JPH07113627A - Method and equipment for measuring diameter of internal sphere - Google Patents

Method and equipment for measuring diameter of internal sphere

Info

Publication number
JPH07113627A
JPH07113627A JP25680093A JP25680093A JPH07113627A JP H07113627 A JPH07113627 A JP H07113627A JP 25680093 A JP25680093 A JP 25680093A JP 25680093 A JP25680093 A JP 25680093A JP H07113627 A JPH07113627 A JP H07113627A
Authority
JP
Japan
Prior art keywords
spherical surface
diameter
concave spherical
nozzles
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25680093A
Other languages
Japanese (ja)
Other versions
JP2855064B2 (en
Inventor
Atsushi Nagaoka
淳 長岡
Etsuo Nakayama
悦夫 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP25680093A priority Critical patent/JP2855064B2/en
Publication of JPH07113627A publication Critical patent/JPH07113627A/en
Application granted granted Critical
Publication of JP2855064B2 publication Critical patent/JP2855064B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Arrangements Characterized By The Use Of Fluids (AREA)

Abstract

PURPOSE:To measure the diameter of the internal sphere of a recessed spherical surface having an arcuate cross section mounted on an article to be measured simply with high accuracy. CONSTITUTION:A head 12 for measurement having a diameter smaller than the recessed spherical surface F of an article to be measured W and an approximately similar figure to the recessed spherical surface F is provided, and the head 12 has a pair of first nozzles 20a, 20b injecting a compressive fluid for measurement against the diametral section of the recessed spherical surface F, a pair of second nozzles 22a, 22b infecting the compressive fluid for measurement against the inlet-side recessed spherical surface section Fe of the recessed spherical surface F and a pair of third nozzles 24a, 24b injecting the compressive fluid for measurement against the inside recessed spherical surface section of the recessed spherical surface F.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、被測定物に設けられた
断面円弧状を有する凹球面の内球径を測定するための内
球径測定方法および装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an inner sphere diameter measuring method and apparatus for measuring the inner sphere diameter of a concave spherical surface having an arcuate cross section provided on an object to be measured.

【0002】[0002]

【従来の技術】例えば、等速継手のアウトボードアウタ
ーの凹球面や軸受の内輪のような環状部品の内径寸法、
内径真円度あるいは勾配度等を測定するために、流量式
空気マイクロメータが使用されている。
2. Description of the Related Art For example, the inner diameter of an annular component such as the concave spherical surface of the outboard outer of a constant velocity joint or the inner ring of a bearing,
A flow rate air micrometer is used to measure the roundness or the degree of gradient of the inner diameter.

【0003】この種の空気マイクロメータは、測定子と
して円筒状外周面を有するプラグゲージ(測定用ヘッ
ド)を備えており、このプラグゲージ先端部には、一対
のノズルが外周面に臨んで設けられている。そして、前
記空気マイクロメータで内径寸法を測定する際には、被
測定物の内輪の内径面に対応してプラグゲージ先端部が
配設された後、一対のノズルから前記内径面に圧縮流体
が噴射されて空気マイクロメータ表示部のテーパ管内の
フロートが背圧によって浮き上がる。従って、このフロ
ート位置の表示を読み取ることにより、被測定物の内輪
の内径寸法が測定される。
This type of air micrometer is provided with a plug gauge (measuring head) having a cylindrical outer peripheral surface as a probe, and a pair of nozzles are provided at the tip of this plug gauge so as to face the outer peripheral surface. Has been. Then, when measuring the inner diameter dimension with the air micrometer, after the plug gauge tip portion is disposed corresponding to the inner diameter surface of the inner ring of the object to be measured, compressed fluid from the pair of nozzles to the inner diameter surface. The float in the taper pipe of the air micrometer display is jetted and floats up due to the back pressure. Therefore, the inner diameter of the inner ring of the object to be measured is measured by reading the display of the float position.

【0004】ところで、図6に示すように、等速継手の
アウトボードアウターである被測定物Wに設けられた断
面円弧状の凹球面Fの内球径を測定する場合、まず、こ
の内球径より小径でかつ相似形に形成されたプラグゲー
ジ先端部が、前記凹球面Fに対応して配置される。次い
で、プラグゲージ先端部に設けられた一対のノズルを介
して凹球面Fの直径部の内径(中央径)が測定された
後、このプラグゲージ先端部が所定角度傾動されて一方
のノズルを前記凹球面Fの入口側端部近傍に指向して配
置させるとともに、他方のノズルを該凹球面Fの内方側
に指向して配置させる。この状態で圧縮流体が噴射され
て凹球面Fの対角径が測定され、さらにプラグゲージ先
端部が反対側に傾動されて該反対側対角径が測定され
る。
By the way, as shown in FIG. 6, when the inner spherical diameter of a concave spherical surface F having an arcuate cross section provided on an object to be measured W, which is an outboard outer of a constant velocity joint, is measured, first of all, A plug gauge tip portion having a smaller diameter and a similar shape is arranged corresponding to the concave spherical surface F. Then, after the inner diameter (center diameter) of the diameter portion of the concave spherical surface F is measured through a pair of nozzles provided at the tip of the plug gauge, the tip of the plug gauge is tilted by a predetermined angle and one of the nozzles is The nozzle is arranged near the inlet side end of the concave spherical surface F, and the other nozzle is arranged toward the inner side of the concave spherical surface F. In this state, the compressed fluid is jetted to measure the diagonal diameter of the concave spherical surface F, and the tip end portion of the plug gauge is tilted to the opposite side to measure the opposite diagonal diameter.

