JPH01137683A - Superconducting switching element - Google Patents

Superconducting switching element

Info

Publication number
JPH01137683A
JPH01137683A JP62296509A JP29650987A JPH01137683A JP H01137683 A JPH01137683 A JP H01137683A JP 62296509 A JP62296509 A JP 62296509A JP 29650987 A JP29650987 A JP 29650987A JP H01137683 A JPH01137683 A JP H01137683A
Authority
JP
Japan
Prior art keywords
superconductor
superconducting
magnetic field
insulating film
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62296509A
Other languages
Japanese (ja)
Other versions
JP2583922B2 (en
Inventor
Kazuo Eda
江田 和生
Tetsuji Miwa
哲司 三輪
Yutaka Taguchi
豊 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62296509A priority Critical patent/JP2583922B2/en
Publication of JPH01137683A publication Critical patent/JPH01137683A/en
Application granted granted Critical
Publication of JP2583922B2 publication Critical patent/JP2583922B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To reduce a leak current as well as to facilitate the control of a magnetic field by a method wherein a thin superconducting material is provided astride two interregion insulated superconducting materials through the intermediary of an insulating films which can be tunneled. CONSTITUTION:The first and the second substrate side superconducting 2 and 5, consisting of an Lu-Ae-Cu oxide thin film subjected to dielectric isolation, are connected by the third superconducting material 4 consisting of the Ln-Ae-Cu oxide thin film, which is thinner than the superconducting materials 2 and 5, through the intermediary of a thin interlayer insulating film 3 consisting of a zirconia thin film. The critical magnetic field of the third superconducting material 4 is lower than that of the first and the second superconducting materials. Said element is cooled down to the critical temperature or less, the three superconducting materials are formed into the state wherein they are separated by a thin interlayer insulating film. When the interlayer insulating film 3 is formed in the thickness which can be tunneled, a tunnel current can be made to flow. The Ln in the formula contains at least one of Y, La, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu, and Ae contains at least one of Ba, Sr and Ca.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、磁場によりスイッチングする超電導スイッチ
ング素子に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a superconducting switching element that switches using a magnetic field.

従来の技術 従来、超電導体を利用するスイッチング素子として、ジ
ョセフソン素子が知られている。ジョセフソン素子は、
第4図に示すように、2つの超電導体を薄い絶縁膜で分
離した構造からなっている。
BACKGROUND OF THE INVENTION Josephson devices have been known as switching devices using superconductors. The Josephson element is
As shown in FIG. 4, it has a structure in which two superconductors are separated by a thin insulating film.

第4図において、21はNbなどの超電導体、22は酸
化ニオブなどの絶縁体、23は基板である。極低温にお
いて、Nb、21は超電導状態にある。この時のジョセ
フソン素子の電流(1)−電圧(V)特性は、絶縁体両
端の超電導体のトンネル効果により第5図のようになる
。したがって、2端子のスイッチング素子として利用で
きる。スイッチングは電流を変えることによって、もし
くは接合に磁場を加えることによって行う。磁場を加え
る方法として、磁場を形成するための導線をその近傍に
配置し、そこに電流を流すことにより発生する磁場で、
零電圧状態を保つ最大電流値を制御し、スイッチングを
行わせるものもある。
In FIG. 4, 21 is a superconductor such as Nb, 22 is an insulator such as niobium oxide, and 23 is a substrate. At cryogenic temperatures, Nb, 21 is in a superconducting state. The current (1)-voltage (V) characteristics of the Josephson element at this time are as shown in FIG. 5 due to the tunneling effect of the superconductor on both ends of the insulator. Therefore, it can be used as a two-terminal switching element. Switching is accomplished by varying the current or by applying a magnetic field to the junction. As a method of applying a magnetic field, a magnetic field is generated by placing a conductive wire near it and passing a current through it.
Some devices perform switching by controlling the maximum current value that maintains a zero voltage state.

発明が解決しようとする問題点 しかし従来のジョセフソン素子では、リーク電流が多い
、磁場によるスイッチングを行う場合、しきい値の制御
が難しいなどの問題があった。
Problems to be Solved by the Invention However, conventional Josephson devices have problems such as large leakage current and difficulty in controlling the threshold value when performing switching using a magnetic field.

