JP2855064B2 - Inner sphere diameter measuring method and apparatus - Google Patents

Inner sphere diameter measuring method and apparatus

Info

Publication number
JP2855064B2
JP2855064B2 JP25680093A JP25680093A JP2855064B2 JP 2855064 B2 JP2855064 B2 JP 2855064B2 JP 25680093 A JP25680093 A JP 25680093A JP 25680093 A JP25680093 A JP 25680093A JP 2855064 B2 JP2855064 B2 JP 2855064B2
Authority
JP
Japan
Prior art keywords
diameter
spherical surface
concave spherical
inner sphere
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP25680093A
Other languages
Japanese (ja)
Other versions
JPH07113627A (en
Inventor
淳 長岡
悦夫 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP25680093A priority Critical patent/JP2855064B2/en
Publication of JPH07113627A publication Critical patent/JPH07113627A/en
Application granted granted Critical
Publication of JP2855064B2 publication Critical patent/JP2855064B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Arrangements Characterized By The Use Of Fluids (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、被測定物に設けられた
断面円弧状を有する凹球面の内球径を測定するための内
球径測定方法および装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an inner sphere diameter measuring method and apparatus for measuring the inner sphere diameter of a concave spherical surface provided on an object to be measured and having a circular arc cross section.

【0002】[0002]

【従来の技術】例えば、等速継手のアウトボードアウタ
ーの凹球面や軸受の内輪のような環状部品の内径寸法、
内径真円度あるいは勾配度等を測定するために、流量式
空気マイクロメータが使用されている。
2. Description of the Related Art For example, the inner diameter of an annular component such as a concave spherical surface of an outboard outer of a constant velocity joint or an inner ring of a bearing,
A flow-type air micrometer is used to measure the roundness or gradient of the inner diameter.

【0003】この種の空気マイクロメータは、測定子と
して円筒状外周面を有するプラグゲージ(測定用ヘッ
ド)を備えており、このプラグゲージ先端部には、一対
のノズルが外周面に臨んで設けられている。そして、前
記空気マイクロメータで内径寸法を測定する際には、被
測定物の内輪の内径面に対応してプラグゲージ先端部が
配設された後、一対のノズルから前記内径面に圧縮流体
が噴射されて空気マイクロメータ表示部のテーパ管内の
フロートが背圧によって浮き上がる。従って、このフロ
ート位置の表示を読み取ることにより、被測定物の内輪
の内径寸法が測定される。
An air micrometer of this type is provided with a plug gauge (measurement head) having a cylindrical outer peripheral surface as a probe, and a pair of nozzles are provided at the tip of the plug gauge so as to face the outer peripheral surface. Have been. Then, when measuring the inner diameter dimension with the air micrometer, after the plug gauge tip is disposed corresponding to the inner diameter surface of the inner ring of the object to be measured, compressed fluid flows from the pair of nozzles to the inner diameter surface. Injection causes the float in the tapered tube of the air micrometer display section to rise due to the back pressure. Therefore, by reading the indication of the float position, the inner diameter of the inner ring of the measured object is measured.

【0004】ところで、図6に示すように、等速継手の
アウトボードアウターである被測定物Wに設けられた断
面円弧状の凹球面Fの内球径を測定する場合、まず、こ
の内球径より小径でかつ相似形に形成されたプラグゲー
ジ先端部が、前記凹球面Fに対応して配置される。次い
で、プラグゲージ先端部に設けられた一対のノズルを介
して凹球面Fの直径部の内径(中央径)が測定された
後、このプラグゲージ先端部が所定角度傾動されて一方
のノズルを前記凹球面Fの入口側端部近傍に指向して配
置させるとともに、他方のノズルを該凹球面Fの内方側
に指向して配置させる。この状態で圧縮流体が噴射され
て凹球面Fの対角径が測定され、さらにプラグゲージ先
端部が反対側に傾動されて該反対側対角径が測定され
る。
As shown in FIG. 6, when measuring the inner sphere diameter of a concave spherical surface F having an arc-shaped cross section provided on an object to be measured W which is an outboard outer of a constant velocity joint, first, the inner sphere is measured. A plug gauge tip portion having a diameter smaller than the diameter and having a similar shape is arranged corresponding to the concave spherical surface F. Next, after measuring the inner diameter (central diameter) of the diameter portion of the concave spherical surface F through a pair of nozzles provided at the tip of the plug gauge, the tip of the plug gauge is tilted at a predetermined angle, and one of the nozzles is moved. The nozzle is arranged so as to be directed to the vicinity of the end of the concave spherical surface F on the inlet side, and the other nozzle is arranged so as to be directed to the inner side of the concave spherical surface F. In this state, the compressed fluid is jetted to measure the diagonal diameter of the concave spherical surface F, and the tip of the plug gauge is tilted to the opposite side to measure the opposite diagonal diameter.