【0005】すなわち、図6において、凹球面Fの中央
径Gと対角径H1、H2を測定することにより、凹球面
Fの内球径が設定されることになる。
That is, in FIG. 6, the inner diameter of the concave spherical surface F is set by measuring the central diameter G of the concave spherical surface F and the diagonal diameters H1 and H2.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記の
従来技術では、内球径測定に際してプラグゲージ先端部
の直径方向に設けられたそれぞれのノズルが、凹球面F
に対向していなければならない。一方のノズルが凹球面
Fから外れると、この一方のノズルから噴射される圧縮
流体が外部に流出してしまい、前記凹球面Fの内球径測
定作業が不可能となるからである。このため、従来の空
気マイクロメータでは、凹球面Fにおいて測定可能な範
囲α°と測定不可能な範囲β°とが存在してしまう。と
ころが、この測定不可能範囲β°における内球径が十分
に管理されていないと、組み付け後のトルクが変動する
等の不具合が生じてしまい、従って、凹球面F全面を高
精度かつ容易に管理することが望まれている。
However, in the above-mentioned prior art, when measuring the inner sphere diameter, each nozzle provided in the diametrical direction of the tip portion of the plug gauge has a concave spherical surface F.
Must be facing. This is because if one of the nozzles deviates from the concave spherical surface F, the compressed fluid ejected from this one nozzle will flow out to the outside, making it impossible to measure the inner diameter of the concave spherical surface F. Therefore, in the conventional air micrometer, the measurable range α ° and the unmeasurable range β ° exist on the concave spherical surface F. However, if the inner sphere diameter in this unmeasurable range β ° is not sufficiently controlled, problems such as fluctuations in torque after assembly occur, and therefore the entire concave spherical surface F can be easily and accurately controlled. Is desired.

【0007】本発明は、この種の問題を解決するための
ものであり、被測定物に設けられた断面円弧状を有する
凹球面の内球径を簡単かつ高精度に測定することが可能
な内球径測定方法および装置を提供することを目的とす
る。
The present invention is for solving this kind of problem, and it is possible to measure the inner spherical diameter of a concave spherical surface having an arcuate cross section provided on the object to be measured easily and with high accuracy. An object is to provide a method and an apparatus for measuring the inner diameter.

【0008】[0008]

【課題を解決するための手段】前記の目的を達成するた
めに、本発明は、被測定物に設けられた断面円弧状を有
する凹球面の内球径を測定するための内球径測定方法で
あって、前記被測定物の凹球面より小径でかつ該凹球面
と略相似形の測定用ヘッドを、前記凹球面に対して一定
間隔を有して配設し、前記測定用ヘッドに設けられた一
対の第1ノズルから該凹球面の直径部に対し計測用圧縮
流体を噴射して前記凹球面の最大内球径を検出する工程
と、前記最大内球径が検出された位置に前記測定用ヘッ
ドを維持した状態で、該測定用ヘッドに設けられた一対
の第2ノズルを介して前記凹球面の入口側内球径を測定
するとともに、前記測定用ヘッドに設けられた一対の第
3ノズルを介して前記凹球面の内方側内球径を測定する
工程と、を有することを特徴とする。
In order to achieve the above object, the present invention provides an inner sphere diameter measuring method for measuring the inner sphere diameter of a concave spherical surface having an arcuate cross section provided on an object to be measured. A measuring head having a diameter smaller than that of the concave spherical surface of the object to be measured and having a shape substantially similar to that of the concave spherical surface is provided at a constant interval with respect to the concave spherical surface, and is provided on the measuring head. Detecting a maximum inner spherical diameter of the concave spherical surface by injecting a measurement compressed fluid from the pair of first nozzles to the diameter portion of the concave spherical surface, and at the position where the maximum inner spherical diameter is detected. While maintaining the measurement head, the inner spherical diameter on the inlet side of the concave spherical surface is measured through a pair of second nozzles provided on the measurement head, and a pair of first nozzles provided on the measurement head are measured. Measuring the inner spherical diameter of the concave spherical surface through three nozzles. And wherein the door.