本発明はかかる点に鑑みなされたもので、リーク電流の
少ない、磁場しきい値の制御しやすい超電導スイッチン
グ素子を提供することを目的としている。
The present invention has been made in view of the above, and an object of the present invention is to provide a superconducting switching element which has a small leakage current and whose magnetic field threshold can be easily controlled.

問題点を解決するための手段 本発明は上記問題点を解決するため、領域間絶縁された
第1および第2の2つの超電導体をまたぐ形で、前記第
1および第2の超電導体とトンネル可能な膜厚の絶縁膜
を介して、前記第1および第2の超電導体よりも厚みの
薄い第3の超電導体を設けた構造から成るものである。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention provides a tunnel between the first and second superconductors in a manner that straddles the first and second superconductors which are insulated between regions. The superconductor has a structure in which a third superconductor thinner than the first and second superconductors is provided through an insulating film having a thickness as high as possible.

作用 本発明は、前記したように、薄い眉間絶縁膜を介して形
成された第3の超電導体の超電導−常電導遷移を磁場で
引き起こす現象を用いるため、リーク電流が少なく、ス
イッチングする磁場の制御が容易である。
As described above, the present invention uses a phenomenon in which a magnetic field causes the superconducting-normal conductive transition of the third superconductor formed through the thin glabella insulating film, so leakage current is small and the switching magnetic field can be controlled. is easy.

実施例 以下本発明の一実施例について、図面を用いて説明する
EXAMPLE An example of the present invention will be described below with reference to the drawings.

スパッタリング法を用い、チタン酸ストロンチウム基板
上に、約2μmのY I B a 2 Cu a酸化物
薄膜を形成し、熱処理によって超電導化した後、ホトリ
ソグラフィー技術を用いて、前記Y+BatCLIs酸
化物薄膜の一部をエツチングにより除去して2つの領域
に絶縁分離し、その上から全体に、スパッタリング法に
より約80人の酸化ジルコニウムFjl膜を形成、その
上にさらに約2000人のY+BazCu3酸化物薄膜
を形成した。その後熱処理を行い薄膜を超電導化した。
A Y I Ba 2 Cu a oxide thin film of about 2 μm was formed on a strontium titanate substrate using a sputtering method, and after making it superconducting by heat treatment, one of the Y+BatCLIs oxide thin films was formed using a photolithography technique. A portion was removed by etching to isolate it into two regions, and a zirconium oxide Fjl film of about 80 layers was formed on the entire surface by sputtering, and a Y+BazCu3 oxide thin film of about 2000 layers was further formed on top of that by sputtering. . After that, heat treatment was performed to make the thin film superconducting.

その構造を第1図に示す、第1図において、1はチタン
酸ストロンチウム基板、2.5はその上に形成した第1
および第2のY、Ba2 Cua酸化物薄膜、3は酸化
ジルコニウム薄膜、4は第3の超電導体であるY+Ba
gCu3酸化物薄膜、第3の超電導体薄膜の膜厚は、第
1の超電導薄膜の膜厚よりも薄くなっている。すなわち
第1.第2の基板側超電導体をまたぐ形で、薄い眉間絶
縁膜を介して、それより厚みの薄い第3の超電導体で接
続した構造となっている。
Its structure is shown in Fig. 1. In Fig. 1, 1 is a strontium titanate substrate, 2.5 is a first
and the second Y, Ba2 Cua oxide thin film, 3 is the zirconium oxide thin film, and 4 is the third superconductor Y+Ba
The film thicknesses of the gCu3 oxide thin film and the third superconductor thin film are thinner than the film thickness of the first superconductor thin film. That is, the first. It has a structure in which it straddles the second substrate-side superconductor and is connected via a thin glabellar insulating film to a third superconductor that is thinner than the second substrate-side superconductor.

各超電導体には電極6,7.8が形成されており、それ
ぞれの超電導体に適当なバイアス電圧を加えることがで
きる。
Electrodes 6, 7.8 are formed on each superconductor, and an appropriate bias voltage can be applied to each superconductor.

