JP4905833B2 - Inner diameter measuring device and inner diameter measuring method - Google Patents

Inner diameter measuring device and inner diameter measuring method Download PDF

Info

Publication number
JP4905833B2
JP4905833B2 JP2007063704A JP2007063704A JP4905833B2 JP 4905833 B2 JP4905833 B2 JP 4905833B2 JP 2007063704 A JP2007063704 A JP 2007063704A JP 2007063704 A JP2007063704 A JP 2007063704A JP 4905833 B2 JP4905833 B2 JP 4905833B2
Authority
JP
Japan
Prior art keywords
hole
measured
inner diameter
float
receiving member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007063704A
Other languages
Japanese (ja)
Other versions
JP2008224443A (en
Inventor
雄司 兼田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Seimitsu Co Ltd
Original Assignee
Tokyo Seimitsu Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Seimitsu Co Ltd filed Critical Tokyo Seimitsu Co Ltd
Priority to JP2007063704A priority Critical patent/JP4905833B2/en
Publication of JP2008224443A publication Critical patent/JP2008224443A/en
Application granted granted Critical
Publication of JP4905833B2 publication Critical patent/JP4905833B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Arrangements Characterized By The Use Of Fluids (AREA)

Description

本発明は、ワークに形成された穴の内径を測定する穴の内径測定装置及び内径測定方法に関する。   The present invention relates to a hole inner diameter measuring apparatus and inner diameter measuring method for measuring the inner diameter of a hole formed in a workpiece.

穴の内径を測定する測定装置としては、測定子を穴の内径面に接触させて測定を行う三次元測定器、または測定ヘッドを穴に挿入し、測定ヘッドのノズルから穴の壁面に向けて圧縮空気を噴射し、ノズルの背圧を検出する空気マイクロメータなどが従来使用されている。   As a measuring device that measures the inner diameter of a hole, a three-dimensional measuring instrument that performs measurement by bringing a probe into contact with the inner diameter surface of the hole or a measuring head is inserted into the hole, and the nozzle of the measuring head is directed toward the wall surface of the hole. An air micrometer that injects compressed air and detects the back pressure of the nozzle has been conventionally used.

三次元測定装置おいては、穴内壁に接触させた測定子を穴の形状に沿って一周させ、その変位量より穴の内径を算出する。穴の各位置での内径は、測定子を穴の奥行き方向に向かって移動させ、各位置で同じように測定子を穴内壁に接触させて一周させることにより算出される。   In the three-dimensional measuring apparatus, the measuring element brought into contact with the inner wall of the hole makes one round along the shape of the hole, and the inner diameter of the hole is calculated from the amount of displacement. The inner diameter at each position of the hole is calculated by moving the measuring element in the depth direction of the hole and bringing the measuring element into contact with the inner wall of the hole at each position to make a round.

空気マイクロメータにおいては、ノズルの背圧は穴内壁とノズルとの間隔に依存するので、予め求めたマスターの基準値と比較することによって、検出値を穴の内径寸法に換算することにより測定が行われる。このような空気マイクロメータは、測定ヘッドを穴に出し入れしながら連続的に穴の内径を測定する。   In the air micrometer, the back pressure of the nozzle depends on the distance between the inner wall of the hole and the nozzle, so the measurement value can be measured by converting the detected value into the inner diameter of the hole by comparing with the master reference value obtained in advance. Done. Such an air micrometer continuously measures the inner diameter of the hole while putting the measuring head in and out of the hole.

しかし、このような内径の測定装置では測定子を測定位置で移動させた後に、更に別の測定位置へ測定子を移動させ、同様に測定位置で測定子の移動を行うため、測定に多大な時間がかかる問題があった。更に、このような測定装置では小径の穴に測定ヘッドを入れることが困難であり、湾曲する穴を測定することも困難であった。   However, in such an inner diameter measuring apparatus, after moving the measuring element at the measuring position, the measuring element is further moved to another measuring position, and the measuring element is similarly moved at the measuring position. There was a problem that took time. Furthermore, with such a measuring apparatus, it is difficult to put a measuring head into a small diameter hole, and it is also difficult to measure a curved hole.

そのため、高速に小径の穴であっても測定が容易であり、穴内径の測定を素早く行える測定装置、及び測定方法として、穴に弾性体で支持された浮子をいれるとともに穴へ流体を供給し、流体が浮子と穴壁面との間を通過する際の背圧、流量、又は前記浮子が受ける抗力により穴の内径を測定する測定装置、及び測定方法が提案されている。
特開2001−349721号公報
Therefore, it is easy to measure even a small-diameter hole at high speed, and as a measurement device and measurement method that can quickly measure the inner diameter of a hole, a floating element supported by an elastic body is placed in the hole and fluid is supplied to the hole. A measuring apparatus and a measuring method for measuring the inner diameter of a hole by a back pressure, a flow rate when the fluid passes between the float and the hole wall surface, or a drag force applied to the float have been proposed.
JP 2001-349721 A

特許文献1に記載される測定装置では、台に載置された被測定物に形成されている穴へエアを供給するとともに、浮子を穴へ挿入し、移動手段によって浮子を穴の中で移動させることにより穴の各位置での内径を測定している。   In the measuring apparatus described in Patent Document 1, air is supplied to a hole formed in an object to be measured placed on a table, the float is inserted into the hole, and the float is moved in the hole by the moving means. The inner diameter at each position of the hole is measured.

