JPH03152611A - Unipolar josephson regulator circuit - Google Patents

Unipolar josephson regulator circuit

Info

Publication number
JPH03152611A
JPH03152611A JP29157889A JP29157889A JPH03152611A JP H03152611 A JPH03152611 A JP H03152611A JP 29157889 A JP29157889 A JP 29157889A JP 29157889 A JP29157889 A JP 29157889A JP H03152611 A JPH03152611 A JP H03152611A
Authority
JP
Japan
Prior art keywords
current
josephson
regulator
interferometers
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29157889A
Other languages
Japanese (ja)
Inventor
Shuichi Nagasawa
秀一 永沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP29157889A priority Critical patent/JPH03152611A/en
Publication of JPH03152611A publication Critical patent/JPH03152611A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Electrical Variables (AREA)

Abstract

PURPOSE:To stably increase the thermal duty and at the same time to simplify a matching operation for a planar magnetic connection type superconductive quantum interferometer by controlling a superconductive current with the small DC current value with use of said interferometer. CONSTITUTION:A planaer magnetic connection type superconductive quantum interferometer of a small current consists of a regulator element circuit 10 containing four serial 2-junction interferometers 1-1 - 1-4 and a regulator element circuit 20 containing four serial 2-junction interferometers 1-5 - 1-8 connected in parallel to a power bus PB of a Josephson IC 3. A DC current is supplied to a control wiring 2 which is magnetically connected to those interferometers 1-1 - 1-8. At the same time, the currents are supplied to the interferometers 1-1 - 1-8 from the AC and DC terminals respectively. Then a sine wave current is supplied to the IC 3 together with an optimum trapezoidal waveform bias current received via the interferometers 1-1 - 1-8. In such constitution, the superconductive current is suppressed with the small DC current value compared with use of a Josephson gate. Thus the thermal duty can be stably increased and the matching operations can be simplified among the interferometers 1-1 - 1-8.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はジョセフソン集積回路のパワーバスにバイアス
電流を供給する電源供給回路に関し、より詳しくは外部
から供給される正弦波入力電流をジョセフソン集積回路
に最適な台形波状のバイアス電流に変換するジョフセソ
ンレギュレータ回路に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a power supply circuit that supplies a bias current to a power bus of a Josephson integrated circuit, and more specifically, the present invention relates to a power supply circuit that supplies a bias current to a power bus of a Josephson integrated circuit. This invention relates to a Josephson regulator circuit that converts into a trapezoidal bias current suitable for integrated circuits.

〔従来の技術〕[Conventional technology]

従来、ジョセフソン集積回路のためのこのようなレギュ
レータ回路としては、複数個のジョセフソン接合を直列
に接続した回路をジョセフソン集積回路のパワーバスと
接地面間に挿入した回路が知られている。このことは、
例えば、テクニカル・ダイジェスト・オブ・ザ・インタ
ーナショナル・エレクトロン・デバイス電流・ミーティ
ング誌(Technical Digest of t
he InternationalElectron 
Devices Meeting)  1979年、第
489〜第492頁に記載されている。
Conventionally, as such a regulator circuit for a Josephson integrated circuit, a circuit in which a circuit in which a plurality of Josephson junctions are connected in series is inserted between the power bus and the ground plane of the Josephson integrated circuit is known. . This means that
For example, Technical Digest of the International Electron Device Current Meeting Magazine
he International Electron
Devices Meeting) 1979, pages 489-492.

第3図は、この従来の技術によるジョセフソンレギュレ
ータ回路の一例を示す回路図である。第5図を参照して
、従来のジョセフソンレギュレータ回路の動作を説明す
る。このジョセフソンレギュレータ回路は、4個の直列
接続されたジョセフソン接合と各ジョセフソン接合に磁
気的に結合するように配置された制御配線2から構成さ
れる。
FIG. 3 is a circuit diagram showing an example of a Josephson regulator circuit according to this conventional technology. The operation of the conventional Josephson regulator circuit will be explained with reference to FIG. This Josephson regulator circuit is composed of four Josephson junctions connected in series and a control wiring 2 arranged so as to be magnetically coupled to each Josephson junction.

