JP3390971B2 - Method and apparatus for measuring the inner diameter of a hole - Google Patents

Method and apparatus for measuring the inner diameter of a hole

Info

Publication number
JP3390971B2
JP3390971B2 JP2000185773A JP2000185773A JP3390971B2 JP 3390971 B2 JP3390971 B2 JP 3390971B2 JP 2000185773 A JP2000185773 A JP 2000185773A JP 2000185773 A JP2000185773 A JP 2000185773A JP 3390971 B2 JP3390971 B2 JP 3390971B2
Authority
JP
Japan
Prior art keywords
hole
measuring
float
inner diameter
sphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000185773A
Other languages
Japanese (ja)
Other versions
JP2001317928A (en
Inventor
進 沢藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Seimitsu Co Ltd
Original Assignee
Tokyo Seimitsu Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26586405&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3390971(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Tokyo Seimitsu Co Ltd filed Critical Tokyo Seimitsu Co Ltd
Priority to JP2000185773A priority Critical patent/JP3390971B2/en
Publication of JP2001317928A publication Critical patent/JP2001317928A/en
Application granted granted Critical
Publication of JP3390971B2 publication Critical patent/JP3390971B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ワークに形成され
た穴の内径を測定する穴の内径測定方法及び装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hole inner diameter measuring method and apparatus for measuring the inner diameter of a hole formed in a workpiece.

【0002】[0002]

【従来の技術】ワークに形成された穴の内径を測定する
測定装置の一つとして、空気マイクロメータがある。従
来の空気マイクロメータは、図26及び図27に示すよ
うに、測定ヘッド1をワーク2の穴3に挿入し、測定ヘ
ッド1のノズル4、4から圧縮空気を噴射し、ノズル4
の背圧を検出する。ノズル4の背圧は、ノズル4と穴3
の内壁との間隔に依存するので、予め求めたマスターの
基準値と比較することによって、前記検出値を穴3の内
径の寸法に換算することができる。このような空気マイ
クロメータは、ワーク2と非接触で、高精度に穴3の内
径を測定できる利点がある。
2. Description of the Related Art An air micrometer is one of the measuring devices for measuring the inner diameter of a hole formed in a work. The conventional air micrometer, as shown in FIGS. 26 and 27, inserts the measuring head 1 into the hole 3 of the work 2, injects compressed air from the nozzles 4 and 4 of the measuring head 1, and
To detect the back pressure of. The back pressure of the nozzle 4 is the nozzle 4 and the hole 3
Since it depends on the distance from the inner wall of the hole, the detected value can be converted into the size of the inner diameter of the hole 3 by comparing with the reference value of the master obtained in advance. Such an air micrometer has an advantage that the inner diameter of the hole 3 can be measured with high accuracy without contacting the work 2.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来の
空気マイクロメータは、図26に示すように、測定ヘッ
ド1の中心が穴3の中心からずれた場合、穴3の内径か
らずれた位置を測定することになり、偏心誤差が発生し
て測定精度が低下するという欠点があった。また、従来
の空気マイクロメータは、図27に示すように、測定ヘ
ッド1が穴3に傾いて挿入された場合、穴3の半径を斜
めに測定することになり、角度誤差が発生して測定精度
が低下するという欠点があった。
However, the conventional air micrometer measures the position deviated from the inner diameter of the hole 3 when the center of the measuring head 1 deviates from the center of the hole 3, as shown in FIG. Therefore, there is a drawback that an eccentricity error occurs and the measurement accuracy is lowered. In addition, as shown in FIG. 27, the conventional air micrometer measures the radius of the hole 3 obliquely when the measuring head 1 is inserted into the hole 3 at an angle, and an angular error occurs, which causes measurement. There was a drawback that the accuracy was lowered.

【0004】また、従来の空気マイクロメータは、測定
精度を向上させるために、複数のノズル4、4を小径
で、且つ均等に精度良く加工しなければならず、測定ヘ
ッド1の加工費が高くなる欠点もあった。また、測定精
度を向上させるために、ガイドクリアランス(ワークと
測定ヘッドとの隙間)を小さくする必要があり、測定ヘ
ッド1の挿入時に測定ヘッド1がワーク2に接触してワ
ーク2を傷付ける欠点もあった。
Further, in the conventional air micrometer, in order to improve the measurement accuracy, the plurality of nozzles 4 and 4 must be machined with a small diameter and evenly with high accuracy, and the processing cost of the measuring head 1 is high. There was also a drawback. Further, in order to improve the measurement accuracy, it is necessary to reduce the guide clearance (gap between the work and the measurement head), and there is a drawback that the measurement head 1 comes into contact with the work 2 when the measurement head 1 is inserted and the work 2 is damaged. there were.

【0005】本発明はこのような事情に鑑みて成された
もので、ワークに傷を付けることなく、ワークの穴を精
度良く測定することができ、且つ低コストである穴の内
径測定方法及び装置を提供することを目的とする。
The present invention has been made in view of the above circumstances, and it is possible to accurately measure a hole in a work without damaging the work, and a method for measuring the inner diameter of the hole at low cost is provided. The purpose is to provide a device.

【0006】[0006]

【課題を解決するための手段】本発明は前記目的を達成
するために、ワークに形成された穴の内径を測定する穴
の内径測定方法において、浮子を挿入した前記穴に流体
を供給し、供給した流体が穴内壁と前記浮子との隙間を
通過する際の流体の背圧、流量、又は前記浮子が受ける
抗力、或いは前記浮子の変位量を検出し、該検出値を基
準値と比較して前記穴の内径に換算することを特徴とす
る。
In order to achieve the above-mentioned object, the present invention provides a method for measuring the inner diameter of a hole formed in a workpiece, in which a fluid is supplied to the hole in which a float is inserted, The back pressure of the fluid when the supplied fluid passes through the gap between the inner wall of the hole and the float, the flow rate, the drag force received by the float, or the displacement of the float is detected, and the detected value is compared with a reference value. It is characterized in that it is converted into the inner diameter of the hole.

【0007】また、本発明は前記目的を達成するため
に、ワークに形成された穴の内径を測定する穴の内径測
定装置において、前記穴に挿入される浮子と、該浮子が
挿入された穴に流体を供給する流体供給手段と、該流体
供給手段で供給した流体が穴内壁と前記浮子との隙間を
通過する際の流体の背圧、流量、又は前記浮子が受ける
抗力、或いは前記浮子の変位量を検出する検出手段と、
該検出手段で検出した検出値を基準値と比較して前記穴
の内径に換算する換算手段と、を備えたことを特徴とす
る。
Further, in order to achieve the above object, the present invention is a hole inner diameter measuring device for measuring an inner diameter of a hole formed in a work, wherein a float inserted into the hole and a hole into which the float is inserted. Fluid supply means for supplying a fluid to the, and the back pressure, the flow rate of the fluid when the fluid supplied by the fluid supply means passes through the gap between the hole inner wall and the float, or the drag force received by the float, or the float Detection means for detecting the amount of displacement,
A conversion unit that compares the detection value detected by the detection unit with a reference value and converts the detection value into the inner diameter of the hole.

【0008】本発明によれば、ワークに形成された穴に
浮子を挿入して流体を供給し、供給した流体が穴内壁と
浮子との隙間を通過すると、浮子は穴の中心に位置しよ
うとし(自動求心作用)、これによって穴の中心に自動
的に配置される。したがって、従来装置のような偏心誤
差や角度誤差が発生せず、穴の内径を常に精度良く測定
することができる。また、流体供給手段の供給口の中心
を穴の中心に精度良く合わせる必要がないので、測定を
短時間で容易に行うことができる。
According to the present invention, the float is inserted into the hole formed in the work to supply the fluid, and when the supplied fluid passes through the gap between the inner wall of the hole and the float, the float tries to be positioned at the center of the hole. (Automatic centripetal action), whereby it is automatically placed at the center of the hole. Therefore, the eccentricity error and the angle error unlike the conventional device do not occur, and the inner diameter of the hole can always be measured with high accuracy. Further, since it is not necessary to accurately align the center of the supply port of the fluid supply means with the center of the hole, the measurement can be easily performed in a short time.

【0009】また、本発明によれば、空気マイクロメー
タと同様に、ワークと非接触で穴の内径を計測すること
ができるので、ワークに傷を付けることを防止すること
ができる。
Further, according to the present invention, since the inner diameter of the hole can be measured without contacting the work, like the air micrometer, it is possible to prevent the work from being scratched.

【0010】さらに、本発明によれば、従来装置のよう
に精度の高い加工が要求されるノズルや測定ヘッドを必
要とせず、低コストで測定できる。
Further, according to the present invention, it is possible to perform measurement at low cost without requiring a nozzle or a measuring head which requires highly accurate processing unlike the conventional apparatus.

【0011】[0011]

【発明の実施の形態】以下添付図面に従って本発明に係
る穴の内径測定方法及び装置の実施の形態について説明
する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of a hole inner diameter measuring method and apparatus according to the present invention will be described below with reference to the accompanying drawings.

【0012】図1は、第1の実施の形態の測定装置10
の構成を示すブロック図である。
FIG. 1 shows a measuring apparatus 10 according to the first embodiment.
3 is a block diagram showing the configuration of FIG.

【0013】図1に示すように、空気源12から供給さ
れる圧縮空気は、フィルタ14で除塵され、レギュレー
タ16で一定圧力に調整された後、A/E変換器18
(空気/電気変換器)内に設置された絞りを通り、コネ
クタ33を介して測定台28内の送気路28Bに送気さ
れる。
As shown in FIG. 1, the compressed air supplied from the air source 12 is dust-removed by the filter 14 and adjusted to a constant pressure by the regulator 16, and then the A / E converter 18 is used.
The air is supplied to the air supply passage 28B in the measuring stand 28 through the throttle installed in the (air / electric converter) and the connector 33.