【0009】また、前記第1乃至第3ノズルから計測用
圧縮流体を噴射する際に、前記被測定物と前記測定用ヘ
ッドとを相対的に回転させて任意の位相角度位置で前記
凹球面の内球径を測定することが好ましい。
Further, when jetting the measurement compressed fluid from the first to third nozzles, the object to be measured and the measurement head are relatively rotated to move the concave spherical surface at an arbitrary phase angle position. It is preferable to measure the inner spherical diameter.

【0010】さらに、本発明は、被測定物に設けられた
断面円弧状を有する凹球面の内球径を測定するための内
球径測定装置であって、前記被測定物の凹球面より小径
でかつ該凹球面と略相似形の測定用ヘッドを備え、前記
測定用ヘッドは、前記凹球面の直径部に対し計測用圧縮
流体を噴射する一対の第1ノズルと、前記凹球面の入口
側凹球面部に対し計測用圧縮流体を噴射する一対の第2
ノズルと、該凹球面の内方側凹球面部に対し計測用圧縮
流体を噴射する一対の第3ノズルと、を有するととも
に、前記第1ノズル乃至第3ノズルは、それぞれ異なる
通路を介してそれぞれ圧力検出器に連通することを特徴
とする。
Furthermore, the present invention is an inner sphere diameter measuring device for measuring the inner sphere diameter of a concave spherical surface having an arcuate cross section provided on a measured object, the diameter being smaller than the concave spherical surface of the measured object. And a measurement head having a shape similar to that of the concave spherical surface, wherein the measurement head includes a pair of first nozzles for injecting a measurement compressed fluid to a diameter portion of the concave spherical surface, and an inlet side of the concave spherical surface. A pair of second jets for injecting the measurement compressed fluid to the concave spherical surface portion
The nozzle has a nozzle and a pair of third nozzles for injecting a measurement compressed fluid toward the concave spherical surface portion on the inner side of the concave spherical surface, and the first nozzle to the third nozzle are respectively passed through different passages. It is characterized in that it communicates with a pressure detector.

【0011】また、前記第1乃至第3ノズルが、それぞ
れ前記測定用ヘッドの軸方向および直径方向に対して位
相差を有して配置されることが好ましい。
Further, it is preferable that the first to third nozzles are arranged with a phase difference in the axial direction and the diametrical direction of the measuring head, respectively.

【0012】[0012]

【作用】上記の本発明に係る内球径測定方法および装置
では、測定用ヘッドに設けられた一対の第1ノズルを介
して凹球面の最大内球径が検出された後、その位置に前
記測定用ヘッドを維持しつつ一対の第2ノズルおよび一
対の第3ノズルを介して前記凹球面の入口側内球径およ
び内方側内球径がそれぞれ測定される。このため、測定
用ヘッドを凹球面内に正確に位置決め保持することがで
き、前記測定用ヘッドを傾動させることなく前記凹球面
の入口側内球径および内方側内球径の測定作業を行うこ
とが可能になる。これにより、操作が一挙に簡素化する
とともに、迅速かつ容易に測定作業が遂行され、しかも
測定不良を有効に阻止できる。
In the above-described inner sphere diameter measuring method and apparatus according to the present invention, the maximum inner sphere diameter of the concave spherical surface is detected through the pair of first nozzles provided in the measuring head, and then the position is measured at the position. The inlet-side inner sphere diameter and the inner-side inner sphere diameter of the concave spherical surface are measured through the pair of second nozzles and the pair of third nozzles while maintaining the measuring head. Therefore, the measuring head can be accurately positioned and held in the concave spherical surface, and the measurement work of the inner spherical diameter on the inlet side and the inner spherical diameter of the concave spherical surface can be performed without tilting the measuring head. It will be possible. As a result, the operation is simplified at once, the measurement work is performed quickly and easily, and the measurement failure can be effectively prevented.

【0013】また、第1乃至第3ノズルから計測用圧縮
流体を噴射する際に、被測定物と測定用ヘッドとを相対
的に回転させて任意の位相角度位置で凹球面の内球径を
測定すれば、該内球径の測定精度がさらに向上する。
Further, when the measurement compressed fluid is ejected from the first to third nozzles, the object to be measured and the measurement head are relatively rotated to set the inner spherical diameter of the concave spherical surface at an arbitrary phase angle position. If it is measured, the measurement accuracy of the inner spherical diameter is further improved.

【0014】さらにまた、第1乃至第3ノズルが、それ
ぞれ測定用ヘッドの軸方向および直径方向に対して位相
差を有して配置されると、噴出される圧縮流体同士の干
渉を確実に阻止することができる。
Furthermore, when the first to third nozzles are arranged so as to have a phase difference with respect to the axial direction and the diametrical direction of the measuring head, respectively, the interference of the jetted compressed fluids is reliably prevented. can do.

【0015】[0015]

【実施例】本発明に係る内球径測定方法および装置につ
いて実施例を挙げ、添付の図面を参照して以下に説明す
る。
Embodiments of the method and apparatus for measuring the inner spherical diameter according to the present invention will be described below with reference to the accompanying drawings.

