流値が臨界電流値に固定されたR1とR2の間に含ま
れているとき、超伝導体に純抵抗ΔRが負荷されても、
試料系に流れる電流Iと抵抗Rは変化しないことがわか
る。すなわち、混合状態のバルク第2種超伝導体は、定
電流レギュレータ素子として利用できることがわかる。
また、このレギュレータは、バルク超伝導体を利用して
いるため、製造プロセスが簡単である。
When a constant voltage V is applied to the sample system and the sample system is in a voltage state, the current I flowing through the sample system and the resistance R appearing
Is the intersection of graph (a) and graph (c) when the sample system is a type 2 superconductor, and the sample system has a pure resistance ΔR connected in series to the type 2 superconductor. At this time, it is determined at the intersection between the graph (b) and the graph (c). (Here, when the pure resistance is not connected, the maximum value of the resistance in the region where the current takes the critical current value is R 2 , and when the pure resistance is connected, the current takes the critical current value. the minimum value of the resistance in the region where there must be .ΔR <R 2 to R 1.) Thus, the mixed state is generated in a system consisting of only the second type superconductors, the intersection as the second view When the rising of the graph is sharp and the current value is included between R 1 and R 2 fixed to the critical current value, even if the pure resistance ΔR is loaded on the superconductor,
It can be seen that the current I and the resistance R flowing through the sample system do not change. That is, it is understood that the mixed bulk type 2 superconductor can be used as a constant current regulator element.
Further, since this regulator uses a bulk superconductor, the manufacturing process is simple.

(実施例) 本超伝導定電流レギュレータ回路を実施するにあたっ
ての、具体的なレギュレータ回路要素部の構成図を第1
図(a)の断面図及び(b)の平面図に示す。レギュレ
ータ部を実際に構成するには、先ずマグネシアMgO等の
基板1上にレギュレータ作用を示すYBCOなどの第2種超
伝導体のストリップ線路2を、数10ミクロン幅、数ミク
ロン厚に形成し、次に図のごとくその両端に重なるよう
に電極3(Auなど)を形成する。(b)はレギュレータ
部を基板に対して上から見たものである。第3図は、電
源ラインに対して論理ゲート1〜nが直列に接続される
タイプのスイッチングデバイスに本超伝導レギュレータ
素子を適用したものである。各論理ゲートはスイッチン
グするまえはゼロ抵抗を示し、スイッチングした後はΔ
rの抵抗を示すことにすると、作用の項における純抵抗
ΔRは ΔR=n・Δr (2) となる。これから、作用の項に述べたことに基づきR1
RLの両者が決定されるから、電源電圧を調節してレギュ
レータ部の動作点をR1とR2の間に設定すれば、各論理ゲ
ートがスイッチしても、試料に流れる電流は殆ど一定に
保たれることがわかる。
(Example) FIG. 1 is a diagram showing a specific configuration of a regulator circuit element portion in implementing the present superconducting constant current regulator circuit.
This is shown in the cross-sectional view of FIG. To actually construct the regulator section, first, a strip line 2 of a second type superconductor such as YBCO, which exhibits a regulator action, is formed on a substrate 1 such as magnesia MgO to have a width of several tens of microns and a thickness of several microns. Next, electrodes 3 (Au, etc.) are formed so as to overlap both ends as shown in the figure. (B) is a view of the regulator section viewed from above with respect to the substrate. FIG. 3 shows an example in which the present superconducting regulator element is applied to a switching device in which logic gates 1 to n are connected in series to a power supply line. Each logic gate exhibits zero resistance before switching, and Δ
If the resistance of r is shown, the pure resistance ΔR in the term of action is ΔR = n · Δr (2) From now on, R 1 will be
Since both R L is determined, by setting adjusted to the operating point of the regulator portion of the supply voltage between the R 1 and R 2, also each logic gate is switched, the current flowing through the sample almost constant It can be seen that it is kept.