【0014】測定台28の上面には、送気路28Bに連
通される供給口28Aが形成されるとともに、ワーク2
2が載置される。ワーク22には、円柱状の穴22Aが
形成されており、この穴22Aに測定球30が挿入され
る。
A supply port 28A communicating with the air supply passage 28B is formed on the upper surface of the measuring table 28, and the work 2
2 is placed. A cylindrical hole 22A is formed in the work 22, and the measuring sphere 30 is inserted into this hole 22A.

【0015】前記測定台28の送気路28Bに供給され
た圧縮空気は、供給口28Aから穴22Aに噴射され、
穴22Aの内壁と測定球30との隙間を通って外部に吹
き出される。A/E変換器18は、このときの圧力を、
内蔵するベローズと差動変圧器とによって電気信号に変
換し、管制部20に出力する。穴22Aの径が異なる場
合、圧力が微小変化し、管制部20は、後述するよう
に、変化した電気信号に基づいてワーク22の内径を算
出し、算出したデータを例えば管制部20のモニタ上に
表示する。
The compressed air supplied to the air supply path 28B of the measuring table 28 is jetted from the supply port 28A to the hole 22A,
It is blown out through the gap between the inner wall of the hole 22A and the measuring sphere 30. The A / E converter 18 changes the pressure at this time to
It is converted into an electric signal by the built-in bellows and the differential transformer and output to the control unit 20. When the diameters of the holes 22A are different, the pressure slightly changes, and the control unit 20 calculates the inner diameter of the work 22 based on the changed electric signal, and the calculated data is displayed on the monitor of the control unit 20, for example, as described later. To display.

【0016】図2は、図1に示した測定装置10の特徴
部分の構造を示す断面図である。同図に示すように、供
給口28Aの周囲にはエア漏れ防止シール(Oリング)
34が配設され、このエア漏れ防止シール34によって
測定台28とワーク22との隙間から空気が洩れること
が防止される。
FIG. 2 is a sectional view showing the structure of the characteristic portion of the measuring apparatus 10 shown in FIG. As shown in the figure, an air leakage prevention seal (O ring) is provided around the supply port 28A.
34 is provided, and the air leakage prevention seal 34 prevents air from leaking from the gap between the measuring table 28 and the work 22.

【0017】測定球30は、高い加工精度で球状に形成
され、その材質は、例えば、セラミック、樹脂、鋼、軽
合金等が使用される。測定球30の直径dは、穴22A
の直径Dよりも若干小さく形成されている。この測定球
30の直径dは、穴22Aの直径Dの値に近いほど感度
が良くなり、穴22Aと測定球30との隙間が少し変化
しただけでも背圧が大きく変化するようになる。しか
し、測定球30の直径dが穴22Aの直径Dに近すぎる
と測定球30を穴22Aに挿入しづらくなる。そこで、
測定球30とワーク22との隙間(D−d)を、測定す
る穴径Dと要求される感度により、例えば10〜100
μm程度を目安として設定する。これにより、測定球3
0を穴22Aにスムーズに挿入でき、且つ穴22Aの寸
法を精度良く測定することができる。なお、測定球30
の直径dを、供給口28Aよりも大きな径で形成する
と、測定球30が供給口28A内に落下することが防止
される。
The measuring sphere 30 is formed into a spherical shape with high processing accuracy, and the material thereof is, for example, ceramic, resin, steel, light alloy or the like. The diameter d of the measuring sphere 30 is the hole 22A.
Is formed to be slightly smaller than the diameter D. The closer the diameter d of the measuring sphere 30 is to the value of the diameter D of the hole 22A, the higher the sensitivity becomes, and the back pressure changes greatly even if the gap between the hole 22A and the measuring sphere 30 is slightly changed. However, if the diameter d of the measuring sphere 30 is too close to the diameter D of the hole 22A, it becomes difficult to insert the measuring sphere 30 into the hole 22A. Therefore,
Depending on the hole diameter D to be measured and the required sensitivity, the gap (D-d) between the measuring sphere 30 and the work 22 is, for example, 10 to 100.
Set around μm as a guide. This allows the measuring sphere 3
0 can be smoothly inserted into the hole 22A, and the dimension of the hole 22A can be measured accurately. The measuring sphere 30
If the diameter d of is larger than the supply port 28A, the measuring sphere 30 is prevented from falling into the supply port 28A.

【0018】支持部材32は、円柱状に形成され、測定
球30よりも小さい径で形成される。この支持部材32
は、図1のアーム36を介して支柱38に支持され、穴
22Aと同じ方向、例えば鉛直方向に支持される。この
支持部材32は、下端面が穴22Aの軸と垂直に形成さ
れ、この下端面が平滑に加工されている。
The supporting member 32 is formed in a cylindrical shape and has a diameter smaller than that of the measuring sphere 30. This support member 32
Is supported by the column 38 via the arm 36 of FIG. 1, and is supported in the same direction as the hole 22A, for example, in the vertical direction. The lower end surface of the support member 32 is formed perpendicularly to the axis of the hole 22A, and the lower end surface is processed to be smooth.

【0019】次に上記の如く構成された測定装置10の
作用について説明する。
Next, the operation of the measuring device 10 configured as described above will be described.

【0020】まず、図3(a)に示すように、測定台2
8の上面にワーク22を載置する。このとき、ワーク2
2の穴22Aが供給口28A上に配置されるようにす
る。次いで、ワーク22の穴22Aに測定球30を挿入
する。このとき、測定球30が球状に形成されているの
で、測定球30が穴22Aの内壁に接触しても内壁が傷
付くことがない。
First, as shown in FIG.
The work 22 is placed on the upper surface of 8. At this time, work 2
The two holes 22A are arranged on the supply port 28A. Then, the measuring sphere 30 is inserted into the hole 22A of the work 22. At this time, since the measuring sphere 30 is formed into a spherical shape, even if the measuring sphere 30 contacts the inner wall of the hole 22A, the inner wall is not damaged.

【0021】次に、図3(b)に示すように、支持部材
32を穴22Aに挿入した後、図1に示した空気源12
から圧縮空気を供給し、供給口28Aから圧縮空気を噴
射する。このとき、噴射した圧縮空気は、ワーク22と
測定台28との隙間から洩れることなく、穴22Aに噴
射される。
Next, as shown in FIG. 3B, after inserting the support member 32 into the hole 22A, the air source 12 shown in FIG.
From the supply port 28A. At this time, the injected compressed air is injected into the hole 22A without leaking from the gap between the work 22 and the measuring table 28.

【0022】供給口28Aから圧縮空気を噴出したこと
によって、測定球30は、図3(c)に示すように、噴
射された圧縮空気を受けて浮上する。浮上する際、測定
球30は球状に形成されているので、測定球30が穴2
2Aの内壁に接触しても内壁が傷付くことはない。浮上
した測定球30は、支持部材32の下端面に当接し、浮
上した状態に維持される。前記圧縮空気は、測定球30
と穴22Aの内壁との隙間を通り抜けて上部開口から外
部に吹き出す。このときの背圧は、測定球30と穴22
Aの内壁との隙間の大きさに依存するので、背圧をA/
E変換器18で検出し、管制部20でこの検出値をマス
ターの基準値と比較して穴22Aの内径に換算すること
により、穴22Aの内径を求めることができる。なお、
マスターの基準値とは、測定に先立って、測定時と同じ
条件でマスターを測定した値であり、測定条件を変える
度に行われる。
Since the compressed air is jetted from the supply port 28A, the measuring sphere 30 receives the jetted compressed air and floats, as shown in FIG. 3 (c). When floating, the measuring sphere 30 is formed into a spherical shape, so
Even if it contacts the inner wall of 2A, the inner wall is not damaged. The floating measurement sphere 30 contacts the lower end surface of the support member 32 and is maintained in a floating state. The compressed air is a measuring sphere 30.
Through the gap between the inner wall of the hole 22A and the inner wall of the hole 22A, and blows out from the upper opening. The back pressure at this time is the measurement ball 30 and the hole 22.
The back pressure depends on the size of the gap between the inner wall of A and A
The inner diameter of the hole 22A can be obtained by detecting with the E converter 18 and comparing this detected value with the reference value of the master in the control unit 20 to convert it into the inner diameter of the hole 22A. In addition,
The reference value of the master is a value obtained by measuring the master under the same conditions as the measurement, prior to the measurement, and is performed each time the measurement condition is changed.

【0023】測定時における測定球30には、測定球3
0と穴22Aの内壁との隙間を通り抜ける圧縮空気によ
って自動求心作用(又は自動調心作用)が働き、測定球
30が穴22Aの中心に自動的に移動する。即ち、図2
に二点鎖線で示すように、支持部材32に当接した測定
球30が穴22Aの中心からずれていた場合、球状の測
定球30が、支持部材32の平滑な下端面を転がり、図
2中実線で示すように中心に移動する。したがって、圧
縮空気は、測定球30の回りに略均等に形成された隙間
を通り抜けることになり、このときの背圧を検出するこ
とによって穴22Aの内径を精度良く求めることができ
る。
At the time of measurement, the measuring sphere 30 includes the measuring sphere 3
The compressed air passing through the gap between 0 and the inner wall of the hole 22A causes an automatic centripetal action (or self-centering action) to automatically move the measuring sphere 30 to the center of the hole 22A. That is, FIG.
As shown by the chain double-dashed line in FIG. 2, when the measurement sphere 30 that is in contact with the support member 32 is displaced from the center of the hole 22A, the spherical measurement sphere 30 rolls on the smooth lower end surface of the support member 32, and FIG. Move to the center as shown by the solid line. Therefore, the compressed air passes through the gap formed approximately evenly around the measurement sphere 30, and the inner diameter of the hole 22A can be accurately obtained by detecting the back pressure at this time.