しかし、このような測定においては、流体が供給される側である穴の入り口付近では、被測定物の穴の位置と、流体を供給する穴の位置とのズレや穴の大きさの違いなどから段差が生じ、空気の流れが変わりやすくなる。そのため、穴の入り口付近では、図4に示すグラフAのように、実際の内径から計測されるはずの背圧値よりも高い背圧値が計測され、実際よりも小さい内径であると測定されてしまう問題が確認されていた。   However, in such a measurement, in the vicinity of the entrance of the hole on the fluid supply side, the difference between the position of the hole of the object to be measured and the position of the hole supplying the fluid, the size of the hole, etc. A step is created from the air flow, and the air flow is easily changed. Therefore, in the vicinity of the entrance of the hole, as shown in graph A in FIG. 4, a back pressure value higher than the back pressure value that should be measured from the actual inner diameter is measured, and the inner diameter is measured to be smaller than the actual inner pressure. There was a problem that would occur.

本発明はこのような問題に対応するために成されたものであり、被測定物に形成された穴の入り口付近での背圧の変化を抑え、正確な穴の内径の測定が行うことが可能である内径測定装置、及び内径測定方法を提供することを目的としている。   The present invention has been made to cope with such a problem, and it is possible to suppress the change in back pressure near the entrance of the hole formed in the object to be measured and to accurately measure the inner diameter of the hole. It is an object to provide an inner diameter measuring device and an inner diameter measuring method that are possible.

本発明は前記目的を達成するために、被測定物に形成された貫通穴の入り口周囲の基準となる面が接触することにより前記被測定物が載置される被測定物受け部材と、前記被測定物に形成された前記貫通穴に前記被測定物受け部材を介して流体を供給する流体供給手段と、前記被測定物受け部材の前記被測定物が接触している部分の周囲に取り付けられるとともに前記流体と接触し、前記被測定物と前記被測定物受け部材との間を封止して前記流体の流出を防止するシール部材と、弾性部材により保持され前記穴に挿入される浮子と、該浮子を前記貫通穴の奥行き方向に沿って移動させる移動手段と、前記流体が前記貫通穴内壁と前記浮子との隙間を通過する際の背圧、流量、又は前記浮子が受ける抗力を検出する検出手段と、該検出手段で検出した検出値を基準値と比較して前記貫通穴の内径に換算する換算手段とを備え、前記被測定物受け部材側端には前記被測定物に形成された前記貫通穴の入り口周囲の基準となる面が接触する平面が形成され、前記平面には、放射状に広がる複数の溝が形成され、前記シール部材と前記流体とが前記溝により接していることを特徴としている。 In order to achieve the above object, the present invention provides an object receiving member on which the object to be measured is placed by contacting a reference surface around the entrance of a through hole formed in the object to be measured; A fluid supply means for supplying a fluid to the through hole formed in the object to be measured through the object receiving member, and a periphery of a portion of the object receiving member in contact with the object to be measured And a seal member that contacts the fluid and seals between the measured object and the measured object receiving member to prevent the fluid from flowing out, and a float that is held by an elastic member and inserted into the hole And a moving means for moving the float along the depth direction of the through hole, and a back pressure, a flow rate, or a drag force that the float receives when the fluid passes through a gap between the inner wall of the through hole and the float. Detecting means for detecting, and the detecting means The detection value out is compared with a reference value and a conversion means for converting the inner diameter of the through hole, wherein the object to be measured receiving member side end of the inlet around the through hole formed in the object to be measured A flat surface with which a reference surface comes into contact is formed, and a plurality of radially extending grooves are formed on the flat surface, and the seal member and the fluid are in contact with each other by the grooves .

また、本発明は前記発明において、前記シール部材は、弾性体により形成されていることを特徴としている。   Further, the present invention is characterized in that in the above invention, the seal member is formed of an elastic body.

更に、本発明は前記発明において、前記被測定物受け部材は、中心部に前記貫通穴と連通する穴が形成されたフランジ部を有する円筒形状を成し、前記フランジ部上に前記シール部材が取り付けられることを特徴としている。 Further, in the present invention is the invention, the object to be measured receiving member has a cylindrical shape having a flange portion having holes formed in communication with the through hole in the center, the sealing member before Symbol flange on It is characterized in that is attached.

本発明によれば、被測定物は形成されている穴の周囲の基準面となる平面を被測定物受け部材に密着させて被測定物受け部材上に載置され、被測定物に形成された穴は被測定物受け部材に形成されている流体供給手段と連通された穴に位置合わせされている。これにより、被測定物は穴の入り口からの位置の基準となる面を、穴の入り口からの浮子の位置を計測する基準となる被測定物受け部材の平面に密着させて固定される。   According to the present invention, the object to be measured is placed on the object receiving member with the flat surface serving as the reference surface around the hole formed being in close contact with the object receiving member, and is formed on the object to be measured. The hole is aligned with the hole communicating with the fluid supply means formed in the object receiving member. As a result, the object to be measured is fixed with the surface serving as a reference for the position from the hole entrance closely contacting the flat surface of the object receiving member serving as a reference for measuring the position of the float from the hole entrance.