【0016】図1において、参照数字10は、本実施例
に係る内球径測定装置を示す。この内球径測定装置10
は、測定用ヘッド12と、このヘッド12を固着する支
持棒体14と、この支持棒体14に形成された第1通路
16a、第2通路16bおよび第3通路16cに連通す
る第1圧力検出器18a、第2圧力検出器18bおよび
第3圧力検出器18cとを備える。
In FIG. 1, reference numeral 10 indicates an inner sphere diameter measuring apparatus according to this embodiment. This inner diameter measuring device 10
Is the first pressure detection communicating with the measurement head 12, the support rod 14 that fixes the head 12, and the first passage 16a, the second passage 16b, and the third passage 16c formed in the support rod 14. And a second pressure detector 18b and a third pressure detector 18c.

【0017】ヘッド12は、被測定物Wの凹球面Fより
小径でかつ該凹球面Fと略相似形を有しており、図2に
示すように、この凹球面Fの直径部(中央径Gに対応)
に対し計測用圧縮流体を噴射する一対の第1ノズル20
a、20bと、前記凹球面Fの入口側凹球面部Feに対
し計測用圧縮流体を噴射する一対の第2ノズル22a、
22bと、該凹球面Fの内方側凹球面部Fiに対し計測
用圧縮流体を噴射する一対の第3ノズル24a、24b
とを備える。凹球面Fは真円でなく、第1ノズル20
a、20bと直径部との距離C1と、第2ノズル22
a、22bと入口側凹球面部Feとの距離C2と、第3
ノズル24a、24bと内方側凹球面部Fiとの距離C
3とは、それぞれ異なっている。
The head 12 has a diameter smaller than that of the concave spherical surface F of the object to be measured W and has a shape substantially similar to the concave spherical surface F. As shown in FIG. (Compatible with G)
To the pair of first nozzles 20 for injecting the measurement compressed fluid
a, 20b and a pair of second nozzles 22a for injecting a measurement compressed fluid onto the concave spherical surface portion Fe on the inlet side of the concave spherical surface F,
22b and a pair of third nozzles 24a, 24b for injecting the measurement compressed fluid onto the concave spherical surface portion Fi on the inner side of the concave spherical surface F.
With. The concave spherical surface F is not a perfect circle, but the first nozzle 20
a, 20b and the distance C1 between the diameter portion and the second nozzle 22
a, 22b and the distance C2 between the concave spherical surface Fe on the inlet side,
Distance C between nozzles 24a, 24b and inward concave spherical surface portion Fi
3 is different from each.

【0018】図3に示すように、第1ノズル20a、第
2ノズル22aおよび第3ノズル24aは、ヘッド12
の軸方向(矢印X方向)に対して同一線上に配置されて
おり、図4に示すように、第1ノズル20b、第2ノズ
ル22bおよび第3ノズル24bは、前記ヘッド12の
軸方向(矢印X方向)およびこれに直交する直径方向
(矢印Y方向)に対して位相差を有して配置される。
As shown in FIG. 3, the first nozzle 20a, the second nozzle 22a and the third nozzle 24a are connected to the head 12
Of the first nozzle 20b, the second nozzle 22b, and the third nozzle 24b are arranged on the same line with respect to the axial direction (arrow X direction) of the head 12, as shown in FIG. They are arranged with a phase difference in the X direction) and the diametrical direction (arrow Y direction) orthogonal thereto.

【0019】第1ノズル20a、20bは、ヘッド12
内で互いに一体化されて第1通路16aに連通し、第2
ノズル22a、22bおよび第3ノズル24a、24b
も同様に、それぞれ互いに一体化されて第2通路16b
および第3通路16cに連通する(図1参照)。第1通
路16a乃至第3通路16cは、支持棒体14の中心と
同心的な仮想円周上に等角度間隔ずつ離間して設けられ
る(図5参照)。
The first nozzles 20a and 20b are the head 12
Are integrated with each other and communicate with the first passage 16a,
Nozzles 22a, 22b and third nozzles 24a, 24b
Similarly, the second passages 16b are integrally formed with each other.
And communicates with the third passage 16c (see FIG. 1). The first passage 16a to the third passage 16c are provided at equal angular intervals on a virtual circumference concentric with the center of the support rod 14 (see FIG. 5).

【0020】次に、このように構成される内球径測定装
置10の動作について、本実施例に係る内球径測定方法
との関連で説明する。
Next, the operation of the inner sphere diameter measuring apparatus 10 thus constructed will be described in relation to the inner sphere diameter measuring method according to this embodiment.