【0024】このように本実施の形態の測定装置10に
よれば、供給口28Aの中心と穴22Aの中心とを正確
に中心位置合わせしなくても穴22Aの内径を測定する
ことができるので、偏心誤差や角度誤差が発生せず、穴
22Aの内径を常に精度良く測定することができる。特
に、測定装置10は、測定球30が自動求心作用によっ
て自動的に穴22Aの中心に位置するので、穴22Aの
内径を精度良く測定することができる。
As described above, according to the measuring apparatus 10 of the present embodiment, the inner diameter of the hole 22A can be measured without accurately centering the center of the supply port 28A and the center of the hole 22A. As a result, eccentricity error and angle error do not occur, and the inner diameter of the hole 22A can always be measured accurately. In particular, in the measuring device 10, since the measuring sphere 30 is automatically positioned at the center of the hole 22A by the automatic centripetal action, the inner diameter of the hole 22A can be accurately measured.

【0025】また、測定装置10は、穴22Aに測定球
30を挿入し、圧縮空気を噴射するだけなので、操作が
容易であり、短時間で精度良く測定することができる。
Further, since the measuring device 10 only inserts the measuring sphere 30 into the hole 22A and injects compressed air, it is easy to operate and can perform accurate measurement in a short time.

【0026】また、測定装置10は、従来の空気マイク
ロメータと同様に、ワーク22と非接触で測定すること
ができるので、ワーク22に傷を付けることなく、測定
することができる。
Further, since the measuring device 10 can measure the work 22 without contacting it, like the conventional air micrometer, the work 22 can be measured without being scratched.

【0027】さらに、測定装置10によれば、小径の穴
を測定する場合であっても、小径の穴に応じて小径の測
定球30を準備すればよく、測定球30だけの準備で済
むので、装置全体のコストを削減することができる。即
ち、測定装置10によれば、従来の空気マイクロメータ
では、ノズルや測定ヘッドの加工上、低コストで精度良
く測定することが困難だった小径の穴、例えば直径2m
m以下の穴であっても、小径の測定球30を用いること
によって、穴の内径を低コストで精度良く測定すること
ができる。
Further, according to the measuring apparatus 10, even when measuring a small diameter hole, it is sufficient to prepare the small measuring ball 30 according to the small hole, and the preparation of only the measuring ball 30 is necessary. It is possible to reduce the cost of the entire device. That is, according to the measuring device 10, the conventional air micrometer has a small diameter hole, for example, a diameter of 2 m, which is difficult to measure accurately at low cost due to the processing of the nozzle and the measuring head.
Even if the hole has a diameter of m or less, the inner diameter of the hole can be accurately measured at low cost by using the measuring sphere 30 having a small diameter.

【0028】なお、上述した実施の形態は、測定球30
を穴22Aに挿入した後、圧縮空気を供給口28Aから
噴射したが、圧縮空気を噴射しながら測定球30を挿入
してもよい。
In the above-described embodiment, the measuring sphere 30 is used.
Although the compressed air was jetted from the supply port 28A after being inserted into the hole 22A, the measuring sphere 30 may be inserted while jetting the compressed air.

【0029】また、上述した実施の形態は、A/E変換
器18で背圧を検出したが、これに限定するものではな
く、圧縮空気が穴22Aの内壁と測定球30との隙間を
通過する際の圧縮空気の流量を検出してもよい。この場
合も上述した測定装置10と同様に、管制部20が、検
出値をマスターの基準値と比較することによって、穴2
2Aの内径を精度良く求めることができる。
In the above-described embodiment, the back pressure is detected by the A / E converter 18, but the present invention is not limited to this. Compressed air passes through the gap between the inner wall of the hole 22A and the measuring sphere 30. You may detect the flow rate of the compressed air at the time of performing. Also in this case, as in the case of the measuring device 10 described above, the control unit 20 compares the detected value with the reference value of the master, so that the hole 2
The inner diameter of 2A can be accurately obtained.

【0030】さらに、本発明は、圧縮空気の背圧や流量
の検出に限定されるものではなく、以下に示すように、
圧縮空気が穴22Aの内壁と測定球30との隙間を通過
する際の、測定球30の受ける抗力や測定球30の変位
量を検出してもよい。
Furthermore, the present invention is not limited to the detection of the back pressure or flow rate of compressed air, but as shown below,
You may detect the reaction force which the measurement sphere 30 receives, and the amount of displacement of the measurement sphere 30 when the compressed air passes through the gap between the inner wall of the hole 22A and the measurement sphere 30.

【0031】図4は第2の実施の形態の測定装置40の
構造を示すブロック図であり、図1に示した第1の実施
の形態の測定装置10と同一又は類似の部材については
同一の符号を付してその説明は省略する。
FIG. 4 is a block diagram showing the structure of the measuring apparatus 40 of the second embodiment, and the same or similar members as those of the measuring apparatus 10 of the first embodiment shown in FIG. 1 are the same. The reference numerals are given and the description thereof is omitted.

【0032】同図に示す測定装置40は、測定球30の
受ける抗力を検出する装置であり、支持部材32が圧電
ピックアップ42を介してアーム36に取り付けられて
いる。圧電ピックアップ42は、圧縮空気が穴22Aの
内壁と測定球30との隙間を通過する際に、測定球30
が圧縮空気から受ける抗力を検出し、その検出信号を管
制部20に出力する。管制部20は、圧電ピックアップ
42から検出信号を受信すると、その検出値を、前記同
様、マスターの基準値と比較して穴22Aの内径に換算
する。
A measuring device 40 shown in the figure is a device for detecting a reaction force received by the measuring sphere 30, and a supporting member 32 is attached to an arm 36 via a piezoelectric pickup 42. When the compressed air passes through the gap between the inner wall of the hole 22A and the measuring sphere 30, the piezoelectric pickup 42 measures the measuring sphere 30.
Detects the drag force received from the compressed air and outputs the detection signal to the control unit 20. When the control unit 20 receives the detection signal from the piezoelectric pickup 42, the detection value is converted into the inner diameter of the hole 22A by comparing it with the reference value of the master, as described above.

【0033】なお、測定装置40では、測定球30が受
ける抗力を検出する手段として圧電ピックアップ42を
挙げて説明したがこれに限定するものではなく、次に述
べるように、例えば歪みゲージ等で検出してもよい。
In the measuring device 40, the piezoelectric pickup 42 has been described as a means for detecting the reaction force received by the measuring sphere 30, but the measuring device 40 is not limited to this. For example, a strain gauge or the like can be used for detection. You may.

【0034】図5に示す測定装置46は、圧電ピックア
ップ42の代わりに、アーム36に歪みゲージ48が取
り付けられ、この歪みゲージ48によってアーム36の
歪みを検出する。管制部20は、圧縮空気が穴22Aの
内壁と測定球30との隙間を通過する際に、歪みゲージ
48から検出信号を受信し、アーム36の歪み特性から
測定球30の変位量を求め、さらにこの値をマスターの
基準値と比較して穴22Aの内径に換算する。
In the measuring device 46 shown in FIG. 5, a strain gauge 48 is attached to the arm 36 instead of the piezoelectric pickup 42, and the strain gauge 48 detects the strain of the arm 36. The control unit 20 receives a detection signal from the strain gauge 48 when the compressed air passes through the gap between the inner wall of the hole 22A and the measurement sphere 30, and obtains the displacement amount of the measurement sphere 30 from the strain characteristic of the arm 36, Further, this value is compared with the reference value of the master and converted into the inner diameter of the hole 22A.

【0035】なお、上述した測定装置10、40、46
では、浮上する測定球30を支持部材32で受け止めて
支持したが、これに限定するものではなく、以下に示す
ように、磁力で吸着支持したり、弾性体を介して支持し
てもよい。
The above-described measuring devices 10, 40, 46
In the above, the floating measurement sphere 30 is received and supported by the support member 32, but the present invention is not limited to this, and as shown below, it may be supported by attraction by magnetic force or may be supported via an elastic body.

【0036】図6に示す測定装置は、支持部材32の下
端に永久磁石52が取り付けられ、この永久磁石52
に、鋼等の金属から成る測定球30が吸着支持されてい
る。また、永久磁石52の下端面は、穴22Aの軸と略
垂直な面上に形成され、鏡面仕上げされて平滑に加工さ
れている。これにより、供給口28Aから圧縮空気を供
給すると、測定球30は、永久磁石52の吸着力にもか
かわらず、自動求心作用によって永久磁石52の下端面
を転がり、中心に配置される。
In the measuring device shown in FIG. 6, a permanent magnet 52 is attached to the lower end of the support member 32.
A measuring sphere 30 made of metal such as steel is adsorbed and supported on. Further, the lower end surface of the permanent magnet 52 is formed on a surface substantially perpendicular to the axis of the hole 22A, and is mirror-finished and smoothed. As a result, when compressed air is supplied from the supply port 28A, the measuring sphere 30 rolls on the lower end surface of the permanent magnet 52 by the centering action of the permanent magnet 52 in spite of the attraction force of the permanent magnet 52, and is arranged at the center.

【0037】このような測定装置によれば、測定球30
が磁力によって永久磁石52に吸着されるので、測定球
30を浮上させる必要がなく、穴22Aの内径測定を迅
速に行うことができる。また、測定球30が永久磁石5
2を介して支持部材32に吸着されているので、穴22
Aの測定開始時や測定終了時に、測定球30と支持部材
32を同時に穴22Aに出し入れすることができ、作業
を簡単に行うことができる。さらに、測定球30が永久
磁石52に吸着されているので、測定球30の紛失も防
止することができ、且つ、測定球30の交換を容易に行
うことができる。
According to such a measuring device, the measuring sphere 30
Is attracted to the permanent magnet 52 by the magnetic force, it is not necessary to levitate the measuring sphere 30, and the inner diameter of the hole 22A can be measured quickly. In addition, the measuring sphere 30 is the permanent magnet 5
Since it is adsorbed to the supporting member 32 through the hole 22,
The measurement ball 30 and the support member 32 can be simultaneously put in and taken out of the hole 22A at the time of starting or ending the measurement of A, and the work can be easily performed. Further, since the measuring sphere 30 is attracted to the permanent magnet 52, it is possible to prevent the measuring sphere 30 from being lost, and it is possible to easily replace the measuring sphere 30.