Y、Ba2 Cua酸化物は、約90にで超電導体とな
り、そのバルクの臨界磁場は80テスラ(T)以上の第
2種超電導体である。第2種超電導体とは、超電導状態
を保ちながら、磁場の超電導体内部への侵入が可能な超
電導体のことである。
Y, Ba2 Cua oxide becomes a superconductor at about 90 volts and is a type 2 superconductor with a bulk critical magnetic field of 80 Tesla (T) or more. A type 2 superconductor is a superconductor in which a magnetic field can penetrate into the superconductor while maintaining a superconducting state.

しかし超電導体の臨界磁場は薄膜化しその厚みを極端に
薄くしていくと、小さくなっていく、と(にY1Ba2
 Cu8酸化物超電導体は、この傾向が顕著であり、臨
界磁場は膜厚に極めて敏感である。したがって本実施例
の構造の第3の超電導体の臨界磁場は、その厚みが第1
.第2の超電導体の厚みよりも薄くなっていることから
、同一材料でありながら、第1.第2の超電導体よりも
その臨界磁場が低くなっている。
However, the critical magnetic field of a superconductor becomes smaller as the film becomes thinner and its thickness becomes extremely thin (Y1Ba2
This tendency is remarkable in the Cu8 oxide superconductor, and the critical magnetic field is extremely sensitive to the film thickness. Therefore, the critical magnetic field of the third superconductor having the structure of this example is such that the thickness of the third superconductor is
.. Since the thickness of the second superconductor is thinner than that of the second superconductor, the first superconductor is made of the same material. Its critical magnetic field is lower than that of the second superconductor.

このような構造の素子を臨界温度以下、この場合であれ
ば、77に以下に冷却すれば、3つの超電導体が薄い眉
間絶縁膜で分離された状態となる。
If an element having such a structure is cooled to a temperature below the critical temperature, in this case, below 77, the three superconductors will be separated by a thin glabellar insulating film.

眉間絶縁膜をトンネル可能な厚み以下としておけば、ト
ンネル電流が流れる。したがって第1および第2の超電
導体と第3の超電導体との間で、通常のジョセフソン素
子と同じI−V特性が得られる。この様子を第2図Aに
示す、この接合に零電圧を保つ最大電流以上を流すと、
もはや零電圧は保たれず、接合両端に電圧が発生する。
If the thickness of the glabellar insulating film is set below the thickness that allows tunneling, a tunneling current will flow. Therefore, the same IV characteristics as a normal Josephson element can be obtained between the first and second superconductors and the third superconductor. This situation is shown in Figure 2A. When a current higher than the maximum current that maintains zero voltage is passed through this junction,
Zero voltage is no longer maintained and a voltage develops across the junction.

この状態を第2図Bとする。この接合に磁場をかけてい
く。
This state is shown in FIG. 2B. A magnetic field is applied to this junction.

第1の超電導体の臨界磁場以上を加えると、常電導状態
に急速に遷移するm Y I B a 2 Cu s酸
化物は、常電導状態では、エネルギーギャップが超電導
状態の時よりもはるかに大きくなる。そのため第2の超
電導体から第1の超電導体への電子のトンネルができな
くなり、電流が流れなくなる。
When a magnetic field equal to or higher than the critical magnetic field of the first superconductor is applied, the m Y I B a 2 Cu s oxide rapidly transitions to the normal conducting state. In the normal conducting state, the energy gap is much larger than in the superconducting state. Become. Therefore, electron tunneling from the second superconductor to the first superconductor is no longer possible, and current no longer flows.

これにより電子のトンネル状態が変るとともに、常電導
状態の抵抗値は非常に高いので、電流はこの抵抗によっ
ても制限される。その時のI−V特性を第2図Cに示す
。したがって定電圧を接合に加えていた場合、回路に流
れる電流はDに対応した値に減少し、負荷に抵抗を用い
ていれば、その両端の電圧は急速に低下する。定電流を
流していた場合は、直線Cにおいて、Bの電流に対応す
る電圧が接合両端に発生する。いずれにしてもスイッチ
ングを行うことができる。
This changes the electron tunneling state, and since the resistance value in the normally conducting state is very high, the current is also limited by this resistance. The IV characteristics at that time are shown in FIG. 2C. Therefore, if a constant voltage is applied to the junction, the current flowing through the circuit will decrease to a value corresponding to D, and if a resistor is used as the load, the voltage across it will drop rapidly. When a constant current is flowing, a voltage corresponding to the current B is generated across the junction on straight line C. Switching can be performed in any case.