この状態で位置合わせされた被測定物の穴へ弾性体に支持された浮子を被測定物受け部材側より挿入し、圧縮空気等の流体が流体供給手段より被測定物の穴へ被測定物受け部材側より供給される。浮子は移動手段により穴の奥行き方向へ移動され、流体が穴内壁と浮子との隙間を通過する際の背圧、流量、又は浮子が受ける抗力を検出手段により複数箇所検出する。検出手段で検出した検出値は基準値と比較して換算手段により穴の内径に換算される。   In this state, the float supported by the elastic body is inserted into the measured object hole from the measured object receiving member side, and fluid such as compressed air is supplied from the fluid supply means to the measured object hole. Supplied from the receiving member side. The float is moved in the depth direction of the hole by the moving means, and the back pressure, the flow rate, or the drag that the float receives when the fluid passes through the gap between the hole inner wall and the float is detected at a plurality of locations by the detection means. The detection value detected by the detection means is converted to the inner diameter of the hole by the conversion means in comparison with the reference value.

このとき、被測定物受け部材の、被測定物と密着している面の外周、または内周部には流体と接触し被測定物と被測定物受け部材との間を封止して流体が被測定物と被測定物受け部材との隙間より流出することを防止するシール部材が取り付けられている。外周部にシール部材が取り付けられている場合には、被測定物受け部材の被測定物と密着している面には放射状に広がる複数の溝が形成されている。   At this time, the outer periphery or inner peripheral portion of the surface of the object receiving member that is in close contact with the object to be measured contacts the fluid and seals between the object to be measured and the object receiving member to be fluid A seal member is attached to prevent the liquid from flowing out of the gap between the object to be measured and the object receiving member. When the seal member is attached to the outer peripheral portion, a plurality of radially extending grooves are formed on the surface of the object receiving member that is in close contact with the object to be measured.

これにより、流体がシール部材と直接接している為、穴の入り口付近での流体の乱れが解消され、被測定物に形成された穴の入り口付近での背圧の変化を押さえ、正確な穴の内径の測定が行うことが可能となる。   As a result, since the fluid is in direct contact with the seal member, fluid disturbance near the entrance of the hole is eliminated, and changes in back pressure near the entrance of the hole formed in the object to be measured are suppressed. It becomes possible to measure the inner diameter.

以上説明したように、本発明の内径測定装置、及び内径測定方法によれば、被測定物に形成された穴の入り口付近での背圧の変化を押さえ、正確な穴の内径の測定が行うことが可能にする。   As described above, according to the inner diameter measuring device and the inner diameter measuring method of the present invention, accurate measurement of the inner diameter of the hole is performed by suppressing the change in the back pressure near the entrance of the hole formed in the object to be measured. Make it possible.

以下、添付図面に従って本発明に係る内径測定装置、及び内径測定方法の好ましい実施の形態について詳説する。   Hereinafter, preferred embodiments of an inner diameter measuring device and an inner diameter measuring method according to the present invention will be described in detail with reference to the accompanying drawings.

まず初めに、本発明に係わる内径測定装置の構成について説明する。図1は内径測定装置の構成を示したブロック図である。   First, the configuration of the inner diameter measuring apparatus according to the present invention will be described. FIG. 1 is a block diagram showing the configuration of the inner diameter measuring apparatus.

測定装置10は、図1に示すように、流体供給手段であるエア発生源12より供給される圧縮空気を、移動手段である可動部30を通じて測定部20に載置固定されている被測定物であるワーク22に形成された貫通穴22Aへ供給し、可動部30に設けられた浮子31を貫通穴22A内で上下移動させて貫通穴22Aの各位置での内径測定を行う。   As shown in FIG. 1, the measuring device 10 is a measurement object in which compressed air supplied from an air generation source 12 as fluid supply means is placed and fixed on a measurement part 20 through a movable part 30 as movement means. Is supplied to the through hole 22A formed in the workpiece 22, and the float 31 provided in the movable portion 30 is moved up and down in the through hole 22A to measure the inner diameter at each position of the through hole 22A.

ワーク22は、円筒形状を成し、中心部に貫通穴22Aが形成され、貫通穴22Aの入り口22Cの周囲は平面状に形成されて貫通穴22Aの位置を測定する基準の面となっている。   The workpiece 22 has a cylindrical shape, a through hole 22A is formed at the center, and the periphery of the inlet 22C of the through hole 22A is formed in a flat shape to serve as a reference surface for measuring the position of the through hole 22A. .

エア発生源12から供給される圧縮空気は、フィルタ14で除塵され、レギュレータ16で一定圧力に調整された後、空気の圧力、流量を電気信号に変えて換算手段としての管制部11へ送る検出手段としてのA/E変換器18(空気/電気変換器)内に設置された絞りを通り、コネクタ36を介して可動部30に備えられた浮子支持部材35へ供給される。   The compressed air supplied from the air generation source 12 is dedusted by the filter 14, adjusted to a constant pressure by the regulator 16, and then sent to the control unit 11 as a conversion means by changing the air pressure and flow rate to an electric signal. It passes through a throttle installed in an A / E converter 18 (air / electric converter) as a means, and is supplied to a float support member 35 provided in the movable portion 30 via a connector 36.

可動部30には、浮子支持部材35の他、移動部材34、支持部材33、駆動部38、及び不図示のリニアスケールを備えている。   In addition to the float support member 35, the movable unit 30 includes a moving member 34, a support member 33, a drive unit 38, and a linear scale (not shown).

浮子支持部材35は、フランジ部35Bを備え、底部内部にエア流路35Aが形成され、ワーク22に形成された貫通穴22Aの内径の測定を行う浮子31が先端部に弾性部材であるワイヤ32により取り付けられている。   The float support member 35 includes a flange portion 35B, an air flow path 35A is formed inside the bottom portion, and a float 31 that measures the inner diameter of the through hole 22A formed in the work 22 is a wire 32 that is an elastic member at the distal end portion. It is attached by.