【0038】なお、上述した測定装置では、永久磁石5
2によって測定球30を吸着したが、図7に示すよう
に、電磁石54によって吸着してもよい。電磁石54
は、支持部材32を強磁性体の心(磁心)として、支持
部材32の上部にコイル56を設けることにより構成さ
れる。この場合も、永久磁石52を用いた場合と同様
に、測定球30及び支持部材32の穴22Aへの出入操
作、及び穴22Aの内径測定操作を迅速に行うことがで
きる。また、電磁石54を用いた方法では、供給口28
Aから圧縮空気を噴射した際にコイル56への電流を停
止することにより、測定球30に働く磁力が無くなり、
測定球30がより滑らかに穴22Aの中心に移動する。
In the measuring device described above, the permanent magnet 5
Although the measuring sphere 30 is attracted by 2 as shown in FIG. 7, it may be attracted by the electromagnet 54 as shown in FIG. Electromagnet 54
Is configured by providing the support member 32 as a ferromagnetic core (magnetic core) and providing the coil 56 on the support member 32. Also in this case, similarly to the case where the permanent magnet 52 is used, the operation of moving the measurement sphere 30 and the support member 32 into and out of the hole 22A and the operation of measuring the inner diameter of the hole 22A can be performed quickly. In the method using the electromagnet 54, the supply port 28
By stopping the current to the coil 56 when the compressed air is jetted from A, the magnetic force acting on the measuring sphere 30 disappears,
The measuring sphere 30 moves more smoothly to the center of the hole 22A.

【0039】図8に示す測定装置は、測定球30が、水
平方向に変形可能な、ゴムやスプリング等の弾性体60
を介して支持部材32に連結されている。この測定装置
では、供給口28Aから圧縮空気を噴射すると、測定球
30が自動求心作用を受け、弾性体60が変形して、測
定球30が穴22Aの中心に移動する。即ち、弾性体6
0を測定球30と支持部材32との間に介在させたこと
により、測定球30と支持部材32とを完全に連結しな
がらも、測定球30の自動求心作用の効果を得ることが
できる。したがって、この測定装置によれば、測定球3
0と支持部材32が完全に連結されているので、測定球
30及び支持部材32の穴22Aへの出入操作、及び穴
22Aの内径測定操作をより迅速に行うことができると
ともに、測定球30の自動求心作用によって穴22Aの
内径を精度良く測定することができる。
In the measuring apparatus shown in FIG. 8, the measuring sphere 30 is elastically deformable in the horizontal direction, such as an elastic body 60 such as rubber or spring.
It is connected to the support member 32 via. In this measuring device, when compressed air is jetted from the supply port 28A, the measuring sphere 30 is subjected to an automatic centripetal effect, the elastic body 60 is deformed, and the measuring sphere 30 moves to the center of the hole 22A. That is, the elastic body 6
By interposing 0 between the measurement sphere 30 and the support member 32, the effect of the automatic centripetal action of the measurement sphere 30 can be obtained while the measurement sphere 30 and the support member 32 are completely connected. Therefore, according to this measuring device, the measuring sphere 3
Since 0 and the support member 32 are completely connected, the operation of moving the measurement sphere 30 and the support member 32 into and out of the hole 22A and the operation of measuring the inner diameter of the hole 22A can be performed more quickly, and the measurement sphere 30 The inner centroid of the hole 22A can be accurately measured by the automatic centripetal action.

【0040】なお、測定球30と支持部材32とを弾性
体60で連結する代わりに、図9に示すように、支持部
材32にエアベアリング等を用いたフローティング機構
を設けてもよい。即ち、水平面上でスライドするように
支持された移動駒62を介して、剛体で構成された支持
部材32とアーム36とを連結する。これにより、測定
球30が自動求心作用を受けると移動駒62が水平面上
を移動し、測定球30が穴22Aの中心に配置され、穴
22Aの内径を精度良く求めることができる。なお、支
持部材32と測定球32との間に弾性体60を設けなが
ら、支持部材32にフローティング機構を設けてもよ
い。
Instead of connecting the measuring sphere 30 and the support member 32 with the elastic body 60, as shown in FIG. 9, the support member 32 may be provided with a floating mechanism using an air bearing or the like. That is, the support member 32 made of a rigid body and the arm 36 are connected to each other via the moving piece 62 supported so as to slide on the horizontal plane. Accordingly, when the measuring sphere 30 is subjected to the automatic centripetal action, the moving piece 62 moves on the horizontal plane, the measuring sphere 30 is arranged at the center of the hole 22A, and the inner diameter of the hole 22A can be accurately obtained. A floating mechanism may be provided on the support member 32 while the elastic body 60 is provided between the support member 32 and the measurement sphere 32.

【0041】図10は、ワークの閉止穴22Bを測定す
るための、第3の実施の形態の測定装置の構造を示すブ
ロック図であり、図11は、図10に示した測定装置の
特徴部分の構造を示す断面図である。
FIG. 10 is a block diagram showing the structure of the measuring device of the third embodiment for measuring the closed hole 22B of the work, and FIG. 11 is a characteristic portion of the measuring device shown in FIG. It is a cross-sectional view showing the structure of.

【0042】第3の実施の形態の測定装置64は、測定
球66に供給口66A(図11参照)が形成され、この
供給口66Aから圧縮空気が噴射されるように構成され
ている。即ち、図11に示すように、支持部材68の下
端面の中央には、円柱状の突出部68Aが形成され、こ
の突出部68Aの下端面が平滑に加工されている。支持
部材68と測定球66は、水平方向に変形可能な円筒状
の弾性体70を介して連結され、この弾性体70によっ
て測定球66が上方に付勢されて突出部68Aの下端面
に当接されている。
The measuring device 64 of the third embodiment is constructed so that a supply port 66A (see FIG. 11) is formed in the measuring sphere 66 and compressed air is jetted from this supply port 66A. That is, as shown in FIG. 11, a columnar protrusion 68A is formed at the center of the lower end surface of the support member 68, and the lower end surface of this protrusion 68A is processed to be smooth. The support member 68 and the measuring sphere 66 are connected via a cylindrical elastic body 70 that is deformable in the horizontal direction, and the measuring sphere 66 is urged upward by the elastic body 70 to contact the lower end surface of the protruding portion 68A. It is touched.

【0043】また、支持部材68は、中空状に形成され
ており、内部に圧縮空気の流路68Bが形成される。流
路68Bは、図10に示すコネクタ72を介してA/E
変換器18に接続されており、空気源12からの圧縮空
気が供給される。また、流路68Bは、支持部材68の
下端部分において分岐し、下端面に形成された複数の開
口68Cに連通される。複数の開口68Cは、同じ径で
形成され、さらに支持部材68の軸を中心に均等に配置
される。これにより、A/E変換器18から供給された
圧縮空気は、支持部材68内の流路68Bを通って、複
数の開口68Cから均等に吹き出される。複数の開口6
8Cから吹き出された圧縮空気は、測定球66の送気路
66Bを通り、外部に洩れることなく、支持部材68、
弾性体70及び測定球66で囲まれた円筒状の空間74
に供給される。
The support member 68 is formed in a hollow shape, and a compressed air flow path 68B is formed therein. The flow path 68B is connected to the A / E via the connector 72 shown in FIG.
It is connected to the converter 18 and is supplied with compressed air from the air source 12. Further, the flow path 68B is branched at the lower end portion of the support member 68 and communicates with a plurality of openings 68C formed in the lower end surface. The plurality of openings 68C are formed to have the same diameter and are evenly arranged around the axis of the support member 68. As a result, the compressed air supplied from the A / E converter 18 passes through the flow path 68B in the support member 68 and is evenly blown out from the plurality of openings 68C. Multiple openings 6
The compressed air blown out from 8C passes through the air supply passage 66B of the measuring sphere 66 and does not leak to the outside.
A cylindrical space 74 surrounded by the elastic body 70 and the measuring sphere 66.
Is supplied to.

【0044】円筒状の空間74に供給された圧縮空気
は、測定球66内の送気路66Bを介して供給口66A
から噴射される。なお、送気路66Bは、支持部材68
の軸を中心として均等に形成されている。
The compressed air supplied to the cylindrical space 74 is supplied through the air supply passage 66B in the measuring sphere 66 to the supply port 66A.
Is jetted from. The air supply passage 66B is provided with the support member 68.
Are evenly formed around the axis of.

【0045】上記の如く構成された測定装置64では、
供給口66Aから噴射された圧縮空気は、閉止穴22B
の下端が封止されているため、測定球66と閉止穴22
Bの内壁との隙間を通って上方に流出する。このとき、
測定球66には自動求心作用が働き、球形の測定球66
が支持部材68の平面上をスムーズに転がること、測定
球66が弾性体70を介して支持部材68に支持されて
いることから、測定球66が確実に中心に移動する。し
たがって、A/E変換器18で背圧(又は圧縮空気の流
量)を測定することによって閉止穴22Bの内径を精度
良く測定することができる。
In the measuring device 64 constructed as described above,
The compressed air injected from the supply port 66A is closed by the closing hole 22B.
Since the lower end of is closed, the measuring ball 66 and the closing hole 22
It flows upward through the gap with the inner wall of B. At this time,
An automatic centripetal action works on the measuring sphere 66, and the spherical measuring sphere 66
Smoothly rolls on the plane of the support member 68, and the measurement sphere 66 is supported by the support member 68 via the elastic body 70, so that the measurement sphere 66 surely moves to the center. Therefore, by measuring the back pressure (or the flow rate of compressed air) with the A / E converter 18, the inner diameter of the closed hole 22B can be accurately measured.

【0046】このように第3の実施の形態の測定装置6
4によれば、測定球66に供給口66Aを形成したの
で、閉止穴22Bであっても、閉止穴22Bの内径を精
度良く測定することができる。
As described above, the measuring device 6 of the third embodiment
According to 4, since the supply port 66A is formed in the measuring sphere 66, the inner diameter of the closing hole 22B can be accurately measured even with the closing hole 22B.