L n 1B a 2 Cu a酸化物(ただしLnは
、La、Y、Nd、Sm、Eu、Gd、Tb、Dy。
L n 1B a 2 Cu a oxide (Ln is La, Y, Nd, Sm, Eu, Gd, Tb, Dy.

Ho、Er、Tm、Yb、Luの少なくとも一つ)超電
導体はすべて臨界温度90に程度の第2種超電導体とな
る。またL a +、as−A eo、+5−Cu、酸
化物(ただし、AeはBa、Sr、Caのうちの少なく
とも一つ以上)は、すべて臨界温度30に程度の第2種
超電導体となる。またいずれも薄膜化した場合その臨界
磁場が、膜厚が薄くなるほど小さくなる。したがって実
施例の構成において、上記酸化超電導体を用いることに
より、実施例と同様のスイッチング動作の得られること
は明らかである。
At least one of Ho, Er, Tm, Yb, and Lu) superconductors are all second type superconductors with a critical temperature of about 90°C. In addition, L a +, as-A eo, +5-Cu, and oxides (Ae is at least one of Ba, Sr, and Ca) are all type 2 superconductors with a critical temperature of about 30. . Furthermore, when the film is made thinner, the critical magnetic field becomes smaller as the film thickness becomes thinner. Therefore, in the configuration of the example, it is clear that by using the above oxidized superconductor, a switching operation similar to that of the example can be obtained.

Lrz Ba2Cu3酸化物において、BaをSr、C
aに置換していっても、はぼ類似の特性を存する超電導
体が得られる。したがって超電導体として、BaをSr
やCaに置換したものを用いても同様の効果の得られる
ことは明らかである。
In Lrz Ba2Cu3 oxide, Ba is replaced by Sr, C
Even if substituted with a, a superconductor having characteristics similar to that of a is obtained. Therefore, as a superconductor, Ba can be used as Sr.
It is clear that similar effects can be obtained even when substituted with or Ca.

各超電導体には電極が形成してあり、それぞれの超電導
体にバイアス電圧を加えることができる。
An electrode is formed on each superconductor, and a bias voltage can be applied to each superconductor.

これによりスイッチングの電流値もしくは電圧値の制御
が極めて容易となる。
This makes it extremely easy to control the switching current value or voltage value.