浮子31は、セラミック、樹脂、鋼、軽合金等の材料を用いて、高い加工精度で球状に形成される。   The float 31 is formed in a spherical shape with high processing accuracy using a material such as ceramic, resin, steel, and light alloy.

移動部材34は内部が空洞であって、空洞内に浮子支持部材35が位置するように浮子支持部材35のフランジ部35Bが底部に固定されている。これにより、移動部材34の内部には、エア流路30Aが形成される。   The moving member 34 is hollow inside, and the flange portion 35B of the float support member 35 is fixed to the bottom so that the float support member 35 is located in the cavity. As a result, an air flow path 30 </ b> A is formed inside the moving member 34.

支持部材33には内部に穴33Aが形成され、移動部材34はシールリング37により外周部を封止されながら浮子支持部材35と共に、管制部11により動作が制御される駆動部38によって穴33A内を上下に移動する。   The support member 33 has a hole 33A formed therein, and the moving member 34 is sealed in the hole 33A by the drive unit 38 whose operation is controlled by the control unit 11 together with the float support member 35 while the outer periphery is sealed by the seal ring 37. Move up and down.

これにより、ワーク22に形成された貫通穴22A内を浮子31が上下移動することが可能となる。浮子31の移動量は不図示のリニアスケールにより移動部材34の移動量として測定され、浮子31が貫通穴22A内のいずれの位置の内径を測定しているかが分かる。   As a result, the float 31 can move up and down in the through hole 22 </ b> A formed in the workpiece 22. The moving amount of the float 31 is measured as the moving amount of the moving member 34 by a linear scale (not shown), and it can be seen which position the inner diameter of the float 31 is measured in the through hole 22A.

続いて、測定部20は、可動部30の上部に固定され、被測定物受け部材であるワーク受け部材23、シール部材であるシールリング25を固定する固定リング27、ワーク保持部材26、及びワーク押さえ部24を備えている。   Subsequently, the measuring unit 20 is fixed to the upper portion of the movable unit 30 and is a workpiece receiving member 23 that is an object receiving member, a fixing ring 27 that fixes a seal ring 25 that is a sealing member, a workpiece holding member 26, and a workpiece A holding part 24 is provided.

ワーク受け部材23は、図2に示すように、中心に穴23Bが形成されたフランジ部を有する円筒形状を成し、上面に平面23Aが形成されている。ワーク受け部材23は、ワーク22に形成された貫通穴22Aの入り口22Cの周囲の基準となる平面が、平面23Aに接触することによりワーク22を受ける。   As shown in FIG. 2, the workpiece receiving member 23 has a cylindrical shape having a flange portion with a hole 23 </ b> B formed in the center, and a flat surface 23 </ b> A is formed on the upper surface. The workpiece receiving member 23 receives the workpiece 22 when a reference plane around the entrance 22C of the through hole 22A formed in the workpiece 22 contacts the plane 23A.

ワーク受け部材23の平面23Aには、放射状に広がる溝23Cが形成され、平面23A、溝23Cの外周部には、フランジ部上に樹脂やゴム等を素材とするシールリング25が取り付けられている。シールリング25はワーク受け部材23の周囲に取り付けられる固定リング27によりワーク受け部材23に固定されている。   The flat surface 23A of the workpiece receiving member 23 is formed with radially extending grooves 23C, and the outer periphery of the flat surface 23A and the grooves 23C is attached with a seal ring 25 made of resin, rubber or the like on the flange portion. . The seal ring 25 is fixed to the work receiving member 23 by a fixing ring 27 attached around the work receiving member 23.

ワーク保持部材26は、中心部にワーク22の外周径よりも僅かに大きい径のワーク22を保持する穴が形成され、ワーク22の貫通穴22Aの中心が、ワーク受け部材23の穴23Bの中心と同一直線状に並ぶようにワーク受け部材23と固定リング27との上部に取り付けられる。   The workpiece holding member 26 is formed with a hole for holding the workpiece 22 having a diameter slightly larger than the outer diameter of the workpiece 22 at the center, and the center of the through hole 22A of the workpiece 22 is the center of the hole 23B of the workpiece receiving member 23. Are attached to the upper part of the work receiving member 23 and the fixing ring 27 so as to be aligned in a straight line.

ワーク保持部材26に保持され、ワーク受け部材23の平面23A上に載置されているワーク22は、平面23Aと接触している面とは逆の面をワーク押さえ部24により押圧されてワーク受け部材23に密着する。このとき、シールリング25もワーク22により押圧され、ワーク22とワーク受け部材23との間を封止して、穴23Bと貫通穴22Aとを抜ける圧縮空気が、ワーク22とワーク受け部材23との間から流出することを防止する。   The workpiece 22 held by the workpiece holding member 26 and placed on the flat surface 23A of the workpiece receiving member 23 is pressed by the workpiece pressing portion 24 on the surface opposite to the surface in contact with the flat surface 23A. It is in close contact with the member 23. At this time, the seal ring 25 is also pressed by the work 22 to seal between the work 22 and the work receiving member 23, and the compressed air passing through the hole 23 </ b> B and the through hole 22 </ b> A Prevent leakage from between.