【0005】すなわち、図6において、凹球面Fの中央
径Gと対角径H1、H2を測定することにより、凹球面
Fの内球径が設定されることになる。
That is, in FIG. 6, the inner diameter of the concave spherical surface F is set by measuring the central diameter G and the diagonal diameters H1 and H2 of the concave spherical surface F.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記の
従来技術では、内球径測定に際してプラグゲージ先端部
の直径方向に設けられたそれぞれのノズルが、凹球面F
に対向していなければならない。一方のノズルが凹球面
Fから外れると、この一方のノズルから噴射される圧縮
流体が外部に流出してしまい、前記凹球面Fの内球径測
定作業が不可能となるからである。このため、従来の空
気マイクロメータでは、凹球面Fにおいて測定可能な範
囲α°と測定不可能な範囲β°とが存在してしまう。と
ころが、この測定不可能範囲β°における内球径が十分
に管理されていないと、組み付け後のトルクが変動する
等の不具合が生じてしまい、従って、凹球面F全面を高
精度かつ容易に管理することが望まれている。
However, in the above prior art, when measuring the inner sphere diameter, each of the nozzles provided in the diametrical direction at the tip of the plug gauge has a concave spherical surface F.
Must face each other. If one nozzle comes off the concave spherical surface F, the compressed fluid ejected from the one nozzle flows out to the outside, so that the operation of measuring the inner spherical diameter of the concave spherical surface F becomes impossible. For this reason, in the conventional air micrometer, the measurable range α ° and the unmeasurable range β ° exist on the concave spherical surface F. However, if the diameter of the inner sphere in the non-measurable range β ° is not sufficiently controlled, problems such as fluctuations in the torque after assembling may occur, and therefore, the entire surface of the concave spherical surface F may be managed with high precision and ease. It is desired to do.

【0007】本発明は、この種の問題を解決するための
ものであり、被測定物に設けられた断面円弧状を有する
凹球面の内球径を簡単かつ高精度に測定することが可能
な内球径測定方法および装置を提供することを目的とす
る。
An object of the present invention is to solve this kind of problem, and it is possible to easily and accurately measure the diameter of the inner sphere of a concave spherical surface having an arc-shaped cross section provided on an object to be measured. An object of the present invention is to provide an inner sphere diameter measuring method and apparatus.

【0008】[0008]

【課題を解決するための手段】前記の目的を達成するた
めに、本発明は、被測定物に設けられた断面円弧状を有
する凹球面の内球径を測定するための内球径測定方法で
あって、前記被測定物の凹球面より小径でかつ該凹球面
と略相似形の測定用ヘッドを、前記凹球面に対して一定
間隔を有して配設し、前記測定用ヘッドに設けられた一
対の第1ノズルから該凹球面の直径部に対し計測用圧縮
流体を噴射して前記凹球面の最大内球径を検出する工程
と、前記最大内球径が検出された位置に前記測定用ヘッ
ドを維持した状態で、該測定用ヘッドに設けられた一対
の第2ノズルを介して前記凹球面の入口側内球径を測定
するとともに、前記測定用ヘッドに設けられた一対の第
3ノズルを介して前記凹球面の内方側内球径を測定する
工程と、を有することを特徴とする。
To achieve the above object, the present invention provides an inner sphere diameter measuring method for measuring the inner sphere diameter of a concave spherical surface having an arc-shaped cross section provided on an object to be measured. A measuring head having a diameter smaller than that of the concave spherical surface of the object to be measured and having a shape substantially similar to the concave spherical surface is disposed at a constant interval with respect to the concave spherical surface, and provided on the measuring head. Detecting the maximum inner sphere diameter of the concave spherical surface by injecting a measurement compressed fluid from the pair of first nozzles to the diameter portion of the concave spherical surface, and detecting the maximum inner sphere diameter at the position where the maximum inner sphere diameter is detected. While maintaining the measuring head, the diameter of the inner sphere on the entrance side of the concave spherical surface is measured through a pair of second nozzles provided on the measuring head, and a pair of second spheres provided on the measuring head are measured. Measuring the diameter of the inner sphere of the concave spherical surface via three nozzles. And wherein the door.

【0009】また、前記第1乃至第3ノズルから計測用
圧縮流体を噴射する際に、前記被測定物と前記測定用ヘ
ッドとを相対的に回転させて任意の位相角度位置で前記
凹球面の内球径を測定することが好ましい。
When the compressed fluid for measurement is jetted from the first to third nozzles, the object to be measured and the measurement head are relatively rotated to form the concave spherical surface at an arbitrary phase angle position. It is preferable to measure the inner sphere diameter.