第3図は本実施例の素子において、超電導体5を最も高
い電位に、超電導体2を最も低い電位に、超電導体4を
その中間の電位になるように、各超電導体電極にバイア
ス電圧を加えた場合のエネルギーバンド図である。超電
導体は超電導状態においてエネルギーギャップが存在し
、通常の半導体と同様に、価電子帯、禁制帯、導電帯で
表すことができる。3は眉間絶縁膜である。いま超電導
体2の価電子帯が、超電導体4の導電帯の底よりも上に
なるように、また超電導体4の価電子帯が、超電導体5
の導電帯の底よりも上になるようにバイアスしたとする
。すると超電導体2の価電子帯から超電導体4の導電帯
へのトンネルが可能となり、多量の電子が超電導体2か
ら超電導体4へ注入される。超電導体4に注入された電
子は、エネルギーを超電導体4の中で失わなければ、そ
のまま超電導体5の導電帯へトンネル注入される。エネ
ルギーを失って超電導体4の価電子帯に落ちたとしても
、超電導体4の価電子帯から超電導体5の導電帯へのト
ンネルが可能であり、いずれにしても多量の電子が超電
導体5に注入される。したがってこのようなバイアス状
態で磁場を加え、超電導体4を超電導状態から常電導状
態に遷移させることにより、電流にスイッチングを行う
ことができる。もし超電導体4の電位をもう少し高くし
、超電導体4の導電帯の底が、超電導体2の価電子帯よ
りも上にくるようにしておくと、磁場がない時にも電流
は流れない。この例かられかるように各超電導体のバイ
アス電位を調整することにより、電流および磁場による
制御性の自由度がより増す。
FIG. 3 shows that in the device of this example, a bias voltage is applied to each superconductor electrode so that superconductor 5 is at the highest potential, superconductor 2 is at the lowest potential, and superconductor 4 is at an intermediate potential. It is an energy band diagram when adding. A superconductor has an energy gap in its superconducting state, which can be expressed by a valence band, a forbidden band, and a conduction band, just like normal semiconductors. 3 is an insulating film between the eyebrows. Now, the valence band of superconductor 2 is above the bottom of the conduction band of superconductor 4, and the valence band of superconductor 4 is above the bottom of the conduction band of superconductor 4.
Suppose that the bias is placed above the bottom of the conductive band. Then, tunneling from the valence band of the superconductor 2 to the conduction band of the superconductor 4 becomes possible, and a large amount of electrons are injected from the superconductor 2 to the superconductor 4. Electrons injected into the superconductor 4 are directly tunnel-injected into the conductive band of the superconductor 5 unless energy is lost within the superconductor 4. Even if they lose energy and fall into the valence band of the superconductor 4, tunneling from the valence band of the superconductor 4 to the conduction band of the superconductor 5 is possible, and in any case, a large amount of electrons will fall into the valence band of the superconductor 5. is injected into. Therefore, by applying a magnetic field in such a bias state and causing the superconductor 4 to transition from the superconducting state to the normal conducting state, switching of the current can be performed. If the potential of superconductor 4 is made a little higher so that the bottom of the conduction band of superconductor 4 is above the valence band of superconductor 2, no current will flow even when there is no magnetic field. As shown in this example, by adjusting the bias potential of each superconductor, the degree of freedom in controllability by current and magnetic field is increased.

超1!導体4の電位を変えることによってスイッチング
制御のできる状態にバイアスしておけば一種の増幅も可
能である。
Super 1! By changing the potential of the conductor 4, a type of amplification is also possible by biasing the conductor 4 to a state where switching can be controlled.

本実施例の素子の磁場制御方法として、本素子の近傍に
導線を設け、この導線に電流を流したり切ったりするこ
とにより、この導線の周りに磁場を発生させたり消滅さ
せることによって、スイッチング制御をた易く行うこと
ができる。
As a method for controlling the magnetic field of the element of this example, a conductor is provided near the element, and a magnetic field is generated or extinguished around the conductor by passing or cutting current through the conductor, thereby performing switching control. can be done easily.

発明の効果 以上述べたごとく、本発明の方法によれば、臨界磁場の
異なる超電導体同志のトンネル接合を利用するので、磁
場の制御が容易である。またオフ時には、2つの超電導
体の間を、2つの絶縁膜で挾まれた常電導体で分離する
ため、従来のジョセフソン素子のように一つの層間絶縁
膜で分離されたものよりも、はるかにリーク電流が少な
い。
Effects of the Invention As described above, according to the method of the present invention, since tunnel junctions between superconductors having different critical magnetic fields are used, the magnetic field can be easily controlled. In addition, when off, the two superconductors are separated by a normal conductor sandwiched between two insulating films, which is much more effective than a conventional Josephson element, which is separated by a single interlayer insulating film. leakage current is low.

本発明の効果は、領域間絶縁された第1および第2の2
つの超電導体をまたぐ形で、前記第1および第2のM4
電導体とトンネル可能な膜厚の絶縁膜を介して、前記第
1および第2の超電導体よりも厚みの薄い第3の超電導
体を設けた構造から得られるものであり、本実施例以外
にもこの構造を形成できる材料は、多数考えられるが、
いずれについても適用できるものである。
The effect of the present invention is that the first and second two regions are insulated from each other.
The first and second M4
This is obtained from a structure in which a third superconductor, which is thinner than the first and second superconductors, is provided via an insulating film having a thickness that allows tunneling with the conductor. There are many possible materials that can form this structure, but
It is applicable to both.