ジョセフソンレギュレータは、端子ACに入力した正弦
波交流電流をジョセフソン接合の非線形な電流電圧特性
を利用して端子Outに接続されたジョセフソン集積回
路のパワーバスに台形波形の交流電流を送り出す回路で
ある。第6図はこのジョセフソンレギュレータ回路に加
える正弦波入力波形(a)と台形波状の出力電流波形(
制御配線に直流電流を加えない場合(b)と加えた場合
(C))を示した図である。第7図はジョセフソン接合
の電流−電圧特性の概略図を示した図である。第6図及
び第7図を参照してこのジョセフソンレギュレータ回路
の動作原理をさらに詳しく説明する。最初に制御配線D
Cに電流を流さない場合のジョセフソンレギュレータの
動作について説明する。この場合の出力波形は、第6図
(b)に示したように、入力の正弦波電流が零(A点)
から増大しても、その値がジョセフソン接合の臨界電流
値(工0)を越えないうちは電流は全て接合を通って接
地に流れるため出力に電流は流れない(A−B点)、さ
らに電流が増大すると、ジョセフソン接合は電圧状態に
スイッチするため出力に電流が流れ(0点)、さらに入
力電流が増大しても動作点は接合特性のギャップ領域(
定電圧領域)にあるため出力電流値はほぼ一定の値に整
形される(C−D点)、この間、余分な電流分は、ジョ
セフソン接合を通して漏れ電流として接地に流れている
。出力電流の大きさは、接合のギャップ電圧とパワーバ
スの負荷抵抗値により決定され出ないようにする必要が
ある。このため、入力正弦波電流の最大値は、ギャップ
電圧領域での最大電流値(Io)を越えないように設計
すればよい0次に、入力の正弦波電流がその最大値(D
点)から、出力電流値まで減少する間は、出力電流はほ
ぼ一定値に保たれ(D−E点)、さらに減少すると動作
点は接合特性のサブキャップ領域に入るため、ジョセフ
ソン接合は高インピーダンス状態になり、入力電流の大
部分が出力に流れる(E−A点)、負の極性部分の正弦
波入力電流に対しても、ジョセフソン接合の電流−電圧
特性が電流・電圧の極性に対して対称であるため、同様
の動作を行う。
A Josephson regulator is a circuit that uses the nonlinear current-voltage characteristics of a Josephson junction to send a trapezoidal waveform alternating current to the power bus of a Josephson integrated circuit connected to a terminal Out from a sinusoidal alternating current input to a terminal AC. It is. Figure 6 shows the sinusoidal input waveform (a) applied to this Josephson regulator circuit and the trapezoidal output current waveform (
It is a figure showing the case (b) when direct current is not applied to the control wiring, and the case (c) when DC current is applied. FIG. 7 is a diagram showing a schematic diagram of current-voltage characteristics of a Josephson junction. The operating principle of this Josephson regulator circuit will be explained in more detail with reference to FIGS. 6 and 7. First control wiring D
The operation of the Josephson regulator when no current flows through C will be explained. The output waveform in this case is as shown in Figure 6(b) when the input sine wave current is zero (point A).
Even if the current increases from , as long as the value does not exceed the critical current value of the Josephson junction (0), all current flows through the junction to ground, so no current flows to the output (point A-B). When the current increases, the Josephson junction switches to a voltage state, so current flows to the output (0 point), and even if the input current increases, the operating point remains in the gap region of the junction characteristic (0 point).
(constant voltage region), the output current value is shaped to a substantially constant value (point C-D). During this time, excess current flows to ground as a leakage current through the Josephson junction. The magnitude of the output current is determined by the gap voltage of the junction and the load resistance value of the power bus, and it is necessary to prevent the output current from flowing out. Therefore, the maximum value of the input sine wave current should be designed so that it does not exceed the maximum current value (Io) in the gap voltage region.
While the output current decreases from point ) to the output current value (point D-E), the output current remains almost constant (point D-E), and when it decreases further, the operating point enters the subcap region of the junction characteristics, so the Josephson junction becomes It becomes an impedance state, and most of the input current flows to the output (point E-A).Even for a sinusoidal input current in the negative polarity part, the current-voltage characteristics of the Josephson junction change the polarity of the current and voltage. Since it is symmetrical, the same operation is performed.