【0047】また、測定装置64によれば、測定球66
が支持部材68に連結されているので、測定球66及び
支持部材68を閉止穴22Bに出入操作を簡単に行うこ
とができ、また、測定球66の紛失も防止することがで
きる。
Further, according to the measuring device 64, the measuring sphere 66
Is connected to the support member 68, the measurement ball 66 and the support member 68 can be easily moved in and out of the closing hole 22B, and the measurement ball 66 can be prevented from being lost.

【0048】さらに、測定装置64によれば、測定球6
6に供給口66Aが形成されているので、測定球66及
び支持部材68を閉止穴22Bに挿入するだけで閉止穴
22Bの内径を測定することができる。したがって、閉
止穴22Bの方向やワーク22の大きさに影響されるこ
となく、測定することができる。
Furthermore, according to the measuring device 64, the measuring sphere 6
Since the supply port 66A is formed at 6, the inner diameter of the closing hole 22B can be measured by merely inserting the measuring ball 66 and the supporting member 68 into the closing hole 22B. Therefore, the measurement can be performed without being influenced by the direction of the closed hole 22B and the size of the work 22.

【0049】なお、図10には、A/E変換器18で、
圧縮空気の背圧又は流量を検出する例を示したが、図4
に示したように測定球66の受ける抗力を検出したり、
図5に示したように測定球66の変位を検出してもよ
い。
In FIG. 10, in the A / E converter 18,
An example of detecting the back pressure or the flow rate of the compressed air has been shown.
To detect the drag force that the measuring sphere 66 receives,
The displacement of the measuring sphere 66 may be detected as shown in FIG.

【0050】また、測定装置64は、閉止穴22Bの内
径の測定だけに限定されず、多方向に開口された穴であ
っても、一方向を除いて全ての開口を栓等の封止部材で
封止することによって、残りの一方向の穴の内径を測定
することができる。
Further, the measuring device 64 is not limited to the measurement of the inner diameter of the closed hole 22B, and even if the hole is opened in multiple directions, all the openings except one direction are sealed with sealing members such as stoppers. The inner diameter of the remaining unidirectional hole can be measured by sealing with.

【0051】また、測定装置64は、アーム36を支柱
38に連結せず、作業者がアーム36(又は支持部材3
2)を手に持って測定するようにしてもよい。
Further, in the measuring device 64, the arm 36 is not connected to the support column 38, and the operator does not connect the arm 36 (or the support member 3).
2) may be held in the hand for measurement.

【0052】さらに、測定装置64は、測定球66が弾
性体70を支持部材68に介して支持され、さらに、測
定球66よりも先端側に圧縮空気を噴射できる構造であ
ればよい。例えば、図24に示す測定装置は、球形の測
定球75が円筒状の支持部材76に貫通された状態で固
定され、この支持部材76が円筒状の弾性体77を介し
てパイプ78に連結されている。パイプ78には、図1
0に示した空気源12からの圧縮空気が供給され、支持
部材76を介して測定球75の奥側に噴射される。噴射
された圧縮空気は、測定球75と穴22Bとの隙間から
上方に吹き出し、測定球75に自動求心作用を与える。
測定球75は弾性体77を中心に揺動し、穴22Bの中
心に配置される。これにより、穴22Bの内径を精度良
く測定することができる。なお、支持部材76を弾性体
77を介してパイプ78に連結する代わりに、支持部材
76にフローティング機構を設けてもよい。
Further, the measuring device 64 may have a structure in which the measuring sphere 66 is supported by the elastic member 70 via the supporting member 68, and the compressed air can be jetted to the tip side of the measuring sphere 66. For example, in the measuring device shown in FIG. 24, a spherical measuring sphere 75 is fixed in a state of being penetrated by a cylindrical supporting member 76, and this supporting member 76 is connected to a pipe 78 via a cylindrical elastic body 77. ing. The pipe 78 is shown in FIG.
Compressed air from the air source 12 shown in FIG. 0 is supplied and jetted to the inner side of the measuring sphere 75 via the support member 76. The jetted compressed air blows upward from the gap between the measuring sphere 75 and the hole 22B, and gives an automatic centripetal effect to the measuring sphere 75.
The measuring sphere 75 swings around the elastic body 77 and is arranged at the center of the hole 22B. Thereby, the inner diameter of the hole 22B can be measured with high accuracy. Instead of connecting the support member 76 to the pipe 78 via the elastic body 77, the support member 76 may be provided with a floating mechanism.

【0053】なお、第3の実施の形態の測定装置64
は、閉止穴22Bを測定する装置であるが、複数の測定
球を設けることによって、貫通された穴22Aを測定す
ることもできる。以下にその例を示す。
The measuring device 64 of the third embodiment
Is a device for measuring the closed hole 22B, but it is also possible to measure the penetrated hole 22A by providing a plurality of measuring balls. An example is shown below.

【0054】図12に示す測定装置は、供給口80Aが
形成された測定球80と、供給口の無い測定球82とを
備えている。測定球80は、支持部材68に弾性体70
を介して連結され、支持部材68の突出部68Aに当接
される。測定球80の下端には、水平方向に弾性変形可
能なゴム等の弾性体84を介して測定球82が連結され
ている。測定球80と測定球82は等しい外径で形成さ
れ、穴22Aの直径Dよりも僅かに小さい径で形成され
る。
The measuring apparatus shown in FIG. 12 includes a measuring sphere 80 having a supply port 80A formed therein and a measuring sphere 82 having no supply port. The measuring sphere 80 includes an elastic body 70 on the support member 68.
And is brought into contact with the projecting portion 68A of the supporting member 68. A measuring sphere 82 is connected to the lower end of the measuring sphere 80 via an elastic body 84 such as rubber that is elastically deformable in the horizontal direction. The measuring sphere 80 and the measuring sphere 82 are formed with the same outer diameter, and are formed with a diameter slightly smaller than the diameter D of the hole 22A.

【0055】前記測定球80には、複数の供給口80
A、80A…が形成されている。複数の供給口80A、
80A…は、それぞれ径方向に形成され、円筒状の空間
74に連通されている。また、複数の供給口80A、8
0A…は、同じ径で形成されるとともに、支持部材68
の軸に対して均等に配置されている。これにより、円筒
状の空間74に供給された圧縮空気は、複数の供給口8
0A、80A…から均等に吹き出される。
The measuring sphere 80 has a plurality of supply ports 80.
A, 80A ... Are formed. A plurality of supply ports 80A,
80A ... Are respectively formed in the radial direction and communicate with the cylindrical space 74. Also, a plurality of supply ports 80A, 8
0A ... Are formed with the same diameter, and the support member 68
Are evenly arranged with respect to the axis. As a result, the compressed air supplied to the cylindrical space 74 is supplied to the plurality of supply ports 8
It is blown out evenly from 0A, 80A.

【0056】上記の如く構成された測定装置は、測定球
80と測定球82との間に圧縮空気が吹き出される。し
たがって、吹き出された圧縮空気は、測定球80と穴2
2Aとの隙間から上方に流出するとともに、測定球82
と穴22Aとの隙間から下方に流出する。測定球80が
支持部材68に弾性体70を介して支持され、さらに、
測定球82が弾性体84を介して測定球80に支持され
ているので、測定球80、82はそれぞれ、自動求心作
用によって穴22Aの中心に配置される。このときの背
圧は、測定球80と穴22Aとの隙間の大きさ、及び測
定球82と穴22Aとの隙間の大きさに依存しているの
で、背圧をA/E変換器18で検出し、マスターの基準
値と比較することにより、穴22Aの内径を精度良く測
定することができる。
In the measuring device constructed as described above, compressed air is blown out between the measuring sphere 80 and the measuring sphere 82. Therefore, the compressed air blown out is measured by the measurement ball 80 and the hole 2.
While flowing out upward from the gap with 2A, the measurement ball 82
And flows out downward from the gap between the hole 22A and the hole 22A. The measuring sphere 80 is supported by the supporting member 68 via the elastic body 70, and further,
Since the measuring sphere 82 is supported by the measuring sphere 80 via the elastic body 84, the measuring spheres 80 and 82 are arranged at the center of the hole 22A by the automatic centripetal action. Since the back pressure at this time depends on the size of the gap between the measurement sphere 80 and the hole 22A and the size of the gap between the measurement sphere 82 and the hole 22A, the back pressure is measured by the A / E converter 18. By detecting and comparing with the reference value of the master, the inner diameter of the hole 22A can be accurately measured.

【0057】このように上記測定装置によれば、複数の
測定球80、82を設け、この測定球80、82の間に
圧縮空気を噴射するようにしたので、支持部材68と逆
方向から圧縮空気を噴射する必要がない。即ち、穴22
Aの一方側から測定球80、82及び支持部材68を挿
入するだけで、測定を行うことができる。したがって、
この測定装置は、大型のワークに形成された穴22Aの
測定に適している。
As described above, according to the above-described measuring apparatus, since the plurality of measuring balls 80 and 82 are provided and the compressed air is jetted between the measuring balls 80 and 82, the compressing air is compressed from the direction opposite to the supporting member 68. No need to inject air. That is, the hole 22
The measurement can be performed only by inserting the measurement balls 80, 82 and the support member 68 from one side of A. Therefore,
This measuring device is suitable for measuring the holes 22A formed in a large work.

【0058】さらに、この測定装置は、支持部材68の
軸を中心として圧縮空気の流れが均等になるように構成
されている。したがって、圧縮空気によって測定球66
が傾くことがなく、穴22Bの内径を精度良く測定する
ことができる。
Further, this measuring device is constructed so that the flow of compressed air becomes uniform around the axis of the support member 68. Therefore, the measurement sphere 66 is compressed by compressed air.
The inner diameter of the hole 22B can be accurately measured without tilting.