【0021】被測定物Wは、図1に示すように鉛直姿勢
で保持されており、内球径測定装置10を構成するヘッ
ド12が、前記被測定物Wの上方から下降されて該被測
定物Wの凹球面Fに対して一定間隔を有して配設され
る。そして、まず、支持棒体14の第1通路16aに圧
縮流体が供給されてヘッド12に設けられた一対の第1
ノズル20a、20bから凹球面Fの直径部に対し計測
用圧縮流体が噴射される。このため、第1圧力検出器1
8aを介して直径部の内球径、すなわち、中央径Gが測
定され、ヘッド12の位置を上下に変更させることによ
って該直径部の最大内球径が検出され、この最大内球径
が検出された位置に前記ヘッド12を維持する。凹球面
Fが真円でないため(図2参照)、直径部の最大内球径
に対応する位置にヘッド12を配置させる必要があるか
らである。
The object to be measured W is held in a vertical posture as shown in FIG. 1, and the head 12 constituting the inner diameter measuring device 10 is lowered from above the object to be measured W to be measured. It is arranged at a constant distance from the concave spherical surface F of the object W. Then, first, the compressed fluid is supplied to the first passage 16 a of the support rod body 14 to provide a pair of first
The measurement compressed fluid is jetted from the nozzles 20a and 20b to the diameter portion of the concave spherical surface F. Therefore, the first pressure detector 1
The inner sphere diameter of the diameter portion, that is, the central diameter G is measured via 8a, and the maximum inner sphere diameter of the diameter portion is detected by changing the position of the head 12 up and down. The head 12 is maintained at the set position. This is because the concave spherical surface F is not a perfect circle (see FIG. 2), and the head 12 needs to be arranged at a position corresponding to the maximum inner spherical diameter of the diameter portion.

【0022】次いで、ヘッド12に設けられた一対の第
2ノズル22a、22bを介して入口側凹球面部Feの
内球径(入口側内球径)が測定されるとともに、前記ヘ
ッド12に設けられた一対の第3ノズル24a、24b
を介して内方側凹球面部Fiの内球径(内方側内球径)
が測定される。すなわち、第2通路16bに圧縮流体が
供給されると、この圧縮流体は、ヘッド12内で分岐し
て第2ノズル22a、22bから入口側凹球面部Feに
噴射されてその内球径が第2圧力検出器18bにより測
定される。一方、第3通路16cに供給される圧縮流体
は、第3ノズル24a、24bから内方側凹球面部Fi
に噴射され、その内球径が第3圧力検出器18cによっ
て測定される。
Next, the inner spherical diameter of the concave spherical surface Fe on the inlet side (inner spherical diameter on the inlet side) is measured through a pair of second nozzles 22a and 22b provided on the head 12, and the head 12 is provided with the inner spherical diameter. Paired third nozzles 24a, 24b
Through the inner concave spherical surface portion Fi (inner inner spherical diameter)
Is measured. That is, when the compressed fluid is supplied to the second passage 16b, the compressed fluid branches in the head 12 and is ejected from the second nozzles 22a and 22b to the inlet-side concave spherical surface portion Fe so that the inner spherical diameter thereof is the first. 2 Measured by the pressure detector 18b. On the other hand, the compressed fluid supplied to the third passage 16c passes from the third nozzles 24a and 24b to the inward concave spherical surface portion Fi.
And the inner diameter thereof is measured by the third pressure detector 18c.

【0023】そこで、各測定結果が規定範囲内にあるか
否かが判断され、凹球面Fの内球径が検出されることに
なる。
Therefore, it is judged whether or not each measurement result is within the specified range, and the inner spherical diameter of the concave spherical surface F is detected.

【0024】この場合、本実施例では、ヘッド12に設
けられた一対の第1ノズル20a、20bを介して凹球
面Fの最大内球径が検出された後、その位置に前記ヘッ
ド12が維持された状態で、一対の第2ノズル22a、
22bおよび一対の第3ノズル24a、24bを介して
前記凹球面Fの入口側内球径および内方側内球径がそれ
ぞれ測定される。このため、従来のようにヘッド12を
傾動させる必要がなく、凹球面Fの入口側内球径および
内方側内球径の測定作業を簡単かつ迅速に行うことがで
きる。しかも、ヘッド12を凹球面Fに対して正確に位
置決めすることが可能になり、該凹球面Fの内球径測定
作業全体を高精度かつ効率的に遂行し得るという効果が
得られる。また、従来、測定不可能であった内方側凹球
面部Fi(図2および図5参照)の内球径を容易に測定
することができる。
In this case, in this embodiment, after the maximum inner spherical diameter of the concave spherical surface F is detected via the pair of first nozzles 20a, 20b provided on the head 12, the head 12 is maintained at that position. The pair of second nozzles 22a,
The inner diameter of the concave spherical surface F on the inlet side and the inner diameter of the concave side F are measured via 22b and the pair of third nozzles 24a and 24b. Therefore, it is not necessary to tilt the head 12 as in the conventional case, and the work of measuring the inner diameter of the concave spherical surface F on the inlet side and the inner diameter of the inner side can be performed easily and quickly. Moreover, it is possible to accurately position the head 12 with respect to the concave spherical surface F, and it is possible to obtain the effect that the entire measuring operation of the inner spherical diameter of the concave spherical surface F can be performed with high accuracy and efficiency. Further, it is possible to easily measure the inner spherical diameter of the inward concave spherical surface portion Fi (see FIGS. 2 and 5), which was conventionally impossible to measure.