次に、制御配線に直流電流を流した場合のジョセフソン
レギュレータの動作について説明する。
Next, the operation of the Josephson regulator when direct current is passed through the control wiring will be explained.

この直流電流はジョセフソン接合に対して磁場を発生す
ることにより、ジョセフソン接合の超伝導電流を除去(
制御)している。この場合の出力波形は、第6図(C)
に示したように、入力の正弦波電流が零(A点)から出
力電流値まで増大する間は、ジョセフソン接合は高イン
ピーダンスの電圧状態になり、入力電流の大部分は出力
に流れる。入力電流が出力電流値に達すると接合特性で
の動作点はギャップ電圧部(E点)になり、さらに入力
電流が増大しても動作点はギャップ電圧部(E−D点)
にあるため、出力には一定の電流が流れる。その後の動
作については、制御線に電流を流さない場合と同様であ
る。第6図(b)と第6図(c)を比べてわかるように
、制御線に直流電流を流してジョセフソン接合に磁場を
加えた場合のほうが、出力電流が一定の領域(全領域に
対するこの部分の割合をデユーティという)が広くなる
。ジョセフソン集積回路はデバイス電流として電流値が
一定の領域で動作させるなめ、この領域が広い即ちデユ
ーティが大きいほうが電源として望ましい、特にI G
Hz以上のタロツクで高速動作を行うためにはこのこと
は非常に重要である。
This direct current removes the superconducting current in the Josephson junction by generating a magnetic field in the Josephson junction (
control). The output waveform in this case is shown in Figure 6 (C).
As shown in FIG. 2, while the input sinusoidal current increases from zero (point A) to the output current value, the Josephson junction is in a high impedance voltage state, and most of the input current flows to the output. When the input current reaches the output current value, the operating point in the junction characteristics becomes the gap voltage section (point E), and even if the input current increases further, the operating point remains at the gap voltage section (point E-D).
, a constant current flows through the output. The subsequent operation is the same as when no current is passed through the control line. As can be seen by comparing Figures 6(b) and 6(c), when a direct current is passed through the control line and a magnetic field is applied to the Josephson junction, the output current is more constant in the region (relative to the entire region). The ratio of this portion (called duty) increases. Since Josephson integrated circuits operate in a region where the current value is constant as the device current, it is desirable for this region to be wide, that is, to have a large duty, as a power supply, especially for IG.
This is very important in order to perform high-speed operation with a clock frequency of Hz or higher.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、従来の技術によるジョセフソンレギュレータ回
路では、ジョセフソン接合に直接磁場を加える必要があ
り、ジョセフソン接合の面積を考慮すると、ジョセフソ
ン接合の超伝導電流を制御するためには制御配線に大き
な電流を流して大きな磁場を発生する必要があるという
問題点があった。
However, in the Josephson regulator circuit using conventional technology, it is necessary to apply a magnetic field directly to the Josephson junction, and considering the area of the Josephson junction, controlling the superconducting current in the Josephson junction requires a large amount of control wiring. The problem was that it was necessary to generate a large magnetic field by passing an electric current through it.

また、従来の技術によるジョセフソンレギュレータ回路
では、出力として両極性の台形波形状の電流が得られる
が、ジョセフソン記憶回路では単極性の台形波形状の電
流が必要となる場合があり、このような電流が直接パワ
ーバスに供給できないという問題点があった。
Furthermore, in the conventional Josephson regulator circuit, a bipolar trapezoidal waveform current is obtained as an output, but in a Josephson memory circuit, a unipolar trapezoidal waveform current may be required. There was a problem in that a large amount of current could not be directly supplied to the power bus.