【0059】なお、上記測定装置は、2つの測定球80
と測定球82との間に圧縮空気を噴射する構造であれば
よく、例えば、弾性体84に供給口を形成したり、図2
5に示すように、2つの測定球を連結する部材に供給口
を形成してもよい。図25に示す測定装置は、球形の測
定球85が円筒状の支持部材87に貫通された状態で固
定される。支持部材87は、基端側が円筒状の弾性体8
8を介してパイプ89に連結され、先端側が弾性体から
成る栓83によって封止されている。栓83の下端に
は、測定球86が接着されて支持される。また、支持部
材87の下端部の外周面には、供給口87A、87A…
が均等に形成されている。したがって、パイプ89に圧
縮空気を供給すると、支持部材87を介して供給口87
A、87A…から測定球85と測定球86との間に噴射
され、噴射された圧縮空気は、測定球85と穴22Aと
の間、測定球86と穴との間から流出する。測定球85
は、弾性体88を介して支持されているので、自動求心
作用によって穴22Aの中心に配置され、また、測定球
86は、測定球85に弾性体の栓83を介して連結され
ているので、自動求心作用によって穴22Aの中心に配
置される。これにより、穴22Aの内径を精度良く測定
することができる。なお、支持部材87を弾性体88を
介して連結する代わりに、支持部材87にフローティン
グ機構を設けてもよい。
It should be noted that the above-mentioned measuring device has two measuring balls 80.
It suffices that the compressed air is jetted between the measurement ball 82 and the measurement sphere 82. For example, a supply port is formed in the elastic body 84,
As shown in FIG. 5, the supply port may be formed in the member connecting the two measurement balls. The measuring device shown in FIG. 25 is fixed in a state where a spherical measuring sphere 85 is penetrated by a cylindrical supporting member 87. The support member 87 has a cylindrical elastic body 8 on the base end side.
8 is connected to the pipe 89, and the tip side is sealed by a plug 83 made of an elastic body. A measuring ball 86 is adhered to and supported by the lower end of the stopper 83. Further, on the outer peripheral surface of the lower end portion of the support member 87, supply ports 87A, 87A ...
Are evenly formed. Therefore, when compressed air is supplied to the pipe 89, the supply port 87 is supplied via the support member 87.
A, 87A ... Are injected between the measuring sphere 85 and the measuring sphere 86, and the injected compressed air flows out between the measuring sphere 85 and the hole 22A and between the measuring sphere 86 and the hole. Measuring ball 85
Is supported by the elastic body 88, it is arranged at the center of the hole 22A by the automatic centripetal action, and the measuring sphere 86 is connected to the measuring sphere 85 through the elastic body stopper 83. , Is arranged at the center of the hole 22A by an automatic centripetal action. Thereby, the inner diameter of the hole 22A can be accurately measured. Instead of connecting the support member 87 via the elastic body 88, the support member 87 may be provided with a floating mechanism.

【0060】なお、上述した第1、2、3の実施の形態
では、ワーク22の穴22A(又は2B)に空気を噴射
して穴22Aの内径を測定したが、流体を噴射するので
あればよく、空気以外の気体や液体であってもよい。ま
た、その流体の温度を制御する温度制御手段を設けても
よい。
In the first, second and third embodiments described above, air is injected into the hole 22A (or 2B) of the work 22 to measure the inner diameter of the hole 22A. Of course, gas or liquid other than air may be used. Further, temperature control means for controlling the temperature of the fluid may be provided.

【0061】また、上述した第1、2、3の実施の形態
では、浮子として球形の測定球30、66、80、82
を使用したが、これに限定するものではない。例えば、
図13〜図23に示したような浮子や、これ以外にも穴
の軸心に対して穴を対象に狭窄できる形状であればよ
い。
Further, in the first, second and third embodiments described above, spherical measuring balls 30, 66, 80 and 82 are used as floats.
Was used, but is not limited thereto. For example,
The float as shown in FIGS. 13 to 23 or any other shape other than this may be used as long as the hole can be narrowed with respect to the axis of the hole.

【0062】図13に示す浮子90は、球体を円周状に
切削することによって形成される形状であり、切削した
部分の直径d1が穴22Aの直径Dよりも若干小さく形
成される。この浮子90は、球体を切削加工することに
よって簡単に加工することができるので、測定する穴2
2Aに適した径の球体を入手しにくい場合に効果的であ
る。
The float 90 shown in FIG. 13 has a shape formed by cutting a spherical body in a circumferential shape, and the diameter d1 of the cut portion is formed slightly smaller than the diameter D of the hole 22A. Since the float 90 can be easily processed by cutting a sphere, the hole 2 to be measured
This is effective when it is difficult to obtain a sphere having a diameter suitable for 2A.

【0063】図14に示す浮子92は、円柱部92Aと
半球部92B、92Bとから成るカプセル型に形成され
ている。この浮子92は、中央部92Aを長くすること
によって浮子92の姿勢が安定し、測定誤差の小さい安
定した測定結果が得られる。
The float 92 shown in FIG. 14 is formed in a capsule type having a columnar portion 92A and hemispherical portions 92B and 92B. In the float 92, the attitude of the float 92 is stabilized by lengthening the central portion 92A, and a stable measurement result with a small measurement error can be obtained.

【0064】図15に示す浮子94は、楕円形型、即
ち、楕円形を長径(又は短径)を中心に180°回転さ
せることによって得られる形状に形成されている。ま
た、図16に示す浮子96は、径差コロ型(又はたる
型)に形成されている。このように形成された浮子9
4、96は、穴22Aに挿入しやすく、また、安定した
測定結果が得られる。
The float 94 shown in FIG. 15 is formed in an elliptical shape, that is, a shape obtained by rotating the elliptical shape by 180 ° about the major axis (or the minor axis). Further, the float 96 shown in FIG. 16 is formed in a diameter difference roller type (or barrel type). Float 9 formed in this way
Nos. 4 and 96 can be easily inserted into the hole 22A, and stable measurement results can be obtained.

【0065】図17に示す浮子98は、円錐型に形成さ
れている。この浮子98は、頂点側98Aが流体の吹出
側を向くように穴22Aに挿入することによって、浮子
98の空気抵抗を小さくすることができる。したがっ
て、供給する流体の圧力を低下させることができる。
The float 98 shown in FIG. 17 is formed in a conical shape. By inserting the float 98 into the hole 22A so that the apex side 98A faces the fluid outlet side, the air resistance of the float 98 can be reduced. Therefore, the pressure of the supplied fluid can be reduced.

【0066】図18に示す浮子100は、円錐上下型で
あり、2つの円錐の底面を貼り合わせた形状に形成され
る。このように形成された浮子100は、浮子100の
後方に渦が発生しないので、空気抵抗をさらに小さくす
ることができる。
The float 100 shown in FIG. 18 is a cone up-and-down type, and is formed in a shape in which the bottom surfaces of two cones are pasted together. Since the vortex is not generated behind the float 100 in the float 100 thus formed, the air resistance can be further reduced.

【0067】図19に示す浮子102は、流線形型に形
成されている。したがって、浮子102の空気抵抗を最
も小さくすることができる。
The float 102 shown in FIG. 19 is formed in a streamlined shape. Therefore, the air resistance of the float 102 can be minimized.

【0068】図20に示す浮子104は、低重心型、即
ち、浮子104全体の重心が下方に配置され、浮上姿勢
が安定する。
The float 104 shown in FIG. 20 is of a low center of gravity type, that is, the center of gravity of the entire float 104 is arranged downward, and the floating posture is stabilized.

【0069】図21に示す浮子106は、挿入ガイド付
き型であり、下部に径の小さいガイド部106Aが設け
られており、穴22Aに挿入し易く構成されている。ま
た、浮子106は、ガイド部106Aの下端が半球状に
形成されており、自動求心作用が得られやすいように構
成されている。
The float 106 shown in FIG. 21 is of a type with an insertion guide, and is provided with a guide portion 106A having a small diameter in its lower portion, so that it can be easily inserted into the hole 22A. Further, the float 106 has a hemispherical lower end of the guide portion 106A, and is configured so as to easily obtain an automatic centripetal action.

【0070】図22(a)及び図22(b)は、スプラ
イン型の浮子108の平面断面図及び側面断面図であ
る。浮子108は、スプライン型、即ち、歯車形状をし
た柱状部108Aと、半球状に形成された求心作用部1
08Bとから構成される。この浮子108を、柱状部1
08Aと相似形状をしたスプライン形状の穴22Dに挿
入すると、浮子108は、求心作用部108Bによって
自動求心作用が働き、穴22Dの中心に配置されるの
で、柱状部108Bの周囲には均等な隙間が形成され
る。したがって、スプライン状のマスターの基準値とを
比較することにより、穴22Dの寸法を測定することが
できる。なお、求心作用部108Bの形状は、半球状に
限定するものではなく、円錐状であってもよい。
22A and 22B are a plan sectional view and a side sectional view of the spline type float 108. The float 108 is a spline type, that is, a gear-shaped columnar portion 108A, and a centripetal action portion 1 formed in a hemispherical shape.
08B and. The float 108 is replaced by the columnar portion 1.
When inserted into the spline-shaped hole 22D having a similar shape to 08A, the float 108 is automatically centered by the centripetal action portion 108B and is arranged at the center of the hole 22D. Is formed. Therefore, the dimension of the hole 22D can be measured by comparing with the reference value of the spline-shaped master. The centripetal action portion 108B is not limited to the hemispherical shape, and may have a conical shape.

【0071】図23に示す浮子110は、ダイヤ型、即
ち、2個の四角錐を底面で合わせた形状に形成されてい
る。この浮子110は、角穴22Cの測定に適してい
る。
The float 110 shown in FIG. 23 is formed in a diamond shape, that is, a shape in which two quadrangular pyramids are combined on the bottom surface. The float 110 is suitable for measuring the square hole 22C.

【0072】なお、浮子の形状は、穴に流体を供給した
際に自動求心作用が効果的に働く形状であることが好ま
しく、例えば、流体が供給される側を半球状や円錐状に
形成する。または、これらの浮子形状の組み合わせでも
よい。
The shape of the float is preferably such that the automatic centripetal effect works effectively when the fluid is supplied to the hole. For example, the side to which the fluid is supplied is formed in a hemispherical shape or a conical shape. . Alternatively, a combination of these float shapes may be used.