【0025】なお、本実施例では、ヘッド12を凹球面
Fに対向させて保持した状態でこの凹球面Fの内球径を
測定しているが、前記ヘッド12または被測定物Wを所
定角度ずつ間歇的に回転させ、例えば120°ずつ回転
させて3ヶ所の測定を行うことが可能である。これによ
り、内球径の測定精度がさらに向上するという利点が得
られる。
In this embodiment, the inner spherical diameter of the concave spherical surface F is measured while the head 12 is held facing the concave spherical surface F. However, the head 12 or the object to be measured W is measured at a predetermined angle. It is possible to intermittently rotate each of them, for example, rotate each of 120 ° to perform measurement at three points. Thereby, there is an advantage that the measurement accuracy of the inner sphere diameter is further improved.

【0026】また、第1ノズル20b、第2ノズル22
bおよび第3ノズル24bが、それぞれヘッド12の軸
方向(矢印X方向)および直径方向(矢印Y方向)に対
して位相差を有して配置されている。従って、入口側凹
球面部Feの内球径の測定作業と内方側凹球面部Fiの
内球径の測定作業とを同時に行う際、第2ノズル22b
と第3ノズル24bとから噴射される圧縮流体の干渉を
有効に阻止することができるという効果がある。このた
め、第1ノズル20a、第2ノズル22aおよび第3ノ
ズル24aを、それぞれヘッド12の軸方向および直径
方向に対して位相差を有して配置してもよい。
Further, the first nozzle 20b and the second nozzle 22
b and the third nozzle 24b are arranged with a phase difference with respect to the axial direction (arrow X direction) and the diameter direction (arrow Y direction) of the head 12, respectively. Therefore, when the work of measuring the inner sphere diameter of the inlet-side concave spherical surface portion Fe and the work of measuring the inner sphere diameter of the inner-side concave spherical surface portion Fi are simultaneously performed, the second nozzle 22b
And the interference of the compressed fluid ejected from the third nozzle 24b can be effectively prevented. Therefore, the first nozzle 20a, the second nozzle 22a, and the third nozzle 24a may be arranged with a phase difference in the axial direction and the diametrical direction of the head 12, respectively.

【0027】[0027]

【発明の効果】本発明に係る内球径測定方法および装置
によれば、以下の効果乃至利点が得られる。
According to the inner sphere diameter measuring method and apparatus of the present invention, the following effects and advantages can be obtained.

【0028】測定用ヘッドに設けられた一対の第1ノズ
ルを介して凹球面の最大内球径が検出された後、その位
置に前記測定用ヘッドを維持しつつ一対の第2ノズルお
よび一対の第3ノズルを介して前記凹球面の入口側内球
径および内方側内球径がそれぞれ測定されるため、前記
測定用ヘッドを傾動させることなく前記凹球面の入口側
内球径および内方側内球径の測定作業を行うことが可能
になる。これにより、操作が一挙に簡素化するととも
に、迅速かつ容易に測定作業が遂行され、しかも測定不
良が有効に阻止できる。
After the maximum inner spherical diameter of the concave spherical surface is detected through the pair of first nozzles provided on the measuring head, the pair of second nozzles and the pair of second nozzles and the pair of second nozzles are maintained while maintaining the measuring head at that position. Since the inlet-side inner sphere diameter and the inner-side inner sphere diameter of the concave spherical surface are measured via the third nozzle, respectively, the inlet-side inner sphere diameter and the inner side spherical diameter of the concave spherical surface can be measured without tilting the measuring head. It becomes possible to perform the work of measuring the inner spherical diameter. As a result, the operation can be simplified at once, the measurement work can be performed quickly and easily, and the measurement failure can be effectively prevented.

【0029】また、第1乃至第3ノズルから計測用圧縮
流体を噴射する際に、被測定物と測定用ヘッドとを相対
的に回転させて任意の位相角度位置で凹球面の内球径を
測定することにより、該内球径の測定精度がさらに向上
する。
When the measurement compressed fluid is jetted from the first to third nozzles, the object to be measured and the measurement head are relatively rotated to set the inner spherical diameter of the concave spherical surface at an arbitrary phase angle position. By measuring, the measurement accuracy of the inner sphere diameter is further improved.