又、集積回路化する場合には、ジョセフソン接合を形成
した後、さらにその上部に絶縁層を介して制御配線を形
成する必要がある。そのため、素子構造がより多層にな
り複雑になるという問題点があった0本発明の目的は、
これらの問題点を除去したジョセフソンレギュレータ回
路を提供することにある。
Furthermore, in the case of integrating the circuit, after forming the Josephson junction, it is necessary to further form control wiring on top of the Josephson junction via an insulating layer. Therefore, there was a problem that the element structure became more multi-layered and complicated.The purpose of the present invention is to
The object of the present invention is to provide a Josephson regulator circuit that eliminates these problems.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、ジョセフソン集積回路のパワーバスと接地間
に、少なくとも2個の、一本の制御配線を有する磁気結
合型超伝導量子干渉計を含むレギュレータ要素回路が並
列に接続され、前記磁気結合型超伝導量子干渉計の前記
制御配線に接続された制御信号入力端子と、前記レギュ
レータ要素回路の前記ジョセフソン集積回路のパワーバ
スに接続された側の一端に接続された正弦波電流入力端
子と直流電流入力端子とから構成されたことを特徴とす
る単極性ジョセフソンレギュレータ回路であって、前記
磁気結合型超伝導量子干渉計が、少なくとも2個のジョ
セフソン結合を含む少なくとも1個の超伝導ループと、
前記超伝導ループに磁気的に結合するように配置された
一本の制御配線とから構成されているというものである
In the present invention, at least two regulator element circuits each including a magnetically coupled superconducting quantum interferometer having one control wire are connected in parallel between a power bus and ground of a Josephson integrated circuit, and the magnetic coupling a control signal input terminal connected to the control wiring of the type superconducting quantum interferometer; and a sine wave current input terminal connected to one end of the regulator element circuit on the side connected to the power bus of the Josephson integrated circuit. A unipolar Josephson regulator circuit comprising a DC current input terminal, wherein the magnetically coupled superconducting quantum interferometer includes at least one superconducting quantum interferometer including at least two Josephson couplings. loop and
The control wire is arranged to be magnetically coupled to the superconducting loop.

〔実施例〕〔Example〕

次に、本発明の実施例について図面を参照して説明する
Next, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例を示す回路図、第2図(a)
及び(b)はそれぞれこの実施例に用いる2接合超伝導
量子干渉計(2J−8QU I D)を示す斜視模式図
及び等価回路図である。
Fig. 1 is a circuit diagram showing an embodiment of the present invention, Fig. 2(a)
and (b) are a schematic perspective view and an equivalent circuit diagram respectively showing a two-junction superconducting quantum interferometer (2J-8QUID) used in this example.

まず2J−3QUIDについて説明する。First, 2J-3QUID will be explained.

これは、平面型の磁気結合型超伝導量子干渉計であるが
、2つのジョセフソン接合J1.J2を含む超伝導ルー
プla(下部配線1bに接続されている)が接地面(図
示しない)に対して平行に形成されている。制御配線1
dをジョセフソン接合を形成する上部配線層と同じ層で
次の膜で形成することができる。このことは、磁気結合
型超伝導量子干渉計では、制御配線により発生する磁場
を直接ジョセフソン接合ではなく、ジョセフソン接合を
含んだ超伝導ループに結合させればよいためである。従
って、従来の技術のように制御配線を形成するために新
たに層次の高い配線層を形成する必要がないため、素子
構造が簡単になり製造プロセスが容易になる。また、磁
気結合型超伝導量子干渉計では超伝導電流を抑制するの
に必要となる直流の制御電流は、1個のジョセフソン接
合の場合に比して非常に小さくできる。さらに、並列に
レギュレータ要素回路を接続することで、−個あたりの
レギュレータ要素回路に流れる電流を小さくすることが
できるため、レギュレータ自身の熱の発生による特性の
劣化を防ぐことができる。
This is a planar magnetically coupled superconducting quantum interferometer, which has two Josephson junctions J1. A superconducting loop la (connected to the lower wiring 1b) including J2 is formed parallel to a ground plane (not shown). Control wiring 1
d can be formed of the following film in the same layer as the upper wiring layer forming the Josephson junction. This is because in a magnetically coupled superconducting quantum interferometer, the magnetic field generated by the control wiring need only be coupled to a superconducting loop containing the Josephson junction, rather than directly to the Josephson junction. Therefore, it is not necessary to newly form a higher wiring layer to form control wiring as in the conventional technology, so the element structure is simplified and the manufacturing process is facilitated. Furthermore, in a magnetically coupled superconducting quantum interferometer, the direct current control current required to suppress superconducting current can be made much smaller than in the case of a single Josephson junction. Furthermore, by connecting the regulator element circuits in parallel, it is possible to reduce the current flowing through each regulator element circuit, thereby preventing deterioration of characteristics due to heat generation of the regulator itself.