この状態でエア発生源12から供給される圧縮空気が、フィルタ14で除塵され、レギュレータ16で一定圧力に調整された後、A/E変換器18(空気/電気変換器)内に設置された絞りを通り、コネクタ36を介して流路35A、流路30Aを通り、穴33Aからワーク受け部材23の穴23Bに流入してワーク22の貫通穴22A内に供給され、ワーク22のワーク押さえ部24により押圧されている側より大気中に放出される。   In this state, the compressed air supplied from the air generation source 12 is dust-removed by the filter 14, adjusted to a constant pressure by the regulator 16, and then installed in the A / E converter 18 (air / electric converter). The work passes through the restrictor, passes through the flow path 35A and the flow path 30A via the connector 36, flows from the hole 33A into the hole 23B of the work receiving member 23 and is supplied into the through hole 22A of the work 22, It is discharged into the atmosphere from the side pressed by 24.

貫通穴22A内に供給された圧縮空気は、貫通穴22A内で上下移動する浮子31と貫通穴22Aの内壁との間である隙間22Bを通過し、隙間22Bを圧縮空気が通過する際の背圧をA/E変換器18により検知する。検知された大きさは電気信号として管制部11へ送られ、送られてきた電気信号は管制部11で記録されている基準値と比較されて貫通穴22Aの内径サイズとして換算されて記録される。   The compressed air supplied into the through hole 22A passes through the gap 22B between the float 31 that moves up and down in the through hole 22A and the inner wall of the through hole 22A, and the back when the compressed air passes through the gap 22B. The pressure is detected by the A / E converter 18. The detected magnitude is sent to the control unit 11 as an electrical signal, and the sent electrical signal is compared with the reference value recorded in the control unit 11 and converted into the inner diameter size of the through hole 22A and recorded. .

以上のような構成の測定装置10によりワーク22の内径の測定が行われる。なお、本実施の形態では、ワーク22はワーク受け部材23と接触する面の外周部付近がテーパ形状に形成されているが、図3に示されるようワーク42のようにテーパ形状がない、または貫通穴22Aの入り口22Cの周囲にテーパ形状を備えていても同様に計測される。   The measuring device 10 having the above configuration measures the inner diameter of the workpiece 22. In the present embodiment, the workpiece 22 is formed in a tapered shape near the outer peripheral portion of the surface that contacts the workpiece receiving member 23, but is not tapered like the workpiece 42 as shown in FIG. Even if a taper shape is provided around the entrance 22C of the through hole 22A, the same measurement is performed.

このとき、被測定物受け部材は、図3に示すワーク受け部材43のように、平面43Aの内周部にざぐり穴が形成され、ざぐり穴内にシールリング45が取り付けられている。シールリング45は、ワーク42とワーク受け部材43との間を封止して、穴43Bと穴42Aとを抜ける圧縮空気が、ワーク42とワーク受け部材43との間から流出することを防止する。   At this time, the workpiece receiving member has a counterbore formed in the inner peripheral portion of the flat surface 43A like the work receiving member 43 shown in FIG. 3, and a seal ring 45 is attached in the counterbore. The seal ring 45 seals between the workpiece 42 and the workpiece receiving member 43, and prevents the compressed air passing through the hole 43 </ b> B and the hole 42 </ b> A from flowing out between the workpiece 42 and the workpiece receiving member 43. .

穴42A内に供給された圧縮空気は同様に、穴42A内で上下移動する浮子31と穴42Aの内壁との間である隙間42Bを通過し、隙間42Bを圧縮空気が通過する際の背圧をA/E変換器18により検知して内径が計測される。   Similarly, the compressed air supplied into the hole 42A passes through the gap 42B between the float 31 that moves up and down in the hole 42A and the inner wall of the hole 42A, and the back pressure when the compressed air passes through the gap 42B. Is detected by the A / E converter 18 and the inner diameter is measured.

また、本実施の形態ではワーク22は円筒形状を成しているが、本発明はこれに限らず、穴が形成され、ワーク受け部材に載置出来る形状のワークであれば、いかなる形状であっても穴の内径を計測すること可能である。   In the present embodiment, the workpiece 22 has a cylindrical shape. However, the present invention is not limited to this, and any shape can be used as long as the workpiece has a hole and can be placed on the workpiece receiving member. However, it is possible to measure the inner diameter of the hole.

次に、上記のように構成された本発明に係わる測定装置10の作用について説明する。図1に示す測定装置10では、まずエア発生源12から圧縮空気を供給し、供給された圧縮空気はフィルタ14で除塵され、レギュレータ16で一定圧力に調整された後、A/E変換器18(空気/電気変換器)内に設置された絞りを通り、コネクタ36を介して浮子支持部材35へ供給される。   Next, the operation of the measuring apparatus 10 according to the present invention configured as described above will be described. In the measuring apparatus 10 shown in FIG. 1, first, compressed air is supplied from an air generation source 12, and the supplied compressed air is dedusted by a filter 14, adjusted to a constant pressure by a regulator 16, and then an A / E converter 18. The air is passed through a throttle installed in the (air / electrical converter) and supplied to the float support member 35 via the connector 36.

浮子支持部材35へ供給された圧縮空気は流路35A、30Aを通り、穴33よりワーク受け部材23の穴23Bへ供給され、ワーク22の貫通穴22Aへ噴射される。   The compressed air supplied to the float support member 35 passes through the flow paths 35 </ b> A and 30 </ b> A, is supplied from the hole 33 to the hole 23 </ b> B of the work receiving member 23, and is injected into the through hole 22 </ b> A of the work 22.