【0010】さらに、本発明は、被測定物に設けられた
断面円弧状を有する凹球面の内球径を測定するための内
球径測定装置であって、前記被測定物の凹球面より小径
でかつ該凹球面と略相似形の測定用ヘッドを備え、前記
測定用ヘッドは、前記凹球面の直径部に対し計測用圧縮
流体を噴射する一対の第1ノズルと、前記凹球面の入口
側凹球面部に対し計測用圧縮流体を噴射する一対の第2
ノズルと、該凹球面の内方側凹球面部に対し計測用圧縮
流体を噴射する一対の第3ノズルと、を有するととも
に、前記第1ノズル乃至第3ノズルは、それぞれ異なる
通路を介してそれぞれ圧力検出器に連通することを特徴
とする。
Further, the present invention relates to an inner sphere diameter measuring device for measuring the inner sphere diameter of a concave spherical surface having an arc-shaped cross section provided on an object to be measured, wherein the inner sphere diameter is smaller than the concave spherical surface of the object to be measured. And a measuring head substantially similar in shape to the concave spherical surface, the measuring head comprising: a pair of first nozzles for injecting a measurement compressed fluid to a diameter portion of the concave spherical surface; and an inlet side of the concave spherical surface. A pair of second jets for injecting the measurement compressed fluid to the concave spherical portion
A nozzle, and a pair of third nozzles for injecting a compressed fluid for measurement to an inner concave spherical portion of the concave spherical surface, and the first to third nozzles are respectively provided via different passages. It is characterized by being connected to a pressure detector.

【0011】また、前記第1乃至第3ノズルが、それぞ
れ前記測定用ヘッドの軸方向および直径方向に対して位
相差を有して配置されることが好ましい。
It is preferable that the first to third nozzles are arranged so as to have a phase difference with respect to the axial direction and the diametrical direction of the measuring head, respectively.

【0012】[0012]

【作用】上記の本発明に係る内球径測定方法および装置
では、測定用ヘッドに設けられた一対の第1ノズルを介
して凹球面の最大内球径が検出された後、その位置に前
記測定用ヘッドを維持しつつ一対の第2ノズルおよび一
対の第3ノズルを介して前記凹球面の入口側内球径およ
び内方側内球径がそれぞれ測定される。このため、測定
用ヘッドを凹球面内に正確に位置決め保持することがで
き、前記測定用ヘッドを傾動させることなく前記凹球面
の入口側内球径および内方側内球径の測定作業を行うこ
とが可能になる。これにより、操作が一挙に簡素化する
とともに、迅速かつ容易に測定作業が遂行され、しかも
測定不良を有効に阻止できる。
In the method and apparatus for measuring the inner sphere diameter according to the present invention, after the maximum inner sphere diameter of the concave spherical surface is detected through the pair of first nozzles provided in the measuring head, the inner sphere diameter is set at that position. The diameter of the inner sphere on the entrance side and the diameter of the inner sphere on the inner side of the concave spherical surface are measured via the pair of second nozzles and the pair of third nozzles while maintaining the measuring head. For this reason, the measuring head can be accurately positioned and held in the concave spherical surface, and the measuring operation of the entrance inner sphere diameter and the inner inner sphere diameter of the concave spherical surface can be performed without tilting the measuring head. It becomes possible. As a result, the operation can be simplified all at once, the measurement operation can be performed quickly and easily, and the measurement failure can be effectively prevented.

【0013】また、第1乃至第3ノズルから計測用圧縮
流体を噴射する際に、被測定物と測定用ヘッドとを相対
的に回転させて任意の位相角度位置で凹球面の内球径を
測定すれば、該内球径の測定精度がさらに向上する。
When the measurement fluid is ejected from the first to third nozzles, the object to be measured and the measurement head are relatively rotated to adjust the inner spherical diameter of the concave spherical surface at an arbitrary phase angle position. The measurement further improves the measurement accuracy of the inner sphere diameter.

【0014】さらにまた、第1乃至第3ノズルが、それ
ぞれ測定用ヘッドの軸方向および直径方向に対して位相
差を有して配置されると、噴出される圧縮流体同士の干
渉を確実に阻止することができる。
Furthermore, when the first to third nozzles are arranged with a phase difference in the axial direction and the diametrical direction of the measuring head, respectively, the interference of the compressed fluid to be ejected is reliably prevented. can do.

【0015】[0015]

【実施例】本発明に係る内球径測定方法および装置につ
いて実施例を挙げ、添付の図面を参照して以下に説明す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An inner sphere diameter measuring method and apparatus according to the present invention will be described below with reference to the accompanying drawings.