また、直流電流入力端子から適正な値の直流電流を加え
ることで、ジョセフソンレギュレータ回路の出力に単極
性の台形波状の電流を得ることができる。
Furthermore, by applying an appropriate value of direct current from the direct current input terminal, it is possible to obtain a unipolar trapezoidal waveform current at the output of the Josephson regulator circuit.

第1図に示す実施例は、直列に接続された4個の2接合
超伝導量子干渉計1−1〜1−4からなるレギュレータ
要素回路10と、直列に接続された4個の2接合超伝導
量子干渉計1−5〜1−8からなるレギュレータ要素回
路20がジョセフソン集積回路のパワーバスPBと接地
間に並列に接続された構成を有する。各2接合超伝導量
子干渉計の制御配線は、お互いに直列に接続され、この
直列接続された制御配線2の一端は制御信号入力端子D
C1に他端は接地に接続されている。正弦波電流入力端
子ACと直流電源入力端子DC2は、並列接続されたレ
ギュレータ要素回路の一端(ジョセフソン集積回路のパ
ワーバスが接続されている側)に接続されている0本実
施例の単極性ジョセフソンレギュレータ回路は、2接合
超伝導量子干渉計1−1〜1−8の超伝導ループに磁気
的に結合した制御配線2に直流電流を流すことにより、
2接合超伝導量子干渉計1−1〜1−8の超伝導電流を
抑制している。さらに、本実施例の単極性ジョセフソン
レギュレータ回路では、2個のレギュレータ要素回路1
0.20が並列に接続されているため、1個のレギュレ
ータ要素回路に流す電流を1個のレギュレータ要素回路
を使用する場合の半分にすることができるため、レギュ
レータ自身の局所的な熱の発生による特性の劣化を少な
くすることができる。
The embodiment shown in FIG. A regulator element circuit 20 consisting of conduction quantum interferometers 1-5 to 1-8 is connected in parallel between the power bus PB of the Josephson integrated circuit and ground. The control wires of each two-junction superconducting quantum interferometer are connected to each other in series, and one end of this series-connected control wire 2 is connected to the control signal input terminal D.
The other end of C1 is connected to ground. The sine wave current input terminal AC and the DC power input terminal DC2 are unipolar in this embodiment, which are connected to one end of the regulator element circuit connected in parallel (the side to which the power bus of the Josephson integrated circuit is connected). The Josephson regulator circuit allows direct current to flow through the control wiring 2 magnetically coupled to the superconducting loops of the two-junction superconducting quantum interferometers 1-1 to 1-8.
The superconducting currents of the two-junction superconducting quantum interferometers 1-1 to 1-8 are suppressed. Furthermore, in the unipolar Josephson regulator circuit of this embodiment, two regulator element circuits 1
0.20 are connected in parallel, the current flowing through one regulator element circuit can be halved compared to when one regulator element circuit is used, which reduces the local heat generation of the regulator itself. It is possible to reduce the deterioration of characteristics due to