【0030】さらにまた、第1乃至第3ノズルが、それ
ぞれ測定用ヘッドの軸方向および直径方向に対して位相
差を有して配置されると、噴出される圧縮流体同士の干
渉を確実に阻止することができ、測定誤差が可及的に削
減される。
Furthermore, when the first to third nozzles are arranged so as to have a phase difference with respect to the axial direction and the diametrical direction of the measuring head, respectively, it is possible to reliably prevent interference between the jetted compressed fluids. The measurement error can be reduced as much as possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に係る内球径測定装置の概略構
成図である。
FIG. 1 is a schematic configuration diagram of an inner sphere diameter measuring apparatus according to an embodiment of the present invention.

【図2】前記内球径測定装置を構成するヘッドと被測定
物の凹球面の拡大説明図である。
FIG. 2 is an enlarged explanatory view of a concave spherical surface of a head and an object to be measured which constitute the inner diameter measuring device.

【図3】前記内球径測定装置を構成するヘッドの一方の
側面図である。
FIG. 3 is a side view of one of the heads constituting the inner diameter measuring device.

【図4】前記内球径測定装置を構成するヘッドの他方の
側面図である。
FIG. 4 is a side view of the other side of the head constituting the inner sphere diameter measuring device.

【図5】前記内球径測定装置を構成する支持棒体の断面
平面図である。
FIG. 5 is a cross-sectional plan view of a support rod that constitutes the inner sphere diameter measuring device.

【図6】被測定物の一部断面説明図である。FIG. 6 is a partial cross-sectional explanatory view of an object to be measured.

【符号の説明】[Explanation of symbols]

10…内球径測定装置 12…ヘッド 14…支持棒体 16a〜16c
…通路 18a〜18c…圧力検出器 20a、20b、22a、22b、24a、24b…ノ
ズル G…中央径 F…凹球面 Fe…入口側凹球面部 Fi…内方側凹
球面部
DESCRIPTION OF SYMBOLS 10 ... Inner sphere diameter measuring device 12 ... Head 14 ... Support rod 16a-16c
... passages 18a to 18c ... pressure detectors 20a, 20b, 22a, 22b, 24a, 24b ... nozzle G ... central diameter F ... concave spherical surface Fe ... inlet concave spherical surface portion Fi ... inward concave spherical surface portion

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】被測定物に設けられた断面円弧状を有する
凹球面の内球径を測定するための内球径測定方法であっ
て、 前記被測定物の凹球面より小径でかつ該凹球面と略相似
形の測定用ヘッドを、前記凹球面に対して一定間隔を有
して配設し、前記測定用ヘッドに設けられた一対の第1
ノズルから該凹球面の直径部に対し計測用圧縮流体を噴
射して前記凹球面の最大内球径を検出する工程と、 前記最大内球径が検出された位置に前記測定用ヘッドを
維持した状態で、該測定用ヘッドに設けられた一対の第
2ノズルを介して前記凹球面の入口側内球径を測定する
とともに、前記測定用ヘッドに設けられた一対の第3ノ
ズルを介して前記凹球面の内方側内球径を測定する工程
と、 を有することを特徴とする内球径測定方法。
1. An inner sphere diameter measuring method for measuring an inner sphere diameter of a concave spherical surface having an arcuate cross section provided on an object to be measured, the inner sphere diameter being smaller than that of the concave spherical surface of the object to be measured. A measuring head having a shape similar to that of a spherical surface is arranged at a constant interval with respect to the concave spherical surface, and a pair of first heads is provided on the measuring head.
A step of ejecting a measurement compressed fluid from a nozzle onto the diameter portion of the concave spherical surface to detect the maximum inner spherical diameter of the concave spherical surface; and maintaining the measuring head at the position where the maximum inner spherical diameter is detected. In this state, the inner diameter of the concave spherical surface on the inlet side is measured through a pair of second nozzles provided in the measurement head, and the measurement is performed through a pair of third nozzles provided in the measurement head. An inner sphere diameter measuring method comprising: a step of measuring an inner sphere diameter on an inner side of a concave spherical surface.
【請求項2】請求項1記載の測定方法において、前記第
1乃至第3ノズルから計測用圧縮流体を噴射する際に、
前記被測定物と前記測定用ヘッドとを相対的に回転させ
て任意の位相角度位置で前記凹球面の内球径を測定する
ことを特徴とする内球径測定方法。
2. The measuring method according to claim 1, wherein when the measurement compressed fluid is jetted from the first to third nozzles,
An inner sphere diameter measuring method, characterized in that the object to be measured and the measuring head are relatively rotated to measure the inner sphere diameter of the concave spherical surface at an arbitrary phase angle position.
【請求項3】被測定物に設けられた断面円弧状を有する
凹球面の内球径を測定するための内球径測定装置であっ
て、 前記被測定物の凹球面より小径でかつ該凹球面と略相似
形の測定用ヘッドを備え、 前記測定用ヘッドは、前記凹球面の直径部に対し計測用
圧縮流体を噴射する一対の第1ノズルと、 前記凹球面の入口側凹球面部に対し計測用圧縮流体を噴
射する一対の第2ノズルと、 該凹球面の内方側凹球面部に対し計測用圧縮流体を噴射
する一対の第3ノズルと、 を有するとともに、 前記第1ノズル乃至第3ノズルは、それぞれ異なる通路
を介してそれぞれ圧力検出器に連通することを特徴とす
る内球径測定装置。
3. An inner spherical diameter measuring device for measuring an inner spherical diameter of a concave spherical surface having an arcuate cross section provided on an object to be measured, the inner spherical diameter being smaller than the concave spherical surface of the object to be measured. A measuring head having a shape similar to that of a spherical surface is provided, wherein the measuring head has a pair of first nozzles for injecting a measurement compressed fluid to a diameter portion of the concave spherical surface, and an inlet side concave spherical surface portion of the concave spherical surface. A pair of second nozzles for ejecting the measurement compressed fluid, and a pair of third nozzles for ejecting the measurement compressed fluid to the inner concave spherical surface of the concave spherical surface, and the first nozzle to The inner diameter measuring device is characterized in that the third nozzle communicates with the pressure detector through different passages.
【請求項4】請求項3記載の測定装置において、前記第
1乃至第3ノズルは、それぞれ前記測定用ヘッドの軸方
向および直径方向に対して位相差を有して配置されるこ
とを特徴とする内球径測定装置。
4. The measuring device according to claim 3, wherein the first to third nozzles are arranged with a phase difference with respect to the axial direction and the diametrical direction of the measuring head, respectively. Inner sphere diameter measuring device.
JP25680093A 1993-10-14 1993-10-14 Inner sphere diameter measuring method and apparatus Expired - Lifetime JP2855064B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25680093A JP2855064B2 (en) 1993-10-14 1993-10-14 Inner sphere diameter measuring method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25680093A JP2855064B2 (en) 1993-10-14 1993-10-14 Inner sphere diameter measuring method and apparatus