【0016】図1において、参照数字10は、本実施例
に係る内球径測定装置を示す。この内球径測定装置10
は、測定用ヘッド12と、このヘッド12を固着する支
持棒体14と、この支持棒体14に形成された第1通路
16a、第2通路16bおよび第3通路16cに連通す
る第1圧力検出器18a、第2圧力検出器18bおよび
第3圧力検出器18cとを備える。
In FIG. 1, reference numeral 10 indicates an inner sphere diameter measuring apparatus according to the present embodiment. This inner sphere diameter measuring device 10
Is a first pressure detector communicating with a measurement head 12, a support rod 14 to which the head 12 is fixed, and a first passage 16a, a second passage 16b, and a third passage 16c formed in the support rod 14. Device 18a, a second pressure detector 18b, and a third pressure detector 18c.

【0017】ヘッド12は、被測定物Wの凹球面Fより
小径でかつ該凹球面Fと略相似形を有しており、図2に
示すように、この凹球面Fの直径部(中央径Gに対応)
に対し計測用圧縮流体を噴射する一対の第1ノズル20
a、20bと、前記凹球面Fの入口側凹球面部Feに対
し計測用圧縮流体を噴射する一対の第2ノズル22a、
22bと、該凹球面Fの内方側凹球面部Fiに対し計測
用圧縮流体を噴射する一対の第3ノズル24a、24b
とを備える。凹球面Fは真円でなく、第1ノズル20
a、20bと直径部との距離C1と、第2ノズル22
a、22bと入口側凹球面部Feとの距離C2と、第3
ノズル24a、24bと内方側凹球面部Fiとの距離C
3とは、それぞれ異なっている。
The head 12 has a diameter smaller than that of the concave spherical surface F of the object W to be measured and has a substantially similar shape to the concave spherical surface F. As shown in FIG. (Corresponds to G)
A pair of first nozzles 20 for injecting a compressed fluid for measurement
a, 20b and a pair of second nozzles 22a for injecting a compressed fluid for measurement onto the inlet-side concave spherical portion Fe of the concave spherical surface F,
22b and a pair of third nozzles 24a, 24b for injecting the compressed fluid for measurement onto the inner concave spherical surface portion Fi of the concave spherical surface F.
And The concave spherical surface F is not a perfect circle.
a, 20b and the distance C1 between the diameter portion and the second nozzle 22
a distance C2 between the a and 22b and the entrance-side concave spherical surface portion Fe;
Distance C between nozzles 24a and 24b and inner concave spherical surface portion Fi
3 is different from each other.

【0018】図3に示すように、第1ノズル20a、第
2ノズル22aおよび第3ノズル24aは、ヘッド12
の軸方向(矢印X方向)に対して同一線上に配置されて
おり、図4に示すように、第1ノズル20b、第2ノズ
ル22bおよび第3ノズル24bは、前記ヘッド12の
軸方向(矢印X方向)およびこれに直交する直径方向
(矢印Y方向)に対して位相差を有して配置される。
As shown in FIG. 3, the first nozzle 20a, the second nozzle 22a, and the third nozzle 24a
The first nozzle 20b, the second nozzle 22b, and the third nozzle 24b are arranged on the same line with respect to the axial direction (arrow X direction) of FIG. It is arranged with a phase difference with respect to the X direction) and the diameter direction (the arrow Y direction) perpendicular thereto.

【0019】第1ノズル20a、20bは、ヘッド12
内で互いに一体化されて第1通路16aに連通し、第2
ノズル22a、22bおよび第3ノズル24a、24b
も同様に、それぞれ互いに一体化されて第2通路16b
および第3通路16cに連通する(図1参照)。第1通
路16a乃至第3通路16cは、支持棒体14の中心と
同心的な仮想円周上に等角度間隔ずつ離間して設けられ
る(図5参照)。
The first nozzles 20a and 20b are
Are integrated with each other in the first passage 16a,
Nozzles 22a, 22b and third nozzles 24a, 24b
Similarly, the second passages 16b are integrated with each other.
And the third passage 16c (see FIG. 1). The first passage 16a to the third passage 16c are provided at equal angular intervals on an imaginary circle concentric with the center of the support rod 14 (see FIG. 5).

【0020】次に、このように構成される内球径測定装
置10の動作について、本実施例に係る内球径測定方法
との関連で説明する。
Next, the operation of the inner sphere diameter measuring device 10 thus configured will be described in relation to the inner sphere diameter measuring method according to the present embodiment.