また、正弦波入力端子ACから供給される正弦波交流電
流に加えて、直流電流入力端子DC2に前記正弦波交流
電流の最大値に等しい値の直流電源電流を加えることで
、レギュレータのジョセフソン接合に第3図(a)のよ
うな単極性の正弦波交流電流を注入し、出力端Outに
第3図(b)のような単極性の台形波状交流電流を得る
ことができる。このときの本実施例の動作原理を第3図
及び第4図を用いてさらに詳しく説明する。第4図は制
御配線2に流れる直流電流により超伝導電流が抑制され
たときのレギュレータのジョセフソン接合の電流−電圧
特性を示した図である。制御配線2に直流電流を流した
状態で、第3図(a)のような単極性の正弦波交流電流
がレギュレータを越える入力電流はジョセフソン接合を
通して接地に流れ、パワーバスPBに流れる出力電流は
一定値Io  (B〜C−D間)に保たれる。ここで、
vGはギャップ電圧、Rはパワーバスのインピーダンス
とする。第3図(a)で入力電流がDからEへと減少す
ると、ジョセフソン接合はサブギャップ領域(第4図D
−E間)の電流−電圧特性により高インピーダンス状態
になり、入力電流の減少に応じてパワーバスの出力電流
は減少する。ここで、出力電流がB−D間で一定値I。
In addition, in addition to the sine wave AC current supplied from the sine wave input terminal AC, a DC power supply current of a value equal to the maximum value of the sine wave AC current is applied to the DC current input terminal DC2, so that the regulator can be connected to a Josephson junction. By injecting a unipolar sinusoidal alternating current as shown in FIG. 3(a) into the output terminal Out, a unipolar trapezoidal wave alternating current as shown in FIG. 3(b) can be obtained at the output terminal Out. The operating principle of this embodiment at this time will be explained in more detail with reference to FIGS. 3 and 4. FIG. 4 is a diagram showing the current-voltage characteristics of the Josephson junction of the regulator when the superconducting current is suppressed by the direct current flowing through the control wiring 2. With a DC current flowing through the control wiring 2, the input current that exceeds the regulator's unipolar sinusoidal AC current as shown in Figure 3(a) flows to ground through the Josephson junction, and the output current flows to the power bus PB. is maintained at a constant value Io (between B and CD). here,
Let vG be the gap voltage and R be the impedance of the power bus. When the input current decreases from D to E in Fig. 3(a), the Josephson junction is in the subgap region (Fig. 4D).
-E) becomes a high impedance state due to the current-voltage characteristics, and the output current of the power bus decreases as the input current decreases. Here, the output current is a constant value I between B and D.

に保たれるためには、入力電流の最大値21.は、ギャ
ップ電圧■Gでの最大電流値Io以下に設定する必要が
ある(21.<IO)。
In order to maintain the input current at a maximum value of 21. must be set below the maximum current value Io at the gap voltage ■G (21.<IO).