(発明の効果) 本発明の利点は、製造プロセス上、従来のいづれより
も簡単な構造をもち、電源ラインに直列に接続されるタ
イプのスイッチング・ゲートを定電流駆動できることで
ある。従って本発明は、磁界の強さを、発生する磁気抵
抗値で読み取る方式の磁気センサへ給電する定電流源な
ども適用でき、産業応用上の効果が大きい。
(Effect of the Invention) An advantage of the present invention is that a switching gate having a simpler structure than a conventional one in a manufacturing process and connected in series to a power supply line can be driven with a constant current. Therefore, the present invention can be applied to a constant current source that supplies power to a magnetic sensor of a type that reads the strength of a magnetic field by a generated magnetic resistance value, and has a great effect on industrial application.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、具体的なレギュレータ回路要素部の構成図で
ある。第2図は、第2種超伝導体のI−R特性図であ
る。第3図は、電源ラインに対して、論理ゲート1〜n
が直列に接続されるタイプのスイッチング・デバイスの
回路図である。第4図(a)は、従来のジョセフソン定
電圧レギュレータ回路を一般化した図である。第4図
(b)は、通常のジョセフソン接合の非線形I−V特性
を示す図である。第5図は、従来のジョセフソン定電圧
レギュレータ回路図を示す。
FIG. 1 is a configuration diagram of a specific regulator circuit element portion. FIG. 2 is an IR characteristic diagram of the type 2 superconductor. FIG. 3 shows the logic gates 1 to n for the power supply line.
FIG. 3 is a circuit diagram of a switching device of the type in which are connected in series. FIG. 4A is a diagram generalizing a conventional Josephson constant voltage regulator circuit. FIG. 4 (b) is a diagram showing a nonlinear IV characteristic of a normal Josephson junction. FIG. 5 shows a circuit diagram of a conventional Josephson constant voltage regulator.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】第2種超伝導体の厚膜あるいは薄膜の線状
パターンを設け、その線状パターンの両端に電極を設
け、第2種超伝導体を混合状態に設定しうるような電圧
を印加する電源電圧を設けたことを特徴とする定電流レ
ギュレータ回路。
A voltage capable of setting a thick-film or thin-film linear pattern of the second superconductor, providing electrodes at both ends of the linear pattern, and setting the second superconductor in a mixed state. A constant current regulator circuit characterized by providing a power supply voltage for applying a voltage.
JP1091225A 1989-04-10 1989-04-10 Superconducting constant current regulator circuit Expired - Lifetime JP2855645B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1091225A JP2855645B2 (en) 1989-04-10 1989-04-10 Superconducting constant current regulator circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1091225A JP2855645B2 (en) 1989-04-10 1989-04-10 Superconducting constant current regulator circuit

Publications (2)

Publication Number Publication Date
JPH02268474A JPH02268474A (en) 1990-11-02
JP2855645B2 true JP2855645B2 (en) 1999-02-10

Family

ID=14020481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1091225A Expired - Lifetime JP2855645B2 (en) 1989-04-10 1989-04-10 Superconducting constant current regulator circuit

Country Status (1)

Country Link
JP (1) JP2855645B2 (en)

Also Published As

Publication number Publication date
JPH02268474A (en) 1990-11-02

Similar Documents

Publication Publication Date Title
JP2855645B2 (en) Superconducting constant current regulator circuit
US2966598A (en) Superconductor circuits
US4459495A (en) Josephson current regulator
EP0069534B1 (en) Superconducting logic circuit
US3732438A (en) Superconductive switch apparatus
EP0074604B1 (en) Circuit utilizing josephson effect
JP2550587B2 (en) The Josephson Gate
JPH01303769A (en) Superconducting logical circuit
JPH01137683A (en) Superconducting switching element
Mizugaki et al. Josephson switching device utilizing the quantum transitions in a superconducting quantum interference device loop
Kotera et al. Ring oscillator experiment using a huffle circuit
JPH01102821A (en) Permanent current switch
JPH012416A (en) superconducting logic gate circuit
JPH01125115A (en) Superconductor circuit
JPS63219220A (en) Exciting method for quantum magnetic flux parametron circuit
JP3076835B2 (en) Superconducting sampling measurement circuit
JPH065937A (en) Nonlinear characteristic element
JPH0417566B2 (en)
Prans et al. The SNS Josephson junction with a third terminal
JPH03198387A (en) Superconductive circuit
JPH0577352B2 (en)
JPH0810414B2 (en) Josephson regulator circuit
JPS6163110A (en) Bias current supply circuit to josephson logical circuit
JPS6141173B2 (en)
JPH03152611A (en) Unipolar josephson regulator circuit