【0021】被測定物Wは、図1に示すように鉛直姿勢
で保持されており、内球径測定装置10を構成するヘッ
ド12が、前記被測定物Wの上方から下降されて該被測
定物Wの凹球面Fに対して一定間隔を有して配設され
る。そして、まず、支持棒体14の第1通路16aに圧
縮流体が供給されてヘッド12に設けられた一対の第1
ノズル20a、20bから凹球面Fの直径部に対し計測
用圧縮流体が噴射される。このため、第1圧力検出器1
8aを介して直径部の内球径、すなわち、中央径Gが測
定され、ヘッド12の位置を上下に変更させることによ
って該直径部の最大内球径が検出され、この最大内球径
が検出された位置に前記ヘッド12を維持する。凹球面
Fが真円でないため(図2参照)、直径部の最大内球径
に対応する位置にヘッド12を配置させる必要があるか
らである。
The workpiece W is held in a vertical posture as shown in FIG. 1, and the head 12 constituting the inner sphere diameter measuring device 10 is lowered from above the workpiece W to be measured. It is disposed at a constant interval with respect to the concave spherical surface F of the object W. Then, first, a compressed fluid is supplied to the first passage 16 a of the support rod body 14, and a pair of first
The compressed fluid for measurement is jetted from the nozzles 20a and 20b to the diameter portion of the concave spherical surface F. For this reason, the first pressure detector 1
The diameter of the inner sphere of the diameter portion, that is, the center diameter G is measured through 8a, the maximum inner sphere diameter of the diameter portion is detected by changing the position of the head 12 up and down, and the maximum inner sphere diameter is detected. The head 12 is maintained at the set position. Because the concave spherical surface F is not a perfect circle (see FIG. 2), it is necessary to arrange the head 12 at a position corresponding to the maximum inner sphere diameter of the diameter portion.

【0022】次いで、ヘッド12に設けられた一対の第
2ノズル22a、22bを介して入口側凹球面部Feの
内球径(入口側内球径)が測定されるとともに、前記ヘ
ッド12に設けられた一対の第3ノズル24a、24b
を介して内方側凹球面部Fiの内球径(内方側内球径)
が測定される。すなわち、第2通路16bに圧縮流体が
供給されると、この圧縮流体は、ヘッド12内で分岐し
て第2ノズル22a、22bから入口側凹球面部Feに
噴射されてその内球径が第2圧力検出器18bにより測
定される。一方、第3通路16cに供給される圧縮流体
は、第3ノズル24a、24bから内方側凹球面部Fi
に噴射され、その内球径が第3圧力検出器18cによっ
て測定される。
Next, the inner sphere diameter (inlet side inner sphere diameter) of the inlet-side concave spherical portion Fe is measured via a pair of second nozzles 22a and 22b provided on the head 12, and provided on the head 12 as well. Pair of third nozzles 24a, 24b
The inner spherical diameter of the inner concave spherical surface portion Fi (the inner inner spherical diameter)
Is measured. That is, when the compressed fluid is supplied to the second passage 16b, the compressed fluid branches in the head 12 and is jetted from the second nozzles 22a and 22b to the inlet-side concave spherical portion Fe so that the inner sphere diameter is reduced to the second diameter. 2 Measured by the pressure detector 18b. On the other hand, the compressed fluid supplied to the third passage 16c is supplied from the third nozzles 24a and 24b to the inward concave spherical surface portion Fi.
And its inner sphere diameter is measured by the third pressure detector 18c.

【0023】そこで、各測定結果が規定範囲内にあるか
否かが判断され、凹球面Fの内球径が検出されることに
なる。
Then, it is determined whether or not each measurement result is within the specified range, and the inner spherical diameter of the concave spherical surface F is detected.

【0024】この場合、本実施例では、ヘッド12に設
けられた一対の第1ノズル20a、20bを介して凹球
面Fの最大内球径が検出された後、その位置に前記ヘッ
ド12が維持された状態で、一対の第2ノズル22a、
22bおよび一対の第3ノズル24a、24bを介して
前記凹球面Fの入口側内球径および内方側内球径がそれ
ぞれ測定される。このため、従来のようにヘッド12を
傾動させる必要がなく、凹球面Fの入口側内球径および
内方側内球径の測定作業を簡単かつ迅速に行うことがで
きる。しかも、ヘッド12を凹球面Fに対して正確に位
置決めすることが可能になり、該凹球面Fの内球径測定
作業全体を高精度かつ効率的に遂行し得るという効果が
得られる。また、従来、測定不可能であった内方側凹球
面部Fi(図2および図5参照)の内球径を容易に測定
することができる。
In this case, in this embodiment, after the maximum inner sphere diameter of the concave spherical surface F is detected through the pair of first nozzles 20a and 20b provided in the head 12, the head 12 is maintained at that position. In a state in which the pair of second nozzles 22a,
The inner diameter of the inner sphere and the inner diameter of the inner sphere of the concave spherical surface F are measured via the second nozzle 22b and the pair of third nozzles 24a, 24b. For this reason, it is not necessary to tilt the head 12 unlike the related art, and the measuring operation of the inner diameter of the inner sphere on the entrance side and the inner sphere of the concave spherical surface F can be performed easily and quickly. In addition, it is possible to accurately position the head 12 with respect to the concave spherical surface F, and it is possible to obtain the effect that the entire inner diameter measurement operation of the concave spherical surface F can be performed with high accuracy and efficiency. Further, the inner sphere diameter of the inward concave spherical surface portion Fi (see FIGS. 2 and 5), which cannot be measured conventionally, can be easily measured.