次いで、駆動部38を駆動して移動部材34と浮子支持部材35とを共に上昇させ、浮子31を穴23B側より貫通穴22Aへ挿入するとともに、挿入した浮子31を貫通穴22Aに沿って上昇させる。   Next, the driving unit 38 is driven to raise both the moving member 34 and the float support member 35, and the float 31 is inserted into the through hole 22A from the hole 23B side, and the inserted float 31 is lifted along the through hole 22A. Let

そして、圧縮空気が浮子31と貫通穴22Aの内壁との隙間22Bを通過する際の背圧を、所定の間隔ごとに複数箇所(或いは連続して)A/E変換器18により検出する。背圧は浮子31と貫通穴22Aの内壁との隙間の大きさに依存するので、A/E変換器18により検出された背圧の検出値を管制部11でマスターの基準値と比較することによって貫通穴22Aの内径に換算できる。   The back pressure when the compressed air passes through the gap 22B between the float 31 and the inner wall of the through hole 22A is detected by a plurality of (or continuously) A / E converters 18 at predetermined intervals. Since the back pressure depends on the size of the gap between the float 31 and the inner wall of the through hole 22A, the back pressure detected value detected by the A / E converter 18 is compared with the master reference value by the control unit 11. Can be converted into the inner diameter of the through hole 22A.

このとき、ワーク受け部材23のワーク22と密着している平面23Aには、図2に示す放射状に広がる溝23Cが形成され、平面23Aと溝23Cの外周にはシールリング25が取り付けられている。   At this time, the flat surface 23A in close contact with the work 22 of the work receiving member 23 is formed with a radially extending groove 23C shown in FIG. 2, and a seal ring 25 is attached to the outer periphery of the flat surface 23A and the groove 23C. .

これにより、圧縮空気が溝23Cを通してシールリング25と直接接し、貫通穴22Aの入り口22C付近での圧縮空気の乱れが解消され、ワーク22に形成された貫通穴22Aの入り口22C付近での背圧の変化を押さえ、図4に示すグラフBのように高い背圧値が計測されて実際よりも小さい内径であると測定されることがなく、入り口22C付近での正確な貫通穴22Aの内径の測定が行うことが可能となる。   As a result, the compressed air comes into direct contact with the seal ring 25 through the groove 23C, and the disturbance of the compressed air in the vicinity of the inlet 22C of the through hole 22A is eliminated. As shown in the graph B in FIG. 4, a high back pressure value is measured and the inner diameter is not smaller than the actual one, and the accurate inner diameter of the through hole 22A near the entrance 22C is not measured. Measurement can be performed.

貫通穴22A内の測定においては、貫通穴22Aの内壁と浮子31との隙間22Bを通り抜ける圧縮空気によって浮子31に自動求心作用(又は自動調芯作用)が働く。したがって、ワイヤ32が弾性変形して浮子31が貫通穴22Aの中心に自動的に配置される。これにより、圧縮空気は、ワーク22の貫通穴22Aの内壁に略均等に形成された隙間22Bを通り抜けることになり、このときの背圧をA/E変換器18により検出することによって貫通穴22Aの内径を精度良く測定できる。   In the measurement in the through hole 22A, an automatic centripetal action (or automatic centering action) is exerted on the float 31 by the compressed air passing through the gap 22B between the inner wall of the through hole 22A and the float 31. Therefore, the wire 32 is elastically deformed and the float 31 is automatically arranged at the center of the through hole 22A. As a result, the compressed air passes through the gap 22B formed substantially uniformly on the inner wall of the through hole 22A of the workpiece 22, and the A / E converter 18 detects the back pressure at this time, thereby detecting the through hole 22A. Can be measured accurately.

なお、マスターの基準値とは、測定に先立って、測定時と同じ条件でマスターを測定した値であり、測定条件を変える度に行われる。   Note that the master reference value is a value obtained by measuring the master under the same conditions as the measurement prior to measurement, and is performed each time the measurement conditions are changed.

また、上述した実施の形態では、圧縮空気の背圧を検出したが、これに限定するものではなく、圧縮空気が貫通穴22Aの内壁と浮子31との隙間22Bを通過する際の圧縮空気の流量を検出してもよい。この場合も上述した実施の形態と同様に、管制部11が、検出値をマスターの基準値と比較することによって貫通穴22Aの内径を精度良く測定できる。   In the above-described embodiment, the back pressure of the compressed air is detected. However, the present invention is not limited to this, and the compressed air flows when the compressed air passes through the gap 22B between the inner wall of the through hole 22A and the float 31. The flow rate may be detected. Also in this case, similarly to the above-described embodiment, the control unit 11 can accurately measure the inner diameter of the through hole 22A by comparing the detected value with the reference value of the master.

さらに、本発明は、圧縮空気の背圧や流量の検出に限定されるものではなく、浮子31が受ける抗力を浮子支持部材35に設けられた不図示の圧電ピックアップや歪みゲージで検出し、貫通穴22Aの内径に換算してもよい。   Furthermore, the present invention is not limited to the detection of the back pressure and flow rate of compressed air, but the drag force received by the float 31 is detected by a piezoelectric pickup or strain gauge (not shown) provided on the float support member 35, and penetrated. The inner diameter of the hole 22A may be converted.

以上、説明したように、本発明に係わる内径測定装置、及び内径測定方法によれば、流体がシール部材と直接接している為、被測定物に形成された穴の入り口付近での流体の乱れが解消され、穴の入り口付近での背圧の変化を押さえ、正確な穴の内径の測定が行うことが可能にする。   As described above, according to the inner diameter measuring apparatus and inner diameter measuring method according to the present invention, since the fluid is in direct contact with the seal member, the fluid turbulence near the entrance of the hole formed in the object to be measured. This eliminates the change in back pressure near the entrance of the hole and enables accurate measurement of the inner diameter of the hole.