以上本実施例により、制御配線を形成するための特別な
配線層の形成を必要としないため製造プロセスが容易で
、かつ小さな直流電流値で超伝導電流を制御することが
可能で熱的にも安定なジョセフソンレギュレータを得る
ことができる0本実施例では、2接合超伝導量子干渉計
を4個直列に接続したが、任意の個数にしても同様の効
果が得られる。また、本実施例では、2接合超伝導量子
干渉計を用いたが、この代わりに3接合超伝導■′子干
渉計を用いても同様の効果が得られる。さらに、本実施
例では2個のレギュレータ要素回路を並列に接続したが
、2個以上のレギュレータ要素回路を並列に接続するこ
とで1個当たりのレギュレータ要素回路に流れる電流を
さらに小さくし、局所的な熱の発生による特性の劣化を
さらに少なくすることができる。
As described above, according to this embodiment, the manufacturing process is easy because it does not require the formation of a special wiring layer for forming control wiring, and it is possible to control the superconducting current with a small DC current value, which is also thermally efficient. Although a stable Josephson regulator can be obtained in this embodiment, four two-junction superconducting quantum interferometers are connected in series, the same effect can be obtained by using any number of two-junction superconducting quantum interferometers. Further, in this embodiment, a two-junction superconducting quantum interferometer is used, but the same effect can be obtained by using a three-junction superconducting single-son interferometer instead. Furthermore, in this embodiment, two regulator element circuits are connected in parallel, but by connecting two or more regulator element circuits in parallel, the current flowing through each regulator element circuit can be further reduced, and local Deterioration of characteristics due to generation of heat can be further reduced.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は磁気結合型超伝導量子干渉
計を用いているので、ジョセフソンゲートを用いた従来
例に比べて小さな直流電流値で超伝導電流を抑制して熱
的に安定なデユーティを大きくとることができ、又、平
面型の磁気結合型超伝導量子干渉計を用いることにより
整合プロセスが簡単な単極性ジョセフソンレギュレータ
回路を実現することができる。
As explained above, since the present invention uses a magnetically coupled superconducting quantum interferometer, the superconducting current can be suppressed with a smaller DC current value than the conventional example using a Josephson gate, resulting in thermal stability. A unipolar Josephson regulator circuit that can have a large duty and that has a simple matching process can be realized by using a planar magnetically coupled superconducting quantum interferometer.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す回路図、第2図(a)
及び(b)は本発明の単極性ジョセフソンレギュレータ
回路の磁気結合型超伝導量子干渉計(SQUID)部分
の概略を示す斜視模式図及び等価回路図、第3図(a)
及び(b)は本発明による単極性ジョセフソンレギュレ
ータ回路の入力電流波形を示す図及び出力電流波形を示
す図、第4図は本発明に使用するジョセフソン接合の電
流−電圧特性を示す図、第5図は従来の技術によるジョ
セフソンレギュレータ回路の一例を示す回路図、第6図
(a)、(b)、(c)は従来のジョセフソンレギュレ
ータ回路に加える入力電流波形、直流電力を加えない場
合と加えた場合の出力電流波形を示す図、第7図はジョ
セフソン接合の電流−電圧特性を示す図である。 1−1〜1−4・・・2接合超伝導量子干渉計(2J−
3QUID)、2・・・制御配線、3・・・ジョセフソ
ン集積回路、4・・・ジョセフソンレギュレータ、10
.20・・・レギュレータ要素回路、AC・・・正弦波
電流入力端子、DCI・・・制御信号入力端子、DC2
・・・直流電流入力端子、Io・・・出力電流値、1、
・・・ギャップ電圧領域での最大電流値、Out・・・
出力端子、PBパワーバス。
Fig. 1 is a circuit diagram showing an embodiment of the present invention, Fig. 2(a)
and (b) is a perspective schematic diagram and an equivalent circuit diagram schematically showing the magnetically coupled superconducting quantum interferometer (SQUID) portion of the unipolar Josephson regulator circuit of the present invention, and FIG. 3(a)
and (b) is a diagram showing the input current waveform and the output current waveform of the unipolar Josephson regulator circuit according to the present invention, and FIG. 4 is a diagram showing the current-voltage characteristics of the Josephson junction used in the present invention. Figure 5 is a circuit diagram showing an example of a conventional Josephson regulator circuit, and Figures 6 (a), (b), and (c) are input current waveforms and DC power applied to the conventional Josephson regulator circuit. FIG. 7 is a diagram showing the output current waveforms in the absence and in the case of addition, and FIG. 7 is a diagram showing the current-voltage characteristics of a Josephson junction. 1-1 to 1-4...2 junction superconducting quantum interferometer (2J-
3QUID), 2... Control wiring, 3... Josephson integrated circuit, 4... Josephson regulator, 10
.. 20...Regulator element circuit, AC...Sine wave current input terminal, DCI...Control signal input terminal, DC2
...DC current input terminal, Io...output current value, 1,
... Maximum current value in the gap voltage region, Out...
Output terminal, PB power bus.

Claims (1)