【0025】なお、本実施例では、ヘッド12を凹球面
Fに対向させて保持した状態でこの凹球面Fの内球径を
測定しているが、前記ヘッド12または被測定物Wを所
定角度ずつ間歇的に回転させ、例えば120°ずつ回転
させて3ヶ所の測定を行うことが可能である。これによ
り、内球径の測定精度がさらに向上するという利点が得
られる。
In the present embodiment, the inner sphere diameter of the concave spherical surface F is measured while the head 12 is held so as to face the concave spherical surface F. It is possible to perform measurement at three places by rotating the film intermittently, for example, by 120 °. Thereby, there is obtained an advantage that the measurement accuracy of the inner sphere diameter is further improved.

【0026】また、第1ノズル20b、第2ノズル22
bおよび第3ノズル24bが、それぞれヘッド12の軸
方向(矢印X方向)および直径方向(矢印Y方向)に対
して位相差を有して配置されている。従って、入口側凹
球面部Feの内球径の測定作業と内方側凹球面部Fiの
内球径の測定作業とを同時に行う際、第2ノズル22b
と第3ノズル24bとから噴射される圧縮流体の干渉を
有効に阻止することができるという効果がある。このた
め、第1ノズル20a、第2ノズル22aおよび第3ノ
ズル24aを、それぞれヘッド12の軸方向および直径
方向に対して位相差を有して配置してもよい。
The first nozzle 20b and the second nozzle 22
b and the third nozzle 24b are arranged with a phase difference with respect to the axial direction (arrow X direction) and the diameter direction (arrow Y direction) of the head 12, respectively. Therefore, when the operation of measuring the inner sphere diameter of the inlet-side concave spherical surface portion Fe and the operation of measuring the inner sphere diameter of the inner-side concave spherical surface portion Fi are performed simultaneously, the second nozzle 22 b
And the third nozzle 24b can effectively prevent the interference of the compressed fluid injected from the third nozzle 24b. For this reason, the first nozzle 20a, the second nozzle 22a, and the third nozzle 24a may be arranged with a phase difference in the axial direction and the diametric direction of the head 12, respectively.

【0027】[0027]

【発明の効果】本発明に係る内球径測定方法および装置
によれば、以下の効果乃至利点が得られる。
According to the inner sphere diameter measuring method and apparatus according to the present invention, the following effects and advantages can be obtained.

【0028】測定用ヘッドに設けられた一対の第1ノズ
ルを介して凹球面の最大内球径が検出された後、その位
置に前記測定用ヘッドを維持しつつ一対の第2ノズルお
よび一対の第3ノズルを介して前記凹球面の入口側内球
径および内方側内球径がそれぞれ測定されるため、前記
測定用ヘッドを傾動させることなく前記凹球面の入口側
内球径および内方側内球径の測定作業を行うことが可能
になる。これにより、操作が一挙に簡素化するととも
に、迅速かつ容易に測定作業が遂行され、しかも測定不
良が有効に阻止できる。
After the maximum inner sphere diameter of the concave spherical surface is detected through the pair of first nozzles provided on the measuring head, the pair of second nozzles and the pair of second nozzles are maintained while maintaining the measuring head at that position. Since the inlet-side inner sphere diameter and the inner-side inner sphere diameter of the concave sphere are respectively measured via the third nozzle, the inlet-side inner sphere diameter and the inner sphere diameter of the concave sphere can be measured without tilting the measuring head. It becomes possible to perform the measurement operation of the diameter of the inner sphere. As a result, the operation can be simplified at a stroke, the measurement operation can be performed quickly and easily, and the measurement failure can be effectively prevented.

【0029】また、第1乃至第3ノズルから計測用圧縮
流体を噴射する際に、被測定物と測定用ヘッドとを相対
的に回転させて任意の位相角度位置で凹球面の内球径を
測定することにより、該内球径の測定精度がさらに向上
する。
When the compressed fluid for measurement is ejected from the first to third nozzles, the object to be measured and the measuring head are relatively rotated to adjust the inner spherical diameter of the concave spherical surface at an arbitrary phase angle position. The measurement further improves the measurement accuracy of the inner sphere diameter.