【0073】また、浮子は、穴の軸と直交する方向にお
ける断面形状が、穴の形状に相似していることが好まし
い。例えば、多角形状の穴が形成されていた場合には、
その形状の多角錐、または、その多角錐を底面で合わせ
た形状にするとよい。これにより、浮子の回りに隙間が
均等に形成され、精度良く穴の寸法を測定することがで
きる。したがって、本発明は、浮子の断面形状を変える
ことによってあらゆる断面形状の穴の寸法を精度良く計
測することができる。
Further, it is preferable that the cross-sectional shape of the float in the direction orthogonal to the axis of the hole is similar to the shape of the hole. For example, if a polygonal hole is formed,
A polygonal pyramid of that shape or a shape obtained by combining the polygonal pyramids on the bottom surface is preferable. As a result, gaps are evenly formed around the float, and the hole dimensions can be measured accurately. Therefore, according to the present invention, by changing the cross-sectional shape of the float, it is possible to accurately measure the size of the hole having any cross-sectional shape.

【0074】また、上述した実施の形態では、測定球3
0を上方から支持部材32によって抑えることにより、
測定球30が穴22Aの外部に抜けることを防止した
が、これに限定するものではなく、下方から紐状部材等
によって支持してもよい。また、その紐状部材の張力や
伸びを測定してもよい。
Further, in the above-described embodiment, the measuring sphere 3
By suppressing 0 from above by the support member 32,
Although the measurement sphere 30 is prevented from coming out of the hole 22A, the present invention is not limited to this, and the measurement sphere 30 may be supported from below by a string-shaped member or the like. Alternatively, the tension or elongation of the string-shaped member may be measured.

【0075】また、図1に示した測定装置10におい
て、測定球30が中空に浮いた状態のまま、測定を行っ
てもよい。即ち、測定球30が流体の噴射によって受け
る浮力と、測定球30の自重とが釣り合うことにより、
測定球30が支持部材32に当接せずに中空に維持され
る状態で背圧や流量を検出する。この場合、同じ条件に
おけるマスターの基準値と比較することにより、穴22
A〜22Dの寸法を精度良く求めることができる。
Further, in the measuring apparatus 10 shown in FIG. 1, the measurement may be performed while the measuring sphere 30 is in a state of floating in the hollow. That is, by the buoyancy force that the measurement sphere 30 receives by ejecting the fluid and the own weight of the measurement sphere 30 are balanced,
The back pressure and the flow rate are detected in a state in which the measurement sphere 30 is not in contact with the support member 32 and is kept hollow. In this case, by comparing with the reference value of the master under the same conditions, the hole 22
The dimensions A to 22D can be accurately obtained.

【0076】また、上述した第1の実施の形態におい
て、ワーク22は、穴22Aの中心が供給口28Aの中
心とできるだけ一致するように測定台28上に設置する
ことが好ましい。したがって、ワーク22を測定台28
に簡単に位置決めできるように測定台28に位置決め手
段を設けてもよい。
Further, in the above-described first embodiment, it is preferable that the work 22 is installed on the measuring table 28 so that the center of the hole 22A and the center of the supply port 28A are aligned as closely as possible. Therefore, the work 22 is attached to the measuring table 28.
Positioning means may be provided on the measuring table 28 for easy positioning.

【0077】また、測定台28は、ワーク22の穴22
Aの大きさの変更に伴い、供給口28Aの径の異なるも
のに交換するようにしてもよい。
The measuring table 28 has a hole 22 in the work 22.
When the size of A is changed, the supply port 28A may be replaced with a different one.

【0078】また、上述した実施の形態では、鉛直方向
に形成された穴22Aに下方から流体を噴射して測定を
行ったが、穴22Aに上方から流体を噴射し、下方から
支持部材32で支持することによって測定してもよい。
また、鉛直方向に形成された穴22Aだけでなく、斜め
方向や水平に形成された穴を測定してもよい。
Further, in the above-described embodiment, the measurement is performed by injecting the fluid from below into the hole 22A formed in the vertical direction, but the fluid is injected into the hole 22A from above and the support member 32 is used from below. You may measure by supporting.
Further, not only the hole 22A formed in the vertical direction but also the hole formed in an oblique direction or horizontally may be measured.

【0079】また、上述した実施の形態において、A/
E変換器18から出力された検出信号を、管制部20で
A/D変換し、高周波成分を除去することにより、測定
球30の振動成分を除去してもよい。これにより、穴2
2A(又は22B)の内径の測定精度をさらに向上させ
ることができる。
In the above-described embodiment, A /
The detection component output from the E converter 18 may be A / D converted by the control unit 20 to remove the high frequency component to remove the vibration component of the measurement sphere 30. This makes hole 2
The accuracy of measuring the inner diameter of 2A (or 22B) can be further improved.

【0080】また、上述した実施の形態は、直線状に形
成された穴22A〜22Dの内径を測定する例で説明し
たが、本発明は、例えばT字状やL字状に形成された穴
の内径を測定してもよい。
Further, although the above-described embodiment has been described by taking the example of measuring the inner diameters of the linearly formed holes 22A to 22D, the present invention is, for example, a hole formed in a T shape or an L shape. The inner diameter of may be measured.

【0081】また、上述した実施の形態において、アー
ム36を支柱38に対して上下方向スライド自在に設け
ると、支持部材32、68を簡単に穴22A〜22Dへ
出し入れすることができる。
Further, in the above-described embodiment, when the arm 36 is provided so as to be slidable in the vertical direction with respect to the support column 38, the support members 32 and 68 can be easily put in and taken out from the holes 22A to 22D.

【0082】[0082]

【発明の効果】以上説明したように本発明に係る穴の内
径測定方法及び装置によれば、ワークに形成された穴に
浮子を挿入して流体を供給し、供給した流体の背圧、流
量、又は浮子が受ける抗力、或いは浮子の変位を検出す
ることによって穴の内径を測定するので、偏心誤差や角
度誤差を発生することなく、穴の内径を精度良く測定す
ることができる。
As described above, according to the hole inner diameter measuring method and apparatus according to the present invention, the float is inserted into the hole formed in the work to supply the fluid, and the back pressure and the flow rate of the supplied fluid are supplied. Alternatively, the inner diameter of the hole is measured by detecting the drag force received by the float or the displacement of the float, so that the inner diameter of the hole can be accurately measured without causing an eccentricity error or an angle error.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る穴の内径測定装置の第1の実施の
形態の構造を示すブロック図
FIG. 1 is a block diagram showing the structure of a first embodiment of a hole inner diameter measuring device according to the present invention.

【図2】図1に示した穴の内径測定装置の特徴部分を示
す断面図
FIG. 2 is a sectional view showing a characteristic part of the hole inner diameter measuring device shown in FIG.

【図3】図1に示した穴の内径測定装置の作用を示す説
明図
FIG. 3 is an explanatory view showing an operation of the hole inner diameter measuring device shown in FIG.

【図4】本発明に係る穴の内径測定装置の第2の実施の
形態の構造を示すブロック図
FIG. 4 is a block diagram showing the structure of a second embodiment of the hole inner diameter measuring device according to the present invention.

【図5】図4と検出方法が異なる測定装置の構造を示す
ブロック図
FIG. 5 is a block diagram showing the structure of a measuring device having a detection method different from that of FIG.

【図6】図1と異なる測定球の支持構造を示す断面図FIG. 6 is a cross-sectional view showing a supporting structure of a measuring sphere different from that in FIG.

【図7】図1と異なる測定球の支持構造を示す断面図FIG. 7 is a cross-sectional view showing a supporting structure of a measuring sphere different from that in FIG.

【図8】図1と異なる測定球の支持構造を示す断面図FIG. 8 is a cross-sectional view showing a supporting structure of a measuring sphere different from that in FIG.

【図9】図1と異なる測定球の支持構造を示す断面図9 is a cross-sectional view showing a support structure for a measuring sphere different from that in FIG.

【図10】本発明に係る穴の内径測定装置の第3の実施
の形態の構造を示すブロック図
FIG. 10 is a block diagram showing the structure of a third embodiment of the hole inner diameter measuring device according to the present invention.

【図11】図10に示した穴の内径測定装置の特徴部分
を示す断面図
11 is a cross-sectional view showing a characteristic part of the hole inner diameter measuring device shown in FIG.

【図12】図10に示した穴の内径測定装置の応用例を
示す断面図
FIG. 12 is a cross-sectional view showing an application example of the hole inner diameter measuring device shown in FIG.

【図13】丸穴に適した浮子の一例を示す断面図FIG. 13 is a sectional view showing an example of a float suitable for a round hole.

【図14】丸穴に適した浮子の一例を示す断面図FIG. 14 is a sectional view showing an example of a float suitable for a round hole.

【図15】丸穴に適した浮子の一例を示す断面図FIG. 15 is a sectional view showing an example of a float suitable for a round hole.

【図16】丸穴に適した浮子の一例を示す断面図FIG. 16 is a sectional view showing an example of a float suitable for a round hole.

【図17】丸穴に適した浮子の一例を示す断面図FIG. 17 is a sectional view showing an example of a float suitable for a round hole.

【図18】丸穴に適した浮子の一例を示す断面図FIG. 18 is a sectional view showing an example of a float suitable for a round hole.

【図19】丸穴に適した浮子の一例を示す断面図FIG. 19 is a sectional view showing an example of a float suitable for a round hole.

【図20】丸穴に適した浮子の一例を示す断面図FIG. 20 is a sectional view showing an example of a float suitable for a round hole.

【図21】丸穴に適した浮子の一例を示す断面図FIG. 21 is a sectional view showing an example of a float suitable for a round hole.

【図22】丸穴に適した浮子の一例を示す説明図FIG. 22 is an explanatory diagram showing an example of a float suitable for a round hole.