また本実施例では、薄膜の厚みとして特定の値を用いた
が、眉間絶縁膜の厚みは、トンネル効果の起る範囲内で
任意であり、また各超電導体薄膜の厚みもその形成可能
な範囲で任意である。しかしあまり厚くなると、臨界磁
場がバルクの値と同じになり膜厚に依存しなくなる。限
界の厚みは10μmである。
In addition, in this example, a specific value was used as the thickness of the thin film, but the thickness of the glabella insulating film may be any value within the range where the tunnel effect occurs, and the thickness of each superconductor thin film may also be within the range in which it can be formed. is optional. However, if the film becomes too thick, the critical magnetic field becomes the same as the bulk value and becomes independent of film thickness. The critical thickness is 10 μm.

本実施例では、基板としてチタン酸ストロンチウム単結
晶を用いたが、超電導薄膜の形成できる基板であれば良
(、これに限られないことは、明らかである。
In this example, a strontium titanate single crystal was used as the substrate, but it is obvious that any substrate on which a superconducting thin film can be formed may be used (but is not limited to this).

本実施例では、眉間絶縁膜として酸化ジルコニウムを用
いたが、膜形成中ないしは形成後の熱処理などによって
、超電導膜と反応するようなものでなければよく、これ
に限られないことは明らかである。
In this example, zirconium oxide was used as the glabellar insulating film, but it is clear that the material is not limited to this, as long as it does not react with the superconducting film during film formation or during heat treatment after formation. .

以上述べたごとく、本発明は、領域間絶縁された第1お
よび第2の2つの超電導体をまたぐ形で、前記第1およ
び第2の超電導体とトンネル可能な膜厚の絶縁膜を介し
て、前記第1および第2の超電導体よりも厚みの薄い第
3の超電導体を設けた構造からなり、リーク電流が少な
く、磁場制御の容易なスイッチング素子を提供するもの
である。
As described above, the present invention straddles the two superconductors, the first and second superconductors, which are insulated between regions. The present invention provides a switching element having a structure in which a third superconductor is provided which is thinner than the first and second superconductors, has a small leakage current, and can easily control a magnetic field.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の構造の一実施例を示す断面図、第2図
は本発明の素子のI−V特性を示すグラフ、第3図は本
実施例の素子のエネルギーバンド図の一例を示す説明図
、第4図は従来のジョセフソン素子の構造例を示す断面
図、第5図は従来のジョセフソン素子のI−V特性を示
すグラフである。 1・・・・・・チタン酸ストロンチウム基板、2,4゜
5・・・・・・Y I B a 2 Cu 3酸化物情
W4超電導体、3・・・・・・層間絶縁膜、6.7.8
・・・・・・電極。 代理人の氏名 弁理士 中尾敏男 はか1名凶    
Fig. 1 is a cross-sectional view showing an example of the structure of the present invention, Fig. 2 is a graph showing the IV characteristics of the device of the present invention, and Fig. 3 is an example of the energy band diagram of the device of the present invention. FIG. 4 is a cross-sectional view showing an example of the structure of a conventional Josephson element, and FIG. 5 is a graph showing the IV characteristics of the conventional Josephson element. 1... Strontium titanate substrate, 2,4°5... Y I B a 2 Cu 3 oxide W4 superconductor, 3... Interlayer insulating film, 6. 7.8
······electrode. Name of agent: Patent attorney Toshio Nakao
8

Claims (3)