【0030】さらにまた、第1乃至第3ノズルが、それ
ぞれ測定用ヘッドの軸方向および直径方向に対して位相
差を有して配置されると、噴出される圧縮流体同士の干
渉を確実に阻止することができ、測定誤差が可及的に削
減される。
Furthermore, if the first to third nozzles are arranged with a phase difference in the axial direction and the diametric direction of the measuring head, respectively, the interference between the compressed fluids to be ejected is reliably prevented. And measurement errors are reduced as much as possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例に係る内球径測定装置の概略構
成図である。
FIG. 1 is a schematic configuration diagram of an inner sphere diameter measuring device according to an embodiment of the present invention.

【図2】前記内球径測定装置を構成するヘッドと被測定
物の凹球面の拡大説明図である。
FIG. 2 is an enlarged explanatory view of a head and a concave spherical surface of an object to be measured, which constitute the inner sphere diameter measuring device.

【図3】前記内球径測定装置を構成するヘッドの一方の
側面図である。
FIG. 3 is a side view of one side of a head constituting the inner sphere diameter measuring device.

【図4】前記内球径測定装置を構成するヘッドの他方の
側面図である。
FIG. 4 is another side view of a head constituting the inner sphere diameter measuring device.

【図5】前記内球径測定装置を構成する支持棒体の断面
平面図である。
FIG. 5 is a sectional plan view of a support rod constituting the inner sphere diameter measuring device.

【図6】被測定物の一部断面説明図である。FIG. 6 is a partial cross-sectional explanatory view of an object to be measured.

【符号の説明】[Explanation of symbols]

10…内球径測定装置 12…ヘッド 14…支持棒体 16a〜16c
…通路 18a〜18c…圧力検出器 20a、20b、22a、22b、24a、24b…ノ
ズル G…中央径 F…凹球面 Fe…入口側凹球面部 Fi…内方側凹
球面部
DESCRIPTION OF SYMBOLS 10 ... Inner ball diameter measuring device 12 ... Head 14 ... Support rod body 16a-16c
... passages 18a to 18c ... pressure detectors 20a, 20b, 22a, 22b, 24a, 24b ... nozzle G ... central diameter F ... concave spherical surface Fe ... inlet side concave spherical surface portion Fi ... inner side concave spherical surface portion

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】被測定物に設けられた断面円弧状を有する
凹球面の内球径を測定するための内球径測定方法であっ
て、 前記被測定物の凹球面より小径でかつ該凹球面と略相似
形の測定用ヘッドを、前記凹球面に対して一定間隔を有
して配設し、前記測定用ヘッドに設けられた一対の第1
ノズルから該凹球面の直径部に対し計測用圧縮流体を噴
射して前記凹球面の最大内球径を検出する工程と、 前記最大内球径が検出された位置に前記測定用ヘッドを
維持した状態で、該測定用ヘッドに設けられた一対の第
2ノズルを介して前記凹球面の入口側内球径を測定する
とともに、前記測定用ヘッドに設けられた一対の第3ノ
ズルを介して前記凹球面の内方側内球径を測定する工程
と、 を有することを特徴とする内球径測定方法。
1. An inner sphere diameter measuring method for measuring the inner sphere diameter of a concave spherical surface provided on an object to be measured and having an arcuate cross section, wherein the inner sphere diameter is smaller than that of the concave sphere of the object to be measured. A measurement head having a shape substantially similar to a spherical surface is disposed at a fixed interval with respect to the concave spherical surface, and a pair of first heads provided on the measurement head are provided.
A step of injecting a measurement compressed fluid to a diameter portion of the concave sphere from a nozzle to detect a maximum inner sphere diameter of the concave sphere; and maintaining the measurement head at a position where the maximum inner sphere diameter is detected. In this state, the diameter of the inner sphere on the inlet side of the concave spherical surface is measured through a pair of second nozzles provided on the measuring head, and the diameter is measured through a pair of third nozzles provided on the measuring head. Measuring a diameter of the inner sphere on the inner side of the concave spherical surface.
【請求項2】請求項1記載の測定方法において、前記第
1乃至第3ノズルから計測用圧縮流体を噴射する際に、
前記被測定物と前記測定用ヘッドとを相対的に回転させ
て任意の位相角度位置で前記凹球面の内球径を測定する
ことを特徴とする内球径測定方法。
2. The measuring method according to claim 1, wherein when the compressed fluid for measurement is ejected from the first to third nozzles,
An inner sphere diameter measuring method, wherein the object to be measured and the measuring head are relatively rotated to measure the inner sphere diameter of the concave spherical surface at an arbitrary phase angle position.
【請求項3】被測定物に設けられた断面円弧状を有する
凹球面の内球径を測定するための内球径測定装置であっ
て、 前記被測定物の凹球面より小径でかつ該凹球面と略相似
形の測定用ヘッドを備え、 前記測定用ヘッドは、前記凹球面の直径部に対し計測用
圧縮流体を噴射する一対の第1ノズルと、 前記凹球面の入口側凹球面部に対し計測用圧縮流体を噴
射する一対の第2ノズルと、 該凹球面の内方側凹球面部に対し計測用圧縮流体を噴射
する一対の第3ノズルと、 を有するとともに、 前記第1ノズル乃至第3ノズルは、それぞれ異なる通路
を介してそれぞれ圧力検出器に連通することを特徴とす
る内球径測定装置。
3. An inner sphere diameter measuring device for measuring an inner sphere diameter of a concave spherical surface having an arc-shaped cross section provided on an object to be measured, wherein the inner sphere diameter is smaller than the concave spherical surface of the object to be measured and the concave is smaller. A measuring head having a substantially similar shape to a spherical surface, wherein the measuring head has a pair of first nozzles for injecting a measuring compressed fluid to a diameter portion of the concave spherical surface, and a concave spherical portion on an inlet side of the concave spherical surface. A pair of second nozzles for injecting the compressed fluid for measurement, and a pair of third nozzles for injecting the compressed fluid for measurement to the inner concave surface of the concave surface; An inner sphere diameter measuring device, wherein the third nozzle communicates with the pressure detector via different passages.
【請求項4】請求項3記載の測定装置において、前記第
1乃至第3ノズルは、それぞれ前記測定用ヘッドの軸方
向および直径方向に対して位相差を有して配置されるこ
とを特徴とする内球径測定装置。
4. The measuring apparatus according to claim 3, wherein the first to third nozzles are arranged so as to have a phase difference in the axial direction and the diametric direction of the measuring head. Inner diameter measuring device.
JP25680093A 1993-10-14 1993-10-14 Inner sphere diameter measuring method and apparatus Expired - Lifetime JP2855064B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25680093A JP2855064B2 (en) 1993-10-14 1993-10-14 Inner sphere diameter measuring method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25680093A JP2855064B2 (en) 1993-10-14 1993-10-14 Inner sphere diameter measuring method and apparatus