【特許請求の範囲】 1、ジョセフソン集積回路のパワーバスと接地間に、少
なくとも2個の、一本の制御配線を有する磁気結合型超
伝導量子干渉計を含むレギュレータ要素回路が並列に接
続され、前記磁気結合型超伝導量子干渉計の前記制御配
線に接続された制御信号入力端子と、前記レギュレータ
要素回路の前記ジョセフソン集積回路のパワーバスに接
続された側の一端に接続された正弦波電流入力端子と直
流電流入力端子とから構成された単極性ジョセフソンレ
ギュレータ回路であって、前記磁気結合型超伝導量子干
渉計が、少なくとも2個のジョセフソン結合を含む少な
くとも1個の超伝導ループと、前記超伝導ループに磁気
的に結合するように配置された一本の制御配線とから構
成されていることを特徴とする単極性ジョセフソンレギ
ュレータ回路。 2、レギュレータ要素回路は、磁気結合型超伝導量子干
渉計が少なくとも2個直列に接続された回路から構成さ
れた請求項1記載の単極性ジョセフソンレギュレータ回
路。 3、磁気結合型超伝導量子干渉計は表面型である請求項
1又は2記載の単極性ジョセフソンレギュレータ回路。
[Claims] 1. At least two regulator element circuits each including a magnetically coupled superconducting quantum interferometer having one control wire are connected in parallel between the power bus and ground of the Josephson integrated circuit. , a control signal input terminal connected to the control wiring of the magnetically coupled superconducting quantum interferometer, and a sine wave connected to one end of the regulator element circuit on the side connected to the power bus of the Josephson integrated circuit. A unipolar Josephson regulator circuit comprising a current input terminal and a direct current input terminal, wherein the magnetically coupled superconducting quantum interferometer has at least one superconducting loop including at least two Josephson couplings. and a single control wiring arranged so as to be magnetically coupled to the superconducting loop. 2. The unipolar Josephson regulator circuit according to claim 1, wherein the regulator element circuit comprises a circuit in which at least two magnetically coupled superconducting quantum interferometers are connected in series. 3. The unipolar Josephson regulator circuit according to claim 1 or 2, wherein the magnetically coupled superconducting quantum interferometer is a surface type.
JP29157889A 1989-11-08 1989-11-08 Unipolar josephson regulator circuit Pending JPH03152611A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29157889A JPH03152611A (en) 1989-11-08 1989-11-08 Unipolar josephson regulator circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29157889A JPH03152611A (en) 1989-11-08 1989-11-08 Unipolar josephson regulator circuit

Publications (1)

Publication Number Publication Date
JPH03152611A true JPH03152611A (en) 1991-06-28

Family

ID=17770740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29157889A Pending JPH03152611A (en) 1989-11-08 1989-11-08 Unipolar josephson regulator circuit

Country Status (1)

Country Link
JP (1) JPH03152611A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120081333A1 (en) * 2010-10-01 2012-04-05 Optrex Corporation Touch panel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120081333A1 (en) * 2010-10-01 2012-04-05 Optrex Corporation Touch panel

Similar Documents

Publication Publication Date Title
US4916335A (en) Superconducting circuit
US20050099829A1 (en) Dual bridge matrix converter
JPS59143427A (en) Logical operation circuit of superconductive magnetic flux quantum
Tsai Analysis and implementation of a full-bridge constant-frequency LCC-type parallel resonant converter
US4672244A (en) Josephson logic integrated circuit
JPH03152611A (en) Unipolar josephson regulator circuit
Rice et al. A full-wave HTS flux pump using a feedback control system
JP2000101363A (en) Power amplifier having soft switching and multivalued switching cells
Baechtold A flip-flop and logic gate with Josephson junctions
JPH0810414B2 (en) Josephson regulator circuit
JPH0398108A (en) Josephson regulator circuit
JPS6163110A (en) Bias current supply circuit to josephson logical circuit
Shaked et al. Direct current voltage increment due to ac coupling in a high T c superconducting coil
JPS636917A (en) Josephson regulator
Mizugaki et al. Josephson switching device utilizing the quantum transitions in a superconducting quantum interference device loop
JP3911563B2 (en) Superconducting integrated circuit
JP2855645B2 (en) Superconducting constant current regulator circuit
Mizugaki et al. Zero-crossing Shapiro step in a three-junction SQUID magnetically coupled with two phase-shifted RF signals
JPH04291508A (en) Josephson oscillation circuit and josephson logic circuit
JPH0646865B2 (en) Current source inverter device
JPS6053966B2 (en) josephson logic gate
JPH05161359A (en) Ac/dc converter
JPH02112288A (en) Power supply regulator
JP3076835B2 (en) Superconducting sampling measurement circuit
JPS62211713A (en) Josephson regulator