本発明に係わる内径測定装置の構成を示したブロック図。The block diagram which showed the structure of the internal diameter measuring apparatus concerning this invention. ワーク受け部材の形状を示した上面図と側面図。The top view and side view which showed the shape of the workpiece | work receiving member. 別の実施の形態の測定部を示した側面図。The side view which showed the measurement part of another embodiment. ワークの内径を測定した結果を示した図表。A chart showing the results of measuring the inner diameter of the workpiece.

符号の説明Explanation of symbols

10…測定装置,11…管制部,12…エア発生源,16…レギュレータ,18…A/E変換器,20…測定部,22、42…ワーク(被測定物),22A…貫通穴,23B、33A、42A…穴,22B…隙間,22C…入り口,23、43…ワーク受け部材(被測定物受け部材),23A、43A…平面,24…ワーク押さえ部,25、37、45…シールリング(シール部材),27…固定リング,30…可動部,30A、35A…流路,31…浮子,32…ワイヤ(弾性部材),33…支持部材,34…移動部材,35…浮子支持部材,36…コネクタ,38…駆動部 DESCRIPTION OF SYMBOLS 10 ... Measuring apparatus, 11 ... Control part, 12 ... Air generation source, 16 ... Regulator, 18 ... A / E converter, 20 ... Measuring part, 22, 42 ... Workpiece (measurement object), 22A ... Through-hole, 23B , 33A, 42A ... hole, 22B ... gap, 22C ... entrance, 23, 43 ... work receiving member (measurement object receiving member), 23A, 43A ... plane, 24 ... work pressing part, 25, 37, 45 ... seal ring (Seal member), 27 ... fixed ring, 30 ... movable part, 30A, 35A ... flow path, 31 ... float, 32 ... wire (elastic member), 33 ... support member, 34 ... moving member, 35 ... float support member, 36 ... Connector, 38 ... Driver

Claims (4)

被測定物に形成された貫通穴の入り口周囲の基準となる面が接触することにより前記被測定物が載置される被測定物受け部材と、
前記被測定物に形成された前記貫通穴に前記被測定物受け部材を介して流体を供給する流体供給手段と、
前記被測定物受け部材の前記被測定物が接触している部分の周囲に取り付けられるとともに前記流体と接触し、前記被測定物と前記被測定物受け部材との間を封止して前記流体の流出を防止するシール部材と、弾性部材により保持され前記穴に挿入される浮子と、該浮子を前記貫通穴の奥行き方向に沿って移動させる移動手段と、
前記流体が前記貫通穴内壁と前記浮子との隙間を通過する際の背圧、流量、又は前記浮子が受ける抗力を検出する検出手段と、
該検出手段で検出した検出値を基準値と比較して前記貫通穴の内径に換算する換算手段
とを備え、
前記被測定物受け部材側端には前記被測定物に形成された前記貫通穴の入り口周囲の基準となる面が接触する平面が形成され、前記平面には、放射状に広がる複数の溝が形成され、前記シール部材と前記流体とが前記溝により接していることを特徴とする穴の内径測定装置。
A measured object receiving member on which the measured object is placed by contacting a reference surface around the entrance of the through hole formed in the measured object;
Fluid supply means for supplying a fluid to the through hole formed in the measurement object via the measurement object receiving member;
The fluid to be measured is attached around the portion of the object receiving member in contact with the object to be measured and is in contact with the fluid to seal between the object to be measured and the object to be measured receiving member. A seal member for preventing the outflow of the gas, a float that is held by an elastic member and inserted into the hole, and a moving means that moves the float along the depth direction of the through hole,
Detecting means for detecting back pressure, flow rate, or drag received by the float when the fluid passes through a gap between the inner wall of the through hole and the float;
Conversion means for comparing the detection value detected by the detection means with a reference value and converting it to the inner diameter of the through hole
And
A flat surface is formed at the end of the object receiving member on the side where the reference surface around the entrance of the through hole formed in the object to be measured comes into contact, and a plurality of grooves extending radially are formed on the flat surface. An apparatus for measuring an inner diameter of a hole , wherein the seal member and the fluid are in contact with each other through the groove .
前記シール部材は、弾性体により形成されていることを特徴とする請求項1に記載の穴の内径測定装置。   The hole inner diameter measuring apparatus according to claim 1, wherein the seal member is formed of an elastic body. 前記被測定物受け部材は、中心部に前記貫通穴と連通する穴が形成されたフランジ部を有する円筒形状を成し、前記フランジ部上に前記シール部材が取り付けられることを特徴とする請求項1または請求項2に記載の穴の内径測定装置。 Wherein said measured object receiving member, that a cylindrical shape having a flange portion having holes formed in communication with the through hole in the center, and wherein said that the sealing member is attached to the front Symbol flange on The hole inner diameter measuring device according to claim 1 or 2. 被測定物を被測定物受け部材に載置し、弾性体により保持される浮子を前記被測定物に形成された貫通穴へ挿入するとともに前記貫通穴へ流体を供給し、前記流体が前記貫通穴内壁と前記浮子との隙間を通過する際の背圧、流量、又は前記浮子が受ける抗力を検出することにより前記貫通穴の内径を測定する穴の内径測定方法において、
前記被測定物受け部材が前記被測定物に形成された前記貫通穴の入り口周囲の基準となる面と接触している部分には、放射状に広がる複数の溝が形成され、前記被測定物受け部材が前記被測定物と接触している部分の外周部に取り付けられた前記被測定物と前記被測定物受け部材との間を封止して前記流体の流出を防止するシール部材と前記流体とが前記溝により接触していることを特徴とする穴の内径測定方法。
An object to be measured is placed on the object receiving member, and a float held by an elastic body is inserted into a through hole formed in the object to be measured, and a fluid is supplied to the through hole, and the fluid passes through the through hole. In the inner diameter measuring method of the hole for measuring the inner diameter of the through hole by detecting the back pressure, the flow rate when passing through the gap between the inner wall of the hole and the float, or the drag received by the float,
A plurality of radially extending grooves are formed in a portion where the measured object receiving member is in contact with a reference surface around the entrance of the through hole formed in the measured object, and the measured object receiver A sealing member that seals a gap between the object to be measured and the object to be measured, which is attached to an outer peripheral portion of a part in contact with the object to be measured, and the fluid to prevent the fluid from flowing out; Are in contact with each other through the groove .
JP2007063704A 2007-03-13 2007-03-13 Inner diameter measuring device and inner diameter measuring method Active JP4905833B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007063704A JP4905833B2 (en) 2007-03-13 2007-03-13 Inner diameter measuring device and inner diameter measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007063704A JP4905833B2 (en) 2007-03-13 2007-03-13 Inner diameter measuring device and inner diameter measuring method