Publications (2)

Publication Number Publication Date
JPH07113627A true JPH07113627A (en) 1995-05-02
JP2855064B2 JP2855064B2 (en) 1999-02-10

Family

ID=17297621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25680093A Expired - Lifetime JP2855064B2 (en) 1993-10-14 1993-10-14 Inner sphere diameter measuring method and apparatus

Country Status (1)

Country Link
JP (1) JP2855064B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003065742A (en) * 2001-08-29 2003-03-05 Tokyo Seimitsu Co Ltd Method and device for measuring inside diameter
JP2009150780A (en) * 2007-12-20 2009-07-09 Honda Motor Co Ltd Back pressure type gas micrometer, and internal diameter simultaneous inspection system and internal diameter simultaneous inspection method of plurality of hole parts to be inspected

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003065742A (en) * 2001-08-29 2003-03-05 Tokyo Seimitsu Co Ltd Method and device for measuring inside diameter
JP2009150780A (en) * 2007-12-20 2009-07-09 Honda Motor Co Ltd Back pressure type gas micrometer, and internal diameter simultaneous inspection system and internal diameter simultaneous inspection method of plurality of hole parts to be inspected

Also Published As

Publication number Publication date
JP2855064B2 (en) 1999-02-10

Similar Documents

Publication Publication Date Title
US4696194A (en) Fluid flow measurement
US4034478A (en) Valve seat concentricity gage
US5134781A (en) Geometric simulator for coordinate measuring machine
CN103868984A (en) Device for detecting damage to inner surface of overground high-pressure manifold
CN105973188A (en) System and method for measurement of engine jet pipe axis
JPH0814871A (en) Pneumatic micrometer device
US4016747A (en) Method of and apparatus for checking the cylindricity of a test surface
JP3390971B2 (en) Method and apparatus for measuring the inner diameter of a hole
JPH07113627A (en) Method and equipment for measuring diameter of internal sphere
CN101701786B (en) Low-heat expansion quartz gauge rod as well as demarcating method and application thereof
US20050274190A1 (en) Device and method to measure a bearing system
CN105115378B (en) A kind of hole heart coordinate setting measurement apparatus
US5705740A (en) Method and apparatus for measuring dynamic imbalance of sphere
JP2009079943A (en) Outer diameter deflection measuring device
US3449948A (en) Nozzle spray test device
JP3390970B2 (en) Hole shape measuring method and device
CN211717343U (en) Pneumatic measuring device for aperture size and verticality
CN109141328A (en) Measure contact, measurement component and measuring device
CN108827214A (en) A kind of detection device and method of super large type bearing ring outer diameter
JP3414362B2 (en) Outer diameter measuring method and device
US2751778A (en) Measurement apparatus for checking up the inside of hollow pieces
CN106767320A (en) A kind of detecting tool for quick and precisely detecting part pit defect depth dimensions
JP2000171229A (en) Pneumatic measuring apparatus
JPS6063438A (en) Method and device for leak detection
JPS59182329A (en) Leakage detector and method thereof