Publications (2)

Publication Number Publication Date
JPH07113627A JPH07113627A (en) 1995-05-02
JP2855064B2 true JP2855064B2 (en) 1999-02-10

Family

ID=17297621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25680093A Expired - Lifetime JP2855064B2 (en) 1993-10-14 1993-10-14 Inner sphere diameter measuring method and apparatus

Country Status (1)

Country Link
JP (1) JP2855064B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4840631B2 (en) * 2001-08-29 2011-12-21 株式会社東京精密 Inner diameter measuring method and apparatus
JP2009150780A (en) * 2007-12-20 2009-07-09 Honda Motor Co Ltd Back pressure type gas micrometer, and internal diameter simultaneous inspection system and internal diameter simultaneous inspection method of plurality of hole parts to be inspected

Also Published As

Publication number Publication date
JPH07113627A (en) 1995-05-02

Similar Documents

Publication Publication Date Title
JP3046636B2 (en) Method and apparatus for measuring objects such as screw parts and their materials
EP0315308B1 (en) Cylindrical coordinate measuring machine
CA1083341A (en) Valve seat concentricity gage
US20010049974A1 (en) NC machine tool having spindle run-out diagnosing function
CN105973188A (en) System and method for measurement of engine jet pipe axis
JP2855064B2 (en) Inner sphere diameter measuring method and apparatus
US4016747A (en) Method of and apparatus for checking the cylindricity of a test surface
US7258013B2 (en) Device and method to measure a bearing system
JP3390971B2 (en) Method and apparatus for measuring the inner diameter of a hole
JP3895255B2 (en) Fluid bearing inspection method and inspection apparatus
CN218724042U (en) Inner hole detection device
US6530143B1 (en) Apparatus for setting gaps in hydrodynamic bearing
US5705740A (en) Method and apparatus for measuring dynamic imbalance of sphere
US3449948A (en) Nozzle spray test device
JP3390970B2 (en) Hole shape measuring method and device
CN211717343U (en) Pneumatic measuring device for aperture size and verticality
JP3414362B2 (en) Outer diameter measuring method and device
JPH03176608A (en) Method and device for measuring rotation accuracy of roll bearing
JP3390969B2 (en) Groove shape measuring method and device
CN216205936U (en) Roundness measurement auxiliary clamp
JPS6334405B2 (en)
CN109297450A (en) A kind of equal diameter superdeep holes inside diameter measurement system based on flexible cable traction
JP2504561B2 (en) Shape measuring device
JP2005147867A (en) Apparatus for measuring inside diameter of sleeve for kinetic pressure bearing
US2916830A (en) Gaging apparatus