Publications (2)

Publication Number Publication Date
JP2008224443A JP2008224443A (en) 2008-09-25
JP4905833B2 true JP4905833B2 (en) 2012-03-28

Family

ID=39843249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007063704A Active JP4905833B2 (en) 2007-03-13 2007-03-13 Inner diameter measuring device and inner diameter measuring method

Country Status (1)

Country Link
JP (1) JP4905833B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109579749A (en) * 2018-11-12 2019-04-05 重庆长安工业(集团)有限责任公司 Special-shaped bore dia pneumatic detection device
CN110823161A (en) * 2019-11-20 2020-02-21 利辛县宝隆橡塑密封件有限责任公司 Rubber seal detection device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116460203B (en) * 2023-06-19 2023-09-08 浙江易锻精密机械有限公司 Stamping system with automatic detection function and operation method of stamping system

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4432099A (en) * 1982-07-09 1984-02-21 Gentex Corporation Individually fitted helmet liner
JP3342313B2 (en) * 1996-09-19 2002-11-05 本田技研工業株式会社 Back pressure air micrometer
JP3390971B2 (en) * 2000-02-29 2003-03-31 株式会社東京精密 Method and apparatus for measuring the inner diameter of a hole
JP3414362B2 (en) * 2000-05-23 2003-06-09 株式会社東京精密 Outer diameter measuring method and device
JP3390969B2 (en) * 2000-06-09 2003-03-31 株式会社東京精密 Groove shape measuring method and device
JP3390970B2 (en) * 2000-06-09 2003-03-31 株式会社東京精密 Hole shape measuring method and device
JP3900251B2 (en) * 2001-10-05 2007-04-04 株式会社東京精密 Inner diameter measuring device
JP3897248B2 (en) * 2002-07-24 2007-03-22 株式会社東京精密 measuring device
JP3849866B2 (en) * 2002-07-24 2006-11-22 株式会社東京精密 measuring device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109579749A (en) * 2018-11-12 2019-04-05 重庆长安工业(集团)有限责任公司 Special-shaped bore dia pneumatic detection device
CN110823161A (en) * 2019-11-20 2020-02-21 利辛县宝隆橡塑密封件有限责任公司 Rubber seal detection device

Also Published As

Publication number Publication date
JP2008224443A (en) 2008-09-25

Similar Documents

Publication Publication Date Title
JP4905833B2 (en) Inner diameter measuring device and inner diameter measuring method
CN109270246A (en) A kind of radial more monitoring core holding units for fracture hole oil reservoir
EP2910908A1 (en) Differential pressure type flowmeter and flow controller provided with the same
KR101851706B1 (en) Surface inspection system of rock hole
JP2008292470A (en) Device for inspecting linear cavity with eddy current
JP2017138201A (en) Pressure detector
JP3390971B2 (en) Method and apparatus for measuring the inner diameter of a hole
ATE540288T1 (en) METHOD FOR MEASURING A DISTANCE FROM A BASE SURFACE TO A TAPERED SURFACE OF A BODY
JP2019211438A (en) Internal inspection system of hydraulic machinery and internal inspection method
JP3390970B2 (en) Hole shape measuring method and device
US7117719B2 (en) Hole shape measuring method and apparatus
JP3414362B2 (en) Outer diameter measuring method and device
CN109416307B (en) Measuring device, measuring arrangement and method for evaluating a measurement signal during a penetration movement of a penetrating body into a surface of a test body
EP1452829B1 (en) Method and equipment for measuring the shape of a hole
JP2006349458A (en) Measurement technique of surface roughness and device thereof
JP2006300791A (en) Multi-coil probe for eddy current flaw detection
CN208999356U (en) A kind of device that analog mechanical sealing is distributed with lubricating film
JP3931331B2 (en) measuring device
JP3390969B2 (en) Groove shape measuring method and device
JP3414363B2 (en) Outer diameter measuring method and device
WO2015128614A1 (en) Fluid driven position sensor
JP2012163453A (en) Flow rate measuring device
JP3390968B2 (en) Outer diameter measuring method and device
CN202275026U (en) Strength test device of welded ball
JP6914273B2 (en) Measuring device for detecting measurement signal during press-fitting motion of press-fitting body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110810

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111229

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4905833

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250