【特許請求の範囲】[Claims] (1)領域間絶縁された第1および第2の2つの超電導
体をまたぐ形で、前記第1および第2の超電導体とトン
ネル可能な膜厚の絶縁膜を介して、前記第1および第2
の超電導体よりも厚みの薄い第3の超電導体を設けた構
造からなる超電導スイッチング素子。
(1) Straddling the first and second superconductors that are insulated between regions, the first and second superconductors are 2
A superconducting switching element having a structure including a third superconductor having a thickness thinner than that of the superconductor.
(2)超電導体として、Ln(ただしLnは、Y、La
、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、
Tm、Yb、Luの少なくとも一つ)−Ae(ただしA
eは、Ba、Sr、Caの少なくとも一つ)−Cu酸化
物を用いたことを特徴とする特許請求の範囲第(1)項
記載の超電導スイッチング素子。
(2) As a superconductor, Ln (Ln is Y, La
, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er,
at least one of Tm, Yb, Lu) - Ae (however, A
The superconducting switching element according to claim 1, wherein e is at least one of Ba, Sr, and Ca)-Cu oxide.
(3)それぞれの超電導体にバイアス電圧印加用端子を
設けたことを特徴とする特許請求の範囲第(1)項記載
の超電導スイッチング素子。
(3) A superconducting switching element according to claim (1), characterized in that each superconductor is provided with a terminal for applying a bias voltage.
JP62296509A 1987-11-25 1987-11-25 Superconducting switching element Expired - Lifetime JP2583922B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62296509A JP2583922B2 (en) 1987-11-25 1987-11-25 Superconducting switching element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62296509A JP2583922B2 (en) 1987-11-25 1987-11-25 Superconducting switching element

Publications (2)

Publication Number Publication Date
JPH01137683A true JPH01137683A (en) 1989-05-30
JP2583922B2 JP2583922B2 (en) 1997-02-19

Family

ID=17834460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62296509A Expired - Lifetime JP2583922B2 (en) 1987-11-25 1987-11-25 Superconducting switching element

Country Status (1)

Country Link
JP (1) JP2583922B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5376626A (en) * 1989-09-25 1994-12-27 The United States Of America As Represented By The Secretary Of The Air Force Magnetic field operated superconductor switch
US6774463B1 (en) * 1990-02-01 2004-08-10 International Business Machines Corporation Superconductor gate semiconductor channel field effect transistor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5712575A (en) * 1980-06-06 1982-01-22 Ibm Superconductive device
JPS6015895A (en) * 1983-07-08 1985-01-26 Agency Of Ind Science & Technol Constituting method of josephson circuit
JPS6042747U (en) * 1983-08-31 1985-03-26 三菱電機株式会社 Superconducting three-terminal device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5712575A (en) * 1980-06-06 1982-01-22 Ibm Superconductive device
JPS6015895A (en) * 1983-07-08 1985-01-26 Agency Of Ind Science & Technol Constituting method of josephson circuit
JPS6042747U (en) * 1983-08-31 1985-03-26 三菱電機株式会社 Superconducting three-terminal device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5376626A (en) * 1989-09-25 1994-12-27 The United States Of America As Represented By The Secretary Of The Air Force Magnetic field operated superconductor switch
US6774463B1 (en) * 1990-02-01 2004-08-10 International Business Machines Corporation Superconductor gate semiconductor channel field effect transistor

Also Published As

Publication number Publication date
JP2583922B2 (en) 1997-02-19

Similar Documents

Publication Publication Date Title
US5831278A (en) Three-terminal devices with wide Josephson junctions and asymmetric control lines
US5041880A (en) Logic device and memory device using ceramic superconducting element
JPS63299282A (en) Superconducting device
US3370210A (en) Magnetic field responsive superconducting tunneling devices
US5250506A (en) Superconductive switching element with semiconductor channel
US3521133A (en) Superconductive tunneling gate
JPH01137683A (en) Superconducting switching element
JPS63281481A (en) Superconducting switching element
JP2583923B2 (en) Superconducting switching element
JP2583924B2 (en) Superconducting switching element
JPS63308975A (en) Current control element
US5596206A (en) Superconducting device
JPH01137682A (en) Superconducting switching element
JP2644284B2 (en) Superconducting element
JP2585269B2 (en) Superconducting transistor
JPH01137684A (en) Superconducting switching element
JPH02391A (en) Superconductive field-effect transistor
RU2343591C1 (en) Josephson- transition super-conducting device
RU2554614C2 (en) Josephson 0-pi switch
JPS63299281A (en) Superconducting device
US5742073A (en) Superconducting weak link array switch
JPH02194667A (en) Superconducting transistor and manufacture thereof
JP2867956B2 (en) Superconducting transistor
JP2649808B2 (en) Current injection cryotron
JPS6218776A (en) Superconductive device