【図23】角穴に適した浮子の一例を示す断面図FIG. 23 is a sectional view showing an example of a float suitable for a square hole.

【図24】図11と異なる測定球の支持構造を示す断面
FIG. 24 is a cross-sectional view showing a supporting structure of a measuring sphere different from that in FIG.

【図25】図12と異なる測定球の支持構造を示す断面
FIG. 25 is a cross-sectional view showing a supporting structure for a measuring sphere different from that in FIG.

【図26】従来装置の構造を示す平面断面図FIG. 26 is a plan sectional view showing the structure of a conventional device.

【図27】従来装置の構造を示す縦断面図FIG. 27 is a vertical cross-sectional view showing the structure of a conventional device.

【符号の説明】[Explanation of symbols]

10…測定装置、12…空気源、16…レギュレータ、
18…A/E変換器、20…管制部、22…ワーク、2
2A…穴、28…測定台、28A…供給口、30…測定
球、32…支持部材、42…圧電ピックアップ、48…
歪みゲージ、52…永久磁石、54…電磁石、60…弾
性体
10 ... Measuring device, 12 ... Air source, 16 ... Regulator,
18 ... A / E converter, 20 ... control section, 22 ... work, 2
2A ... hole, 28 ... measuring stand, 28A ... supply port, 30 ... measuring sphere, 32 ... supporting member, 42 ... piezoelectric pickup, 48 ...
Strain gauge, 52 ... Permanent magnet, 54 ... Electromagnet, 60 ... Elastic body

Claims (10)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ワークに形成された穴の内径を測定する
穴の内径測定方法において、 浮子を挿入した前記穴に流体を供給し、供給した流体が
穴内壁と前記浮子との隙間を通過する際の流体の背圧、
流量、又は前記浮子が受ける抗力、或いは前記浮子の変
位量を検出し、該検出値を基準値と比較して前記穴の内
径に換算することを特徴とする穴の内径測定方法。
1. A method for measuring the inner diameter of a hole formed in a workpiece, wherein a fluid is supplied to the hole in which a float is inserted, and the supplied fluid passes through a gap between the inner wall of the hole and the float. Back pressure of fluid,
A method for measuring an inner diameter of a hole, comprising detecting a flow rate, a drag force applied to the float, or a displacement amount of the float, and comparing the detected value with a reference value to convert the inner diameter of the hole.
【請求項2】 ワークに形成された穴の内径を測定する
穴の内径測定装置において、 前記穴に挿入される浮子と、 該浮子が挿入された穴に流体を供給する流体供給手段
と、 該流体供給手段で供給した流体が穴内壁と前記浮子との
隙間を通過する際の流体の背圧、流量、又は前記浮子が
受ける抗力、或いは前記浮子の変位量を検出する検出手
段と、 該検出手段で検出した検出値を基準値と比較して前記穴
の内径に換算する換算手段と、 を備えたことを特徴とする穴の内径測定装置。
2. A hole inner diameter measuring device for measuring an inner diameter of a hole formed in a work, a float inserted into the hole, fluid supply means for supplying a fluid to the hole in which the float is inserted, Detection means for detecting a back pressure, a flow rate of the fluid when the fluid supplied by the fluid supply means passes through the gap between the hole inner wall and the float, a drag force received by the float, or a displacement amount of the float, A hole inner diameter measuring device, comprising: a conversion unit that compares a detection value detected by the unit with a reference value to convert the inner diameter of the hole.
【請求項3】 前記浮子は、球状に形成されることを特
徴とする請求項2記載の穴の内径測定装置。
3. The hole inner diameter measuring device according to claim 2, wherein the float is formed in a spherical shape.
【請求項4】 前記浮子の支持手段を設けたことを特徴
とする請求項2又は3記載の穴の内径測定装置。
4. The hole inner diameter measuring device according to claim 2, further comprising a support means for the float.
【請求項5】 前記浮子は、前記支持手段に弾性体を介
して取り付けられていることを特徴とする請求項4記載
の穴の内径測定装置。
5. The hole inner diameter measuring device according to claim 4, wherein the float is attached to the supporting means via an elastic body.
【請求項6】 前記浮子は、磁力によって前記支持部材
に支持されることを特徴とする請求項4記載の穴の内径
測定装置。
6. The hole inner diameter measuring device according to claim 4, wherein the float is supported by the support member by a magnetic force.
【請求項7】 前記浮子に前記流体の供給口が形成され
ていることを特徴とする請求項2、3、4又は5記載の
穴の内径測定装置。
7. The hole inner diameter measuring device according to claim 2, wherein the fluid supply port is formed in the float.
【請求項8】 前記穴に複数の浮子が挿入されることを
特徴とする請求項2、3、4、5、6又は7記載の穴の
内径測定装置。
8. The hole inner diameter measuring device according to claim 2, wherein a plurality of floats are inserted into the hole.
【請求項9】 前記流体は、空気であることを特徴とす
る請求項2、3、4、5、6、7又は8記載の穴の内径
測定装置。
9. The hole inner diameter measuring device according to claim 2, wherein the fluid is air.
【請求項10】 前記浮子は、前記穴の軸と直交する方
向における断面形状が、前記穴に相似した形状であるこ
とを特徴とする請求項2、3、4、5、6、7、8又は
9記載の穴の内径測定装置。
10. The float has a cross-sectional shape in a direction orthogonal to the axis of the hole that is similar to the hole. Or the inner diameter measuring device of the hole according to 9.
JP2000185773A 2000-02-29 2000-06-21 Method and apparatus for measuring the inner diameter of a hole Expired - Fee Related JP3390971B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000185773A JP3390971B2 (en) 2000-02-29 2000-06-21 Method and apparatus for measuring the inner diameter of a hole

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000-54179 2000-02-29
JP2000054179 2000-02-29
JP2000185773A JP3390971B2 (en) 2000-02-29 2000-06-21 Method and apparatus for measuring the inner diameter of a hole

Publications (2)

Publication Number Publication Date
JP2001317928A JP2001317928A (en) 2001-11-16
JP3390971B2 true JP3390971B2 (en) 2003-03-31

Family

ID=26586405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000185773A Expired - Fee Related JP3390971B2 (en) 2000-02-29 2000-06-21 Method and apparatus for measuring the inner diameter of a hole

Country Status (1)

Country Link
JP (1) JP3390971B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111578870A (en) * 2020-04-30 2020-08-25 西北工业大学 Equivalent drift diameter marking method for pintle circular seam channel

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7117719B2 (en) 2000-06-09 2006-10-10 Tokyo Seimitsu Co., Ltd. Hole shape measuring method and apparatus
JP3390970B2 (en) 2000-06-09 2003-03-31 株式会社東京精密 Hole shape measuring method and device
DE10303250A1 (en) * 2003-01-28 2004-08-05 Delphi Technologies, Inc., Troy Air-gauging method for measuring the internal cross section or diameter of a bored hole, especially for holes with diameters in the sub-millimeter range, whereby a fluid is forced past a blocking body inserted in the hole
JP4905833B2 (en) * 2007-03-13 2012-03-28 株式会社東京精密 Inner diameter measuring device and inner diameter measuring method
JP4932689B2 (en) * 2007-11-29 2012-05-16 エスティケイテクノロジー株式会社 Position shift detection device
CN104848810B (en) * 2015-04-29 2017-08-15 张家港海太精密量仪科技有限公司 Symmetrical expression ball-and-socket sphere diameter pneumoelectric measuring instrument
CN105004288B (en) * 2015-07-22 2019-04-16 郑州中量测控科技有限公司 A kind of pneumatic inner diameter measuring device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111578870A (en) * 2020-04-30 2020-08-25 西北工业大学 Equivalent drift diameter marking method for pintle circular seam channel
CN111578870B (en) * 2020-04-30 2021-09-21 西北工业大学 Equivalent drift diameter marking method for pintle circular seam channel

Also Published As

Publication number Publication date
JP2001317928A (en) 2001-11-16

Similar Documents

Publication Publication Date Title
JP3390971B2 (en) Method and apparatus for measuring the inner diameter of a hole
JP2006349668A (en) Bore inspection probe
CN103048328A (en) Hole inspection method and hole inspection device
JPH0814871A (en) Pneumatic micrometer device
CN206709720U (en) The clamping workpiece device of microspheres circularity non-cpntact measurement
JP3895255B2 (en) Fluid bearing inspection method and inspection apparatus
CN106840319A (en) A kind of LNG liquid level detection devices
JP2009079943A (en) Outer diameter deflection measuring device
JP3414362B2 (en) Outer diameter measuring method and device
JP4905833B2 (en) Inner diameter measuring device and inner diameter measuring method
JP3390970B2 (en) Hole shape measuring method and device
JP2855064B2 (en) Inner sphere diameter measuring method and apparatus
JPH08193906A (en) Method and apparatus for measuring dynamic unbalance of ball
JP3390969B2 (en) Groove shape measuring method and device
JP3414363B2 (en) Outer diameter measuring method and device
JP3390968B2 (en) Outer diameter measuring method and device
US10962359B2 (en) Ultrasound measuring assembly and method for detecting the wall thickness of a pipe
CN218724042U (en) Inner hole detection device
CN111121989A (en) Fluid detection device
JP3931331B2 (en) measuring device
SU1335807A1 (en) Pneumatic method of checking equivalent diameter of axially-symmetric holes
KR101921596B1 (en) Adapter for measuring liquid pressure
JP3835519B2 (en) Dimension measuring method and dimension measuring apparatus
KR200402660Y1 (en) Air Micrometer having Air Automatic Spouting Function in Measuring Work piece having Air Micrometer Body with plunal Channel Control Function and Measuring Head with Sensor
CN206430899U (en) A kind of tool for detecting magnetic valve rotating shaft limit opening value

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Ref document number: 3390971

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090124

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090124

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100124

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110124

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110124

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120124

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120124

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130124

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130124

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140124

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S802 Written request for registration of partial abandonment of right

Free format text: JAPANESE INTERMEDIATE CODE: R311802

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees