JP2854963B2 - Solid phase bonding method and apparatus - Google Patents

Solid phase bonding method and apparatus

Info

Publication number
JP2854963B2
JP2854963B2 JP2323110A JP32311090A JP2854963B2 JP 2854963 B2 JP2854963 B2 JP 2854963B2 JP 2323110 A JP2323110 A JP 2323110A JP 32311090 A JP32311090 A JP 32311090A JP 2854963 B2 JP2854963 B2 JP 2854963B2
Authority
JP
Japan
Prior art keywords
bonding
solid
lead
atmosphere
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2323110A
Other languages
Japanese (ja)
Other versions
JPH04196333A (en
Inventor
良一 梶原
光雄 加藤
和夫 羽島
節夫 関根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2323110A priority Critical patent/JP2854963B2/en
Publication of JPH04196333A publication Critical patent/JPH04196333A/en
Application granted granted Critical
Publication of JP2854963B2 publication Critical patent/JP2854963B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/75Apparatus for connecting with bump connectors or layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05552Shape in top view
    • H01L2224/05554Shape in top view being square
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05617Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/05624Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45147Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48599Principal constituent of the connecting portion of the wire connector being Gold (Au)
    • H01L2224/486Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48617Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950 °C
    • H01L2224/48624Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49175Parallel arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • H01L2224/781Means for controlling the bonding environment, e.g. valves, vacuum pumps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • H01L2224/781Means for controlling the bonding environment, e.g. valves, vacuum pumps
    • H01L2224/78101Chamber
    • H01L2224/78102Vacuum chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • H01L2224/7825Means for applying energy, e.g. heating means
    • H01L2224/783Means for applying energy, e.g. heating means by means of pressure
    • H01L2224/78301Capillary
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85009Pre-treatment of the connector or the bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85009Pre-treatment of the connector or the bonding area
    • H01L2224/8501Cleaning, e.g. oxide removal step, desmearing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85009Pre-treatment of the connector or the bonding area
    • H01L2224/8501Cleaning, e.g. oxide removal step, desmearing
    • H01L2224/85013Plasma cleaning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85009Pre-treatment of the connector or the bonding area
    • H01L2224/8501Cleaning, e.g. oxide removal step, desmearing
    • H01L2224/85014Thermal cleaning, e.g. decomposition, sublimation
    • H01L2224/85016Thermal cleaning, e.g. decomposition, sublimation using a laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85053Bonding environment
    • H01L2224/8509Vacuum
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/851Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector the connector being supplied to the parts to be connected in the bonding apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/8512Aligning
    • H01L2224/85148Aligning involving movement of a part of the bonding apparatus
    • H01L2224/85169Aligning involving movement of a part of the bonding apparatus being the upper part of the bonding apparatus, i.e. bonding head, e.g. capillary or wedge
    • H01L2224/8518Translational movements
    • H01L2224/85181Translational movements connecting first on the semiconductor or solid-state body, i.e. on-chip, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/852Applying energy for connecting
    • H01L2224/85201Compression bonding
    • H01L2224/85203Thermocompression bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/852Applying energy for connecting
    • H01L2224/85201Compression bonding
    • H01L2224/85205Ultrasonic bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/852Applying energy for connecting
    • H01L2224/8521Applying energy for connecting with energy being in the form of electromagnetic radiation
    • H01L2224/85214Applying energy for connecting with energy being in the form of electromagnetic radiation using a laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92247Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01014Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01023Vanadium [V]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01028Nickel [Ni]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0104Zirconium [Zr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01041Niobium [Nb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01046Palladium [Pd]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01072Hafnium [Hf]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01073Tantalum [Ta]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01327Intermediate phases, i.e. intermetallics compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/1015Shape
    • H01L2924/1016Shape being a cuboid
    • H01L2924/10161Shape being a cuboid with a rectangular active surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15787Ceramics, e.g. crystalline carbides, nitrides or oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/201Temperature ranges
    • H01L2924/20106Temperature range 200 C=<T<250 C, 473.15 K =<T < 523.15K
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、金属と金属の低温・低加圧力領域における
固相接合方法およびそのための装置に係り、特に半導体
パッケージや液晶デバイス、薄膜モジュール基板など薄
膜部品のマイクロ接合に好適な接合方法およびその方法
により製造された各種部材に関する。
Description: FIELD OF THE INVENTION The present invention relates to a method and an apparatus for solid-state joining of metals in a low-temperature and low-pressure region, and particularly to a semiconductor package, a liquid crystal device, and a thin-film module substrate. The present invention relates to a joining method suitable for micro joining of thin film components, and various members manufactured by the method.

〔従来の技術〕[Conventional technology]

従来、半導体デバイスのプラスチックパッケージで
は、Siチップ上のパッドとリードフレーム間の接続をAu
やCuの細線によりワイヤ固相接合していた。この従来の
固相接合プロセスを第10図に示す。図において、まずリ
ードフレーム3と一体で形成されたダイ4の上にはんだ
箔5を介してSiチップ1を搭載する。そして、不活性ま
たは還元性の性質を持つガス雰囲気6の中で、加熱台7
によりダイボンド部を加熱してSiチップをダイに固着す
る。次に、この部品を接合装置まで搬送し、不活性また
は還元性雰囲気下で接合部を予熱した後、パッド2には
ワイヤ先端に形成したボール14を固相接合し、リードに
はキャピラリ15によってワイヤを押しつぶすようにウェ
ッジ固相接合している。
Conventionally, in the plastic package of semiconductor devices, the connection between the pad on the Si chip and the lead frame is Au.
Wire solid-phase bonding was performed using fine wires of Cu and Cu. FIG. 10 shows this conventional solid-state bonding process. In the figure, first, a Si chip 1 is mounted via a solder foil 5 on a die 4 formed integrally with a lead frame 3. Then, the heating table 7 is placed in a gas atmosphere 6 having an inert or reducing property.
To heat the die bond portion to fix the Si chip to the die. Next, the component is transported to a bonding apparatus, and after pre-heating the bonding portion under an inert or reducing atmosphere, a ball 14 formed at the tip of a wire is solid-phase bonded to the pad 2 and a capillary 15 is connected to the lead. Wedge solid-state bonding is performed to crush the wire.

このプロセスにおいて、Au細線13を用いる固相接合で
は、パッド2がAlでリードの接続部には接合性を増すAg
あるいはCuメッキが施されたものを用い、接合温度も20
0〜350℃の予熱が行われていた。しかし、製造コストの
低減と接続部の信頼性向上の必要性から、リードのメッ
キレス化と接合温度の低下が望まれているが、メッキレ
スリードフレーム表面の酸化や汚れや水分の吸着等によ
る接合性の減少や、接合温度〜低下が問題であった。一
方、Cu細線を用いる固相接合では、硬度の高いCuボール
によるSiペレットのクラックやリード側接続部のメッキ
レス化に伴う接合性の低下が問題であった。
In this process, in the solid-phase bonding using the Au thin wire 13, the pad 2 is made of Al, and the connection portion of the lead is made of Ag which increases the bonding property.
Alternatively, use a Cu-plated one with a joining temperature of 20
A pre-heating of 0-350 ° C. had been performed. However, due to the necessity of reducing manufacturing costs and improving the reliability of the connection part, it is desired to reduce the plating temperature of the lead and lower the bonding temperature. The problem is that the properties are reduced and the bonding temperature is reduced. On the other hand, in the solid-phase bonding using Cu fine wires, there were problems such as cracking of Si pellets by Cu balls having high hardness and deterioration of bondability due to plating-less connection at the lead side connection.

また、被ワイヤボンディング箇所をレーザ光でスポッ
ト照射し、局所加熱した後に、この加熱された被ワイヤ
ボンディング箇所に金線のワイヤを超音波振動を加えて
圧着することにより固相間を接合する方法も知られてい
る(特開昭62−18725号公報)。このものにあっては、
レーザ光の照射と超音波振動を加えての圧着とを併用す
ることにより、上記のような従来の熱間圧着のもつ問題
点の幾つかは改善されたが、レーザ照射は局所加熱にと
どまっていること、接合は大気雰囲気中でおこなわれる
ことなどの理由により、接合表面をふくむ広い面につい
て十分な表面処理を行うことが困難であった。
Also, a method of irradiating a spot to be wire-bonded with a laser beam, locally heating, and then bonding a solid wire by applying ultrasonic vibration to the heated wire-bonded spot by applying ultrasonic vibration. Is also known (JP-A-62-18725). In this one,
By using laser beam irradiation and ultrasonic pressure bonding together, some of the problems of the conventional hot pressing described above have been improved, but laser irradiation is limited to local heating. For this reason, it has been difficult to perform a sufficient surface treatment on a wide surface including the bonding surface because of the fact that the bonding is performed in an air atmosphere.

さらに、金属ワイヤ、半導体チップおよび基板を真空
容器内に装置した後、容器内を真空排気しその後イオン
ビームあるいはアトムビームを金属ワイヤ先端部および
チップ上の電極に所定時間照射し、その後金属ワイヤと
電極とを重ね合わせて接合するワイヤボンディング方法
も知られている(特開昭63−249344号公報)。このもの
は、真空雰囲気下において被接合表面の汚染層(酸化
膜、水分、油脂分)の除去を行い接合するために十分な
表面処理を達成可能であるが、その手段がイオンビーム
あるいはアトムビームであることから高真空排気が必要
であり生産性の点からは必ずしも満足のいくものとはい
えない。
Further, after the metal wire, the semiconductor chip and the substrate are placed in a vacuum container, the inside of the container is evacuated, and then an ion beam or an atom beam is irradiated to the metal wire tip and the electrode on the chip for a predetermined time. A wire bonding method in which electrodes are overlapped and bonded is also known (JP-A-63-249344). This method can achieve a sufficient surface treatment for removing and joining a contaminated layer (oxide film, moisture, oil, etc.) on the surface to be joined in a vacuum atmosphere, but the means is an ion beam or an atom beam. Therefore, high vacuum evacuation is necessary, and it cannot be said that it is always satisfactory in terms of productivity.

さらに、溶接技術Vol.3 No.7(1987)「超高真空常温
界面接合装置の開発」(三菱電機)の題目で開示されて
るように、金属表面が酸化被膜や吸着ガス層のない清浄
な表面であれば、接合面を接触させるだけで高強度の継
手が得られることは、既に知られている。しかし、この
場合にも超高真空雰囲気下で接合を行う必要があり、排
気に要する時間を考えると実用的な生産ラインに適用す
ることは難しく、量産性が要求される半導体パッケージ
や半導体装置の製造プロセスには適用困難である。
Furthermore, as disclosed in the title of Welding Technology Vol.3 No.7 (1987) “Development of Ultra-High Vacuum Room Temperature Interface Bonding Device” (Mitsubishi Electric), the metal surface is clean without oxide film or adsorbed gas layer. It is already known that a high-strength joint can be obtained only by bringing the joint surfaces into contact with each other on the surface. However, even in this case, it is necessary to perform bonding in an ultra-high vacuum atmosphere, and it is difficult to apply the method to a practical production line considering the time required for evacuation. It is difficult to apply to the manufacturing process.

また、従来のテープキャリヤとSiチップの接合では、
SiチップのAlパッド上に形成したAuバンプとテープキャ
リヤのリード上に形成したSn膜と対面させ、熱と圧力を
加えて共晶反応によるAu−Sn融液を形成させて接合して
いた。従来の端子ピッチは200μm以上と粗かった。し
かし、将来的には端子数の増大によりパッドサイズと端
子ピッチが縮小され、従来の加熱圧着法ではフィルムの
熱膨張による位置ずれや押し出された融液のブリッジに
よる短絡不良などの点で狭ピッチ化に問題がある。
In addition, in the conventional bonding of the tape carrier and the Si chip,
The Au bump formed on the Al pad of the Si chip and the Sn film formed on the lead of the tape carrier faced, and heat and pressure were applied to form an Au-Sn melt by eutectic reaction and joined. The conventional terminal pitch was as coarse as 200 μm or more. However, in the future, the pad size and terminal pitch will be reduced due to the increase in the number of terminals, and the conventional thermocompression bonding method will result in narrow pitch due to misalignment due to thermal expansion of the film and short-circuit failure due to the bridge of the extruded melt. There is a problem with conversion.

また、メモリやLSIなどに代表される半導体デバイス
においては、現在のところ第11図に示すように、接続パ
ッド76がアクティブエリヤ75の外側に配置されており、
接合プロセスに伴う素子の性能低下や損傷などは、Siチ
ップにクラックが生じない限り問題とはなっていない。
しかし、将来的にはチップの高集積化と小型化のため
に、アクティブエリヤ上に接続パッドが形成されるよう
になる。このときには、加圧力や超音波振動による素子
のダメージが心配となる。
Further, in a semiconductor device represented by a memory, an LSI, or the like, as shown in FIG. 11 at present, the connection pad 76 is arranged outside the active area 75,
Performance degradation or damage of the device due to the bonding process is not a problem unless cracks occur in the Si chip.
However, in the future, connection pads will be formed on the active area for high integration and miniaturization of chips. At this time, there is a concern that the element may be damaged by the pressing force or the ultrasonic vibration.

また、大型計算機などの半導体装置の分野では、LSI
の高集積化と高密度実装化のため多層の薄膜モジュール
基板が将来的に必要となるが、ポリイミドの基板上にCu
配線が施された層を一層毎に逐次積層して製造するプロ
セスは非常に多くの処理工程を通るため生産性が悪く、
また製品の歩留まりも工程数が多いため悪くなる。この
生産性と歩留まりの向上を図る方法として、数層の薄膜
モジュール基板を互いに接着して多層の薄膜モジュール
基板に組立てる方法が考えられるが、薄膜モジュールの
上下面に形成された多数の接続パッドを位置ずれや接合
不良なしに接着して組立てることが難しいという問題が
ある。
In the field of semiconductor devices such as large computers, LSI
In the future, high-density and high-density packaging will require multilayer thin-film module substrates in the future.
The process of manufacturing by laminating layers with wiring sequentially one by one passes through a large number of processing steps, resulting in poor productivity,
In addition, the product yield becomes worse due to the large number of steps. As a method of improving productivity and yield, a method of bonding several layers of thin film module substrates to each other and assembling them into a multilayer thin film module substrate can be considered, but a large number of connection pads formed on the upper and lower surfaces of the thin film module are required. There is a problem that it is difficult to bond and assemble without displacement or bonding failure.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

半導体デバイスのプラスチックパッケージにおける問
題は、上記したように1)AuボールとAlパッドの接合組
合せにおいて、接合時の加熱によって脆弱なAu−Al金属
間化合物を界面に生じ、接続強度が低下すること、2)
CuボールとAlパッドの接合組合せにおいて、接合時の加
圧力や超音波の振動によってSiチップにクラックが生じ
ること、3)Au細線あるいはCu細線とメッキレスリード
フレームの接合において、リード接合面の溶剤洗浄や還
元処理を施し、かつ接合時の加熱温度を320℃とし、接
合雰囲気をN2+H2混合ガスを吹き付けた還元性の環境と
しても、量産を行った時の強度ばらつきが大きく、しか
も非常に少ない確率ではあるが破断モードが接合面の1/
2以上に渡って界面剥離を呈するものが現れることがあ
り、接続信頼性がメッキの有る場合に比べて劣ること等
である。
The problems in the plastic package of a semiconductor device are as described above. 1) In the bonding combination of an Au ball and an Al pad, a fragile Au-Al intermetallic compound is generated at the interface due to heating at the time of bonding, and the connection strength is reduced. 2)
In the combination of Cu ball and Al pad, cracks may occur in the Si chip due to the applied pressure and ultrasonic vibration during the bonding. 3) Solvent on the lead joint surface when joining Au fine wire or Cu fine wire and plating-less lead frame. Even if cleaning or reduction treatment is performed, the heating temperature at the time of joining is set to 320 ° C, and the joining atmosphere is a reducing environment in which a N 2 + H 2 mixed gas is blown, the strength variation during mass production is large and very Although the probability is small, the fracture mode is 1 /
In some cases, interfacial peeling may occur over two or more times, and the connection reliability is inferior to the case where plating is provided.

また、パッケージの製造プロセスのコスト低減および
パッケージの信頼性向上対策として、従来はパッケージ
として組立てた後に行っていたはんだの溶融メッキをリ
ードフレーム状態で行い、はんだを溶融させない温度条
件すなわち160℃以下でパッケージを組立てる方法が考
えられるが、160℃以下の接合温度では接合性の最も優
れる材質の組合せすなわちAlパッドとAu細線とAgメッキ
リードの組合せにおいてさえも接続強度のばらつきが大
きく、場合によって界面剥離破断を生じるものが発生
し、接続信頼性が著しく低下する。
In addition, as a measure to reduce the cost of the package manufacturing process and to improve the reliability of the package, hot-dip plating of solder, which was conventionally performed after assembling as a package, is performed in a lead frame state, at a temperature condition that does not melt solder, that is, at 160 ° C or less A package assembly method can be considered, but at a joining temperature of 160 ° C or less, the connection strength varies greatly even with the combination of materials with the best bondability, that is, the combination of Al pad, Au fine wire, and Ag plating lead. Some breakage occurs, and the connection reliability is significantly reduced.

本発明の目的の一つは、接合温度と接合加圧力を下
げ、ソフトな接合条件で界面の接着強度が高い接続部が
得られる接合方法を提供することにある。
An object of the present invention is to provide a bonding method that can lower a bonding temperature and a bonding pressure and obtain a connection portion having high bonding strength at an interface under soft bonding conditions.

また、将来のテープキャリヤとSiチップの接合におい
ては、素子の高密度化のため端子数が増大し同時に端子
ピッチの大幅な縮小が求められる。従来の加熱によって
融液を形成させて接合する方法では、押し出された融液
が隣と接触してブリッジを形成してしまい、回路上の不
良を発生してしまう。また、テープキャリヤの基板とな
る有機フィルムとSiチップとは熱膨張が異なるため、高
い温度で接合を行うとチップのパッドとテープキャリヤ
のリードとの位置がずれて、接続不良を発生してしま
う。
Also, in the future bonding of the tape carrier and the Si chip, the number of terminals will increase in order to increase the density of elements, and at the same time, the terminal pitch will need to be significantly reduced. In the conventional method of forming and joining a melt by heating, the extruded melt comes into contact with an adjacent melt to form a bridge, thereby causing a circuit failure. In addition, since the thermal expansion of the organic film serving as the substrate of the tape carrier and the Si chip are different from each other, when bonding is performed at a high temperature, the position of the chip pad and the lead of the tape carrier are displaced, and a connection failure occurs. .

従って、融液を形成させない接合法で、しかも接合温
度を常温近くにまで低下さえれば上記問題を解決できる
が、こんどは接合表面のわずかな酸化や水分やガスの吸
着などが接合性に大きく影響するようになり、従来の固
相接合プロセスでは信頼性の高い接合を行うことが困難
である。
Therefore, the above problem can be solved by a joining method that does not form a melt, and if the joining temperature is lowered to near room temperature, the slight oxidation of the joining surface and the adsorption of moisture and gas will greatly increase the joining property. This makes it difficult to perform highly reliable bonding with the conventional solid-state bonding process.

また、従来の半導体デバイスで接続パッドが素子のな
いチップ周辺部に配置されていて、接合に伴う素子のダ
メージが問題になっていなかったが、64M−DRAMやASIC
に代表される将来の半導体デバイスでは、チップの高集
積化と小型化のために接合パッドの能動素子の直上に配
置されるようになる。この場合、接合時の圧力や超音波
振動はパッド下の素子を損傷させる可能性が非常に高
く、圧力や振動を極力小さくして接合する必要がある。
また、ますます大型化するチップをパッケージングする
形態として、ダイへは接着剤により接着され、リードも
チップ面に接着される方式が適用されるようになり、こ
の接着剤等の使用材料の耐熱性の問題から、低温での接
合が要求されるようになる。このため、低温かつ低加圧
力で接続信頼性の高い固相接合方法が必要となってく
る。
Also, in conventional semiconductor devices, connection pads were arranged around the chip without elements, and damage to elements due to bonding was not a problem, but 64M-DRAM and ASIC
In a future semiconductor device represented by the above, the chip will be arranged immediately above the active element of the bonding pad in order to achieve high integration and miniaturization of the chip. In this case, the pressure and ultrasonic vibration at the time of bonding have a very high possibility of damaging the element under the pad, and it is necessary to perform the bonding while minimizing the pressure and vibration.
In addition, as a form of packaging an increasingly large chip, a method in which an adhesive is bonded to a die and a lead is also bonded to a chip surface has been applied. Due to the problem of bonding, bonding at a low temperature is required. For this reason, a solid-state bonding method with high connection reliability at low temperature and low pressure is required.

本発明の他の目的は、常温〜200℃の低い温度でしか
も接合雰囲気が10-2Pa以上の比較的高い真空圧力下で、
信頼性の高い固相接合を達成する方法を提供することに
ある。
Another object of the present invention is to provide a bonding atmosphere at a low temperature of room temperature to 200 ° C. and a relatively high vacuum pressure of 10 −2 Pa or more.
An object of the present invention is to provide a method for achieving a solid phase bonding with high reliability.

〔課題を解決するための手段〕[Means for solving the problem]

本発明者らは、鋭意研究をつむことにより、第1図に
その接合工程の概略を示すように、固相接合の1工程前
の状態の試料に対して、一度真空に排気した気密性の高
いチャンバー内に不活性ガスと還元ガスを導入し、レー
ザ光あるいはプラズマや原子状態にして活性化した水素
ガスとレーザビームを照射することで接合表面の酸化皮
膜の還元や表面吸着物質の局所加熱による除去を行い、
酸素を極力排除したその同じ雰囲気下でワイヤ固相接合
を行えば、超高真空雰囲気下でなくても常温〜200℃の
低い温度で実用的に十分高い強度の接合を得ることが可
能であることを知見した。
The present inventors have conducted intensive studies, and as shown in FIG. 1 schematically, the airtightness of the sample in the state before one step of solid-phase bonding was once evacuated to vacuum, as schematically shown in FIG. By introducing an inert gas and a reducing gas into a high chamber, and irradiating a laser beam or a hydrogen gas activated in a plasma or atomic state with a laser beam, reduction of an oxide film on a bonding surface and local heating of a surface adsorbed substance. Removal by
If the solid-phase wire bonding is performed in the same atmosphere where oxygen is eliminated as much as possible, it is possible to obtain a practically high strength bonding at a low temperature of room temperature to 200 ° C. even in an ultra-high vacuum atmosphere. I found that.

なお、第1図において、1はSiチップ、2はAlパッ
ド、3はリードフレーム、4はダイパッド、5は半だシ
ート、6は還元ガスシールド、7は加熱台、8は半だフ
ィレット、9は真空チャンバー、10はレーザ光学系、11
はレーザビーム、12は酸素ガスを3000ppm以下におさえ
た不活性ガスと還元ガスからなる還元雰囲気、13は金属
細線、14は金属ボール、15はキャピラリ、16と17は加熱
台とを示しており、プロセスは大気圧力下でダイボンデ
ィングを行った後、減圧還元雰囲気に保たれた真空チャ
ンバー9内で表面処理、搬送、ワイヤ固相接合を行なっ
た。
In FIG. 1, 1 is a Si chip, 2 is an Al pad, 3 is a lead frame, 4 is a die pad, 5 is a half sheet, 6 is a reducing gas shield, 7 is a heating table, 8 is a half fillet, 9 Is a vacuum chamber, 10 is a laser optical system, 11
Indicates a laser beam, 12 indicates a reducing atmosphere composed of an inert gas and a reducing gas in which oxygen gas is suppressed to 3000 ppm or less, 13 indicates a thin metal wire, 14 indicates a metal ball, 15 indicates a capillary, and 16 and 17 indicate a heating table. In the process, after performing die bonding under atmospheric pressure, surface treatment, transport, and solid phase wire bonding were performed in a vacuum chamber 9 maintained in a reduced-pressure reducing atmosphere.

上記知見に基づき、かつ上記の目的を達成するため
に、本発明は、半導体デバイスとリードとを金属細線を
用いて結線する半導体装置の製造方法に用いる固相接合
方法であって、リード及びデバイスの接続パッドの表面
に低圧雰囲気下でレーザ照射あるいはプラズマ照射を行
い、同じ雰囲気下でそれぞれの処理した面に細線を超音
波接合することを特徴とする固相接合方法を開示し、提
供する。
Based on the above findings and to achieve the above object, the present invention relates to a solid-state bonding method used for a method of manufacturing a semiconductor device in which a semiconductor device and a lead are connected by using a thin metal wire, comprising a lead and a device. The present invention discloses and provides a solid-state bonding method characterized by performing laser irradiation or plasma irradiation on a surface of a connection pad under a low-pressure atmosphere and ultrasonically bonding a thin wire to each of the treated surfaces under the same atmosphere.

低圧雰囲気としては酸素分圧3000ppm以上で圧力が10
-2〜102Paの不活性ガス雰囲気、あるいは酸素分圧3000p
pm以下で圧力が10-2〜102Paの水素を含む還元性雰囲気
であることが望ましい。
Low-pressure atmosphere with oxygen partial pressure of 3000 ppm or more and pressure of 10
Inert gas atmosphere -2 to 10 2 Pa or oxygen partial pressure 3000P,
It is desirable that the atmosphere be a reducing atmosphere containing hydrogen at a pressure of 10 -2 to 10 2 Pa at pm or less.

用いるプラズマガスは水素イオンまたは水素原子を含
む活性ガスであることが望ましく、また,レーザはYAG
レーザ光あるいはエキシマレーザ光のパルスレーザであ
ることが望ましい。
Preferably, the plasma gas used is an active gas containing hydrogen ions or hydrogen atoms, and the laser is YAG.
It is desirable to use a pulse laser of laser light or excimer laser light.

本発明はさらに、SiチップのAlパッドとメッキレスの
Cuリードとを金属細線を用いて結線し樹脂でモールドす
るプラスチックパッケージの製造方法であって、Cuリー
ドの接合面に減圧あるいは減圧かつ還元雰囲気下でレー
ザ照射あるいはレーザ照射とプラズマ照射を同時に行
い、同一の雰囲気下で200℃以下の温度で超音波接合す
る固相接合方法を用いたことを特徴とするプラスチック
パッケージの製造方法をも開示し、提供する。
The present invention further provides an Al pad on the Si chip and a plating-less
A method of manufacturing a plastic package in which a Cu lead is connected with a thin metal wire and molded with a resin, and laser irradiation or laser irradiation and plasma irradiation are simultaneously performed on the bonding surface of the Cu lead under reduced pressure or reduced pressure and in a reducing atmosphere, Also disclosed and provided is a method of manufacturing a plastic package, which uses a solid-state bonding method in which ultrasonic bonding is performed at a temperature of 200 ° C. or less under the same atmosphere.

用いる固相接合方法は、メッキレスCuリードの接合面
を予め酸化させ、真空または不活性または還元性雰囲気
中において尖頭出力10kW以上のパルスレーザを接合面に
照射し、接合面の表面層を局部的に溶融させた後、その
面に金属細線を超音波接合する固相接合方法であること
が望ましく、該メッキレスCuリードの接合面を予め酸化
させる方法しては、メッキレスCuリードの接合面にArと
O2の混合ガスをプラズマ化して照射し、酸化させる方法
であることは特に望ましい。
The solid-phase bonding method used is to oxidize the bonding surface of the plating-less Cu lead in advance, irradiate the bonding surface with a pulsed laser with a peak output of 10 kW or more in a vacuum or an inert or reducing atmosphere, and locally form a surface layer on the bonding surface. It is preferable to use a solid-phase bonding method in which the metal thin wire is ultrasonically bonded to the surface after the melting, and the bonding surface of the plating-less Cu lead is oxidized in advance. Ar and
It is particularly desirable that the mixed gas of O 2 be converted into plasma and irradiated and oxidized.

また、用いる金属細線がCuであることは、特に有効で
ある。
It is particularly effective that the thin metal wire used is Cu.

本発明はさらに、半導体デバイスとリードとを金属細
線を用いて結線する半導体装置の製造装置に用いる固相
接合装置であって、リード及びパッドの表面にレーザあ
るいはプラズマを照射する表面処理空間と超音波固相接
合する接合処理空間とが圧力が10-2〜102Pa雰囲気下の
一つの気密室に設けられていることを特徴とする固相接
合装置をも開示し、提供する。
The present invention further provides a solid-state bonding apparatus used in a semiconductor device manufacturing apparatus for connecting a semiconductor device and a lead using a thin metal wire, comprising a surface treatment space for irradiating a laser or plasma to the surface of the lead and the pad. Also disclosed and provided is a solid-state bonding apparatus characterized in that a bonding processing space for sonic solid-phase bonding is provided in one airtight chamber under a pressure of 10 -2 to 10 2 Pa atmosphere.

本発明はさらに、本発明による固相接合方法により製
造された半導体装置等をも開示している。
The present invention further discloses a semiconductor device and the like manufactured by the solid-state bonding method according to the present invention.

〔作 用〕(Operation)

一度大気中に曝された金属材料の表面には、酸化層や
水分・油脂・ガスなどの吸着層が存在し、化学的に安定
な実在表面を形成している。この酸化層や吸着層は清浄
な金属面と化学的に強固に結合しており、これらを完全
に除去するには熱を加えて分解させるか物理的に削り取
るしか方法がない。また、除去する環境も酸素や吸着成
分を完全に排除した雰囲気で行わないと、すぐに酸化層
や吸着層が再生されてしまう。このため、従来行われて
いた第10図のようなガスシールドによるボンディングプ
ロセスでは、初期の表面に存在した酸化層や吸着層の除
去が完全には行えず、また雰囲気中の酸素や水分などの
完全な排除が不可能なため部分的に清浄面が形成されて
も直ちに酸化層が形成され、これらの層が障害となって
低温での接合性を低下させてしまった。
The surface of the metal material once exposed to the atmosphere has an oxidized layer and an adsorbed layer of water, oil, fat, gas, etc., forming a chemically stable real surface. The oxidized layer and the adsorbed layer are chemically strongly bonded to the clean metal surface, and the only way to completely remove them is to decompose them by applying heat or to physically remove them. Further, unless the removal is performed in an atmosphere in which oxygen and adsorbed components are completely removed, the oxide layer and the adsorbed layer are immediately regenerated. For this reason, the conventional bonding process using a gas shield as shown in FIG. 10 cannot completely remove the oxide layer or the adsorption layer existing on the initial surface, and also removes oxygen and moisture in the atmosphere. Since complete elimination is not possible, an oxide layer is immediately formed even when a partially clean surface is formed, and these layers become obstacles and lower the bonding property at low temperatures.

これに対して本発明による方法では、接合対象物を真
空チャンバー内に入れることで周囲の雰囲気から酸化層
や吸着層の再生を防げるレベルに酸素ガスや水分を排除
することが可能で、また、その環境下でレーザビームを
照射して接合したいリードの極表面のみを瞬間的に高温
に加熱することにより表面の水分や油脂の吸着物質を気
化させてほぼ完全に除去することができ、さらに酸化層
も熱分解あるいは還元反応によりほぼ完全に金属化する
ことができて、清浄で活性な金属表面を形成できる。
On the other hand, in the method according to the present invention, it is possible to remove oxygen gas and moisture from the surrounding atmosphere to a level at which regeneration of the oxide layer and the adsorption layer can be prevented by putting the object to be joined in the vacuum chamber, In this environment, only the very surface of the lead to be bonded is instantaneously heated to a high temperature by irradiating a laser beam in that environment to vaporize moisture and oil adsorbed substances on the surface and almost completely remove it. The layer can also be almost completely metallized by thermal decomposition or reduction reactions, forming a clean and active metal surface.

本発明の方法によれば、第2図に示すように接合した
いリード表面をほぼ完全に清浄化でき、一度形成した金
属の清浄表面を不活性ガスの吸着層のみに留めておくこ
とができる。この不活性ガスの吸着層だけであれば、フ
ァン・デル・ワールス力のみの結合力であるから容易に
超音波振動で除去でき、除去した不活性ガスは気体とな
って容易に接合界面から排除されるため、低温のボンデ
ィングプロセスでも清浄な金属面の密着による高い信頼
性の継手を得ることが可能なのである。特に、清浄化手
段としてレーザ照射あるいはプラズマ照射を用いること
により、真空チャンバー内の真空度は10-2〜102Pa程度
と比較的低い真空度でよいため、ワーク導入室を設ける
ことにより、数〜十数分単位で多数のワークを搭載した
複数のカセットを真空チャンバー内に導入でき、量産化
が可能なプロセスとなり得るのである。
According to the method of the present invention, as shown in FIG. 2, the surface of the lead to be joined can be almost completely cleaned, and the clean surface of the metal once formed can be retained only in the inert gas adsorption layer. If only the inert gas adsorption layer is used, it can be easily removed by ultrasonic vibration because it has only the bonding force of Van der Waals force, and the removed inert gas is easily removed as a gas from the bonding interface. Therefore, even with a low-temperature bonding process, it is possible to obtain a highly reliable joint due to close contact of a clean metal surface. In particular, by using laser irradiation or plasma irradiation as a cleaning means, the degree of vacuum in the vacuum chamber may be a relatively low degree of vacuum of about 10 -2 to 10 2 Pa. A plurality of cassettes loaded with a large number of workpieces in units of about ten minutes can be introduced into the vacuum chamber, and the process can be mass-produced.

〔実施例〕〔Example〕

以下、本発明の実施例を図面を用いて詳細に説明す
る。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

第3図は、実施例の接合プロセスを行うための接合装
置を示す一実施例である。図において、ワイヤの固相接
合がされるワーク18はカセット41に多数搭載されてワー
ク導入室37より導入される。ワーク導入室37はゲートバ
ルブ38等の作用により真空排気と大気開放が繰り返され
るが、この工程がプロセスを律速しないように排気速度
が大きい真空ポンプ19を採用している。真空チャンバー
34に導入されたカセット41からはワーク18が順次送り出
され、マイクロ波発振装置23のマイクロ波導波管22内に
設けられた石英ガラス管21の内部でプラズマ化された水
素ガスとアルゴンガスから成るプラズマガス20の照射を
受ける。なお、25は石英ガラス管21へのガス導入バルブ
である。
FIG. 3 is an embodiment showing a joining apparatus for performing the joining process of the embodiment. In the figure, a large number of works 18 to which wires are solid-phase bonded are mounted on a cassette 41 and introduced from a work introduction chamber 37. The work introduction chamber 37 is repeatedly evacuated and opened to the atmosphere by the action of the gate valve 38 and the like. However, a vacuum pump 19 having a high evacuation speed is adopted so that this step does not limit the process. Vacuum chamber
The work 18 is sequentially sent out from the cassette 41 introduced into 34, and is composed of hydrogen gas and argon gas which are turned into plasma inside the quartz glass tube 21 provided in the microwave waveguide 22 of the microwave oscillator 23. The plasma gas 20 is irradiated. Reference numeral 25 denotes a gas introduction valve to the quartz glass tube 21.

この実施例においては、同時に、レーザ発振機31から
発生されたレーザビーム26が光ファイバー30、レンズ2
9、真空窓28、光学レンズ系27を介してワーク18に照射
される。
In this embodiment, at the same time, the laser beam 26 generated from the laser oscillator 31 is
9, the work 18 is irradiated through the vacuum window 28 and the optical lens system 27.

水素を含むプラズマガスとレーザビームの照射により
清浄化されたワークはボンディング装置33の配置された
位置まで搬送され加熱なしに金属細線32が超音波接合に
より固相接合される。固相接合が完了したワークは取り
出し用カセット42に納められ、ゲートバルブ39を通りワ
ーク取り出し室40を経由して大気中に取り出され、組立
プロセスを完了する。ワーク取り出し室40もワーク導入
室と同様に真空ポンプ100により真空引きされる。
The work cleaned by the irradiation of the plasma gas containing hydrogen and the laser beam is transported to the position where the bonding device 33 is arranged, and the thin metal wire 32 is solid-phase bonded by ultrasonic bonding without heating. The work after the solid-phase bonding is completed is stored in a take-out cassette 42, taken out through the gate valve 39 and into the atmosphere via the work take-out chamber 40, and the assembly process is completed. The work take-out chamber 40 is also evacuated by the vacuum pump 100 similarly to the work introduction chamber.

マイクロ波導波管内のプラズマ発生部では、マイクロ
波の出力に応じた熱が発生するため、石英ガラス管を保
護する目的で水冷パイプ24等からなる冷却機構が設けら
れている。また真空チャンバー内の排気には、ガス導入
を行いつつ連続して排気が可能で作動範囲も広いターボ
分子ポンプを真空ポンプ35、36として採用しており、真
空度が10-1Pa以下となるように制御している。
In the plasma generating section in the microwave waveguide, heat is generated in accordance with the output of the microwave. Therefore, a cooling mechanism including a water cooling pipe 24 and the like is provided to protect the quartz glass tube. In addition, for the exhaust inside the vacuum chamber, a turbo molecular pump that can continuously exhaust while introducing gas and has a wide operating range is adopted as the vacuum pumps 35 and 36, and the degree of vacuum will be 10 -1 Pa or less Control.

本実施例によれば、Cu系リードフレームを用いる半導
体パッケージにおいて、接合したいリード面が酸化され
ていたり水分や油脂の吸着層がある場合でも、完全に管
理された雰囲気下で表面の清浄化処理と固相接合を行う
ことができるので、接合不良の発生を防止でき、接合面
内の真の接着面比率を高くして継手の強度を向上でき
る。このため、製品の歩留まりを向上できると共に継手
の信頼性を大幅に向上できるのである。
According to the present embodiment, in a semiconductor package using a Cu-based lead frame, even when the lead surface to be joined is oxidized or has an adsorption layer of moisture or oil, the surface is cleaned under a completely controlled atmosphere. And solid phase bonding can be performed, so that occurrence of bonding failure can be prevented, and the ratio of the true bonding surface in the bonding surface can be increased to improve the strength of the joint. Therefore, the yield of the product can be improved and the reliability of the joint can be greatly improved.

このとき、真空チャンバーにワークを導入し組立てを
行う工程を採るものの、真空度が10-2〜102Paと高くな
いため、従来の超高真空中で行うプロセスに比較して著
しくスループットを短縮でき、半導体パッケージの量産
化プロセスとしてなんら問題がないのである。また、表
面清浄化処理の効果によってAu細線やCu細線との接合性
が著しく改善されるため、低温かつ低加圧力の条件であ
っても強度の高い継手を得ることができ、リードに予め
半だをコートしておくような低コストの半だ先付け組立
てプロセスを採用することができる。
At this time, although the process of introducing the work into the vacuum chamber and assembling is adopted, the degree of vacuum is not as high as 10 -2 to 10 2 Pa, so the throughput is significantly reduced compared to the conventional process performed in ultra-high vacuum. There is no problem as a semiconductor package mass production process. In addition, since the effect of the surface cleaning treatment significantly improves the bondability with Au fine wires and Cu fine wires, a high-strength joint can be obtained even under low-temperature and low-pressure conditions. A low cost semi-advanced assembly process can be employed, such as pre-coating.

さらに、接合性の改善効果により、ウェッジ接合にお
ける金属細線の潰し量を大きくしなくても高強度の接合
が可能となるため、従来のプロセスではキャピラリの片
当り等によって生じていた潰し量のばらつきに伴う強度
のばらつきと剥がれ不良の発生を無くすことができ、装
置の調整精度の許容度拡大およびキャピラリの使用限界
の拡大といった効果が得られる。
Furthermore, the effect of improving the bondability enables high-strength bonding without increasing the amount of crushing of the fine metal wire in wedge bonding. In this case, it is possible to eliminate the variation in strength and the occurrence of peeling failure due to the above, and it is possible to obtain effects such as an increase in the tolerance of the adjustment accuracy of the apparatus and an increase in the use limit of the capillary.

第4図は、第3図における表面処理プロセスの他の実
施例を示す。この実施例におけるマイクロ波発振装置46
のマイクロ波導波管45は、図に示すように、プラズマガ
ス44を照射するノズル口が複数個設けられており、帯状
の領域にプラズマガスを照射する構造としている。ま
た、レーザビーム48はプラズマガスが照射されているワ
ーク43面に照射されるように配置されており、レーザビ
ームの形状もシリンドリカルレンズ49によりワークの幅
までライン状に伸ばされている。なお、図において、47
は導波管45へのガス導入バイプであり、50はレーザビー
ム用の光学系、51は光ファイバーである。
FIG. 4 shows another embodiment of the surface treatment process in FIG. Microwave oscillator 46 in this embodiment
As shown in the figure, the microwave waveguide 45 is provided with a plurality of nozzle openings for irradiating the plasma gas 44, and has a structure for irradiating the strip-shaped region with the plasma gas. The laser beam 48 is arranged so as to irradiate the surface of the work 43 irradiated with the plasma gas, and the shape of the laser beam is also extended linearly to the width of the work by the cylindrical lens 49. In the figure, 47
Denotes a gas introduction pipe to the waveguide 45, 50 denotes an optical system for a laser beam, and 51 denotes an optical fiber.

本実施例によれば、プラズマガスおよびレーザビーム
の照射領域が帯状に幅広いため、プラズマガスやレーザ
ビームを走査することなく、ワークを送り方向に移動さ
せるだけで、ワークの固相接合に必要な面全面を清浄化
することができ、装置の構成が簡略化できるという効果
が得られる。また、広い面を一括して処理できるため、
表面処理に要する時間を短縮できるという効果も得られ
る。
According to the present embodiment, since the irradiation region of the plasma gas and the laser beam is wide in a band shape, it is necessary to move the work in the feed direction without scanning the plasma gas or the laser beam and to perform the solid-state joining of the work. An effect is obtained that the entire surface can be cleaned and the configuration of the device can be simplified. Also, since large surfaces can be processed at once,
The effect that the time required for the surface treatment can be shortened is also obtained.

また、本実施例では、同じ面に水素プラズマを照射し
つつレーザビームを照射しているため、活性な水素によ
る還元作用とレーザの加熱による酸化層の分解作用およ
び還元現象の促進効果によってリード表面の清浄化をよ
り確実かつ短時間に行えるという効果があり、清浄化不
足による接合不良の発生率の減少および強度のばらつき
の低レベル側への拡大などを未然に防止できるという効
果が得られるのである。
In this embodiment, since the laser beam is irradiated while irradiating the same surface with hydrogen plasma, the reduction effect by active hydrogen, the decomposition effect of the oxide layer by the heating of the laser, and the effect of accelerating the reduction phenomenon are obtained. Has the effect of being able to clean the surface more reliably and in a shorter time, and has the effect of preventing the occurrence rate of bonding failures due to insufficient cleaning and preventing the spread of strength variation to a lower level from occurring. is there.

第5図は、第3図の表面処理プロセスの他の実施例を
示す。この実施例では、表面処理プロセスが2段階に分
けられており、使用するプラズマガスが前段では酸化性
のガス、後段では還元性のガスを用いている。この実施
例においても第1の実施例のものと同様にワーク導入室
101、ゲートバルブ102、真空室103を有するとともに、
真空チャンバーは第1の真空チャンバー55と第2の真空
チャンバー69の2室から成る。ワーク52はワーク導入室
101から導入カセット57によって減圧酸化雰囲気である
第1の真空チャンバー55内に導入され、カセットから送
り出されたワーク52に対し酸素プラズマ発生装置54で作
られた酸素プラズマガス53が照射される。
FIG. 5 shows another embodiment of the surface treatment process of FIG. In this embodiment, the surface treatment process is divided into two stages, and an oxidizing gas is used in the first stage and a reducing gas is used in the second stage. In this embodiment, the work introduction chamber is the same as in the first embodiment.
101, having a gate valve 102, a vacuum chamber 103,
The vacuum chamber comprises two chambers, a first vacuum chamber 55 and a second vacuum chamber 69. Work 52 is a work introduction room
The oxygen is introduced from 101 into the first vacuum chamber 55, which is a reduced-pressure oxidizing atmosphere, by the introduction cassette 57, and the work 52 sent out from the cassette is irradiated with the oxygen plasma gas 53 generated by the oxygen plasma generator 54.

この時、ワークのリード表面の油脂等の有機物は酸化
され二酸化炭素と水と二酸化窒素と気体となってリード
表面から除去される。同時に、ワークのリード表面は酸
化され、銅合金のリードフレームでは表面が変色する。
At this time, organic substances such as fats and oils on the surface of the lead of the work are oxidized and are removed from the surface of the lead as carbon dioxide, water, nitrogen dioxide and gas. At the same time, the lead surface of the work is oxidized, and the surface of the copper alloy lead frame is discolored.

第1段の表面処理を終えたワークは搬送用カセット58
に収納され、ゲートバルブ60、62で隔離されている搬送
室61を経由して第2の真空チャンバー69に送られる。第
2の真空チャンバーは減圧還元雰囲気にあり、第2の真
空チャンバー69に導入されたカセット71からはリード表
面が酸化されたワークが順次送り出され、水素プラズマ
発生装置65で作られた水素プラズマガス64とレーザビー
ム66が同時に照射される。この実施例ではレーザはYAG
レーザを使用しており、一般に銅合金の金属光沢面では
波長1.06μmの光が98%以上反射されて効率が著しく悪
いが、表面を酸化させることにより吸収率が1桁以上向
上し表面の加熱を効率的に行うことが可能である。活性
な還元ガスとレーザによる極表面の瞬間的な高温加熱に
より、接合したいリード表面を清浄な金属面に改質した
後、矢印73で示すように第3図と同様の接合工程に入
る。なお、図において59、63、72はそれぞれの室を真空
引きするための真空ポンプであり、67はレーザビーム66
のための光学系、68はそのための光ファイバーである。
The workpiece after the first-stage surface treatment is transferred to the transfer cassette 58.
And is sent to the second vacuum chamber 69 via the transfer chamber 61 separated by the gate valves 60 and 62. The second vacuum chamber is in a reduced-pressure reducing atmosphere, and workpieces whose lead surfaces are oxidized are sequentially sent out from a cassette 71 introduced into the second vacuum chamber 69, and a hydrogen plasma gas generated by a hydrogen plasma generator 65 is produced. The laser beam 64 and the laser beam 66 are irradiated simultaneously. In this embodiment, the laser is YAG
A laser is used. In general, light with a wavelength of 1.06 μm is reflected by 98% or more on a metallic glossy surface of a copper alloy, which is extremely inefficient. However, by oxidizing the surface, the absorption rate is improved by one digit or more, and the surface is heated. Can be performed efficiently. After the lead surface to be joined is reformed into a clean metal surface by instantaneous high-temperature heating of the pole surface by an active reducing gas and a laser, a joining step similar to that shown in FIG. In the drawing, 59, 63, and 72 are vacuum pumps for evacuating the respective chambers, and 67 is a laser beam 66.
The optical system 68 is for that purpose.

本実施例によれば、第1段の表面処理で非常に活性な
プラズマあるいは原子状酸素を用いて強い酸化処理を行
っているため、リードフレームの生産工程で意図的に形
成した有機皮膜やプレス工程で付着した油等は酸化反応
によってリード表面から除去され、しかも低温プロセス
であるため銅合金のリードの極表面は酸化されるもの
の、リード内部は酸素の拡散が非常に遅いため金属の清
浄性を保った状態にできる。この結果、第2段の表面処
理でレーザビームのエネルギーを有効に活性できると共
に、表面の酸化皮膜を短時間で完全に分解除去できるの
である。すなわち、還元雰囲気化での処理だけではカー
ボンとなって表面に残存する可能性のある有機物の汚れ
や吸着物質を、ワーク表面から完全かつ確実に除去する
ことが可能となり、低温での超音波接合性を著しく低下
させしかも強度的なばらつきの大きな要因であった表面
介在物の影響を無くすことが可能となるのである。
According to the present embodiment, since the strong oxidation treatment is performed using very active plasma or atomic oxygen in the first-stage surface treatment, the organic film or the press formed intentionally in the lead frame production process is used. Oil and the like adhering in the process are removed from the lead surface by an oxidation reaction, and the low temperature process oxidizes the extreme surface of the copper alloy lead, but the inside of the lead diffuses oxygen very slowly, so the metal cleanliness Can be maintained. As a result, the energy of the laser beam can be effectively activated in the second-stage surface treatment, and the oxide film on the surface can be completely decomposed and removed in a short time. In other words, it is possible to completely and reliably remove organic dirt and adsorbed substances that may become carbon and remain on the surface by simply treating in a reducing atmosphere, and to perform ultrasonic bonding at a low temperature. This makes it possible to remarkably reduce the properties and eliminate the influence of surface inclusions, which has been a major factor in the variation in strength.

また、本実施例によれば、レーザビームのエネルギー
効率を上げることができるため、レーザ発振機の出力を
小さくすることができ、装置のコストを低減することが
可能となる。
Further, according to the present embodiment, since the energy efficiency of the laser beam can be increased, the output of the laser oscillator can be reduced, and the cost of the device can be reduced.

また、ワイヤ接合部の強度的信頼性および製品歩留ま
りの改善に関する本実施例の効果は、第3図に示す実施
例のものと同様な効果が得られる。
Further, the effect of the present embodiment on the improvement of the strength reliability and the product yield of the wire bonding portion is the same as that of the embodiment shown in FIG.

第6図は、本発明による低温固相接合方法を適用して
メモリデバイスをパッケージングしたときの組立構造を
示す。この例における半導体メモリのパッケージ形態
は、接続用パッド76がSiチップ74のアクティブエリヤ75
上に形成されるようになっており、金属細線78のボール
接合は低加圧かつ低超音波出力で行う必要がある。ま
た、素子が高密度に集積され発熱密度が大きくなるため
パッケージの冷却機構は採用されるものの使用温度は上
昇し、従来のAlパッドとAuボールの組合せでは接合界面
に金属間化合物が成長し、デバイスとしての長期信頼性
が低下する。
FIG. 6 shows an assembly structure when a memory device is packaged by applying the low-temperature solid-state bonding method according to the present invention. In this example, the package form of the semiconductor memory is such that the connection pad 76 is an active area 75 of a Si chip 74.
The ball bonding of the thin metal wire 78 needs to be performed with low pressure and low ultrasonic output. In addition, since the elements are densely integrated and the heat generation density increases, the package cooling mechanism is adopted, but the operating temperature rises, and the intermetallic compound grows at the bonding interface with the conventional combination of Al pad and Au ball, Long-term reliability as a device decreases.

そこで、第6図に示す実施例においては、素子の配線
材料と同一材のAlパッド上にTa,Nb,V,Ni,Pd,Pt,Zr,Hfの
中から選択された1種以上の金属を2μm以下の厚さに
形成し、そのパッド面に減圧還元雰囲気化で水素プラズ
マガスを照射しつつレーザビームを照射し、同じ雰囲気
化でAu細線を40gf以下の低荷重かつ低超音波出力でボー
ル接合78し、一方、銅合金あるいは鉄−ニッケル系合金
から成るリード79の接合面はパッド面と同様の表面処理
を施してからウェッジ接合80して組み立てられている。
Therefore, in the embodiment shown in FIG. 6, at least one metal selected from Ta, Nb, V, Ni, Pd, Pt, Zr, and Hf is formed on an Al pad made of the same material as the wiring material of the element. Is formed to a thickness of 2 μm or less, and the pad surface is irradiated with a laser beam while irradiating a hydrogen plasma gas in a reduced-pressure reducing atmosphere, and in the same atmosphere, the Au thin wire is 40 gf or less with a low load and a low ultrasonic output. A ball bonding 78 is performed, and a bonding surface of a lead 79 made of a copper alloy or an iron-nickel alloy is subjected to the same surface treatment as that of the pad surface, and is then assembled by wedge bonding 80.

本実施例によれば、Alパッド上に中間材としてAuに比
べてAlとの化合物を形成し難い金属を設けているので、
デバイス使用中の接合界面における金属間化合物の成長
が少なくデバイスの長期信頼性が向上する。また、ボー
ル固相接合時においては、Alパッド上に設けた中間材の
表面酸化層がAlの表面酸化層に比べて分解除去し易いた
め、活性な清浄表面を得ることができ、低い圧力と弱い
超音波振動の条件で高強度の継手を得ることが可能とな
る。このため、パッドの下のアクティブ層に大きな応力
や歪が加わることを防止できるため、組立て工程におけ
るデバイスの損傷を防止でき、しかも接合性も改善され
るため、組立ての歩留まり向上を図ることが可能とな
る。
According to the present embodiment, since a metal that is less likely to form a compound with Al than Au is provided as an intermediate material on the Al pad,
The growth of the intermetallic compound at the bonding interface during use of the device is small, and the long-term reliability of the device is improved. Also, at the time of ball solid-phase bonding, since the surface oxide layer of the intermediate material provided on the Al pad is easier to decompose and remove than the surface oxide layer of Al, an active clean surface can be obtained and low pressure can be obtained. It becomes possible to obtain a high-strength joint under conditions of weak ultrasonic vibration. This prevents a large stress or strain from being applied to the active layer under the pad, thereby preventing device damage during the assembly process, and improving the bondability, thereby improving the assembly yield. Becomes

第6図の他の実施例として、デバイスの配線にCu系合
金が用いられた場合はパッドもCu系合金で形成され、こ
の場合の中間材はAu,Pt,Pdの中から選択される。
As another embodiment of FIG. 6, when a Cu-based alloy is used for the device wiring, the pad is also formed of the Cu-based alloy, and the intermediate material in this case is selected from Au, Pt, and Pd.

この実施例では、第6図の実施例と同様の効果が得ら
れる。さらに、これらの中間材は耐食性がCuに比べて非
常に優れるため、デバイス使用中の湿度等によるパッド
の腐食およびそれに起因するパッド部からの水分侵入に
よる配線の腐食損傷を防止できるという効果がある。
In this embodiment, the same effects as in the embodiment of FIG. 6 can be obtained. Furthermore, since these intermediate materials have much higher corrosion resistance than Cu, there is an effect that corrosion of the pad due to humidity during use of the device, and corrosion damage of the wiring due to moisture intrusion from the pad portion caused thereby can be prevented. .

第7図は、本発明の固相接合プロセスにより組立た半
導体デバイスのTAB実装構造を示す。図において、半導
体デバイス104は、Alパッド105上にバリヤメタルを介し
て形成されたAuバンプ106によって、Auメッキ107が施さ
れたCuリード108上に本発明の固相接合方法によって接
合されている。109はポリイミドフィルムで、110はテー
プ状配線基板である。
FIG. 7 shows a TAB mounting structure of a semiconductor device assembled by the solid-state bonding process of the present invention. In the figure, a semiconductor device 104 is bonded to a Cu lead 108 on which an Au plating 107 has been applied by a solid-state bonding method of the present invention by an Au bump 106 formed on an Al pad 105 via a barrier metal. 109 is a polyimide film, and 110 is a tape-shaped wiring board.

本実施例によれば、固相状態のままでAuバンプとCuリ
ードを高強度に接合できるので、端子ピッチが60μm以
下であっても隣と短絡することがなく、また加熱を行わ
ないのでバンプとリードの位置が熱歪等の理由によって
ずれることがなく、微細ピッチの実装が可能となってい
る。また、Au/Auの接合であるため接合界面に脆弱な金
属間化合物が形成されず、長期的に接続信頼性の高い半
導体装置を作製できるのである。
According to the present embodiment, the Au bump and the Cu lead can be bonded with high strength in the solid state, so that even if the terminal pitch is 60 μm or less, there is no short circuit with the adjacent one and no heating is performed, so that the bump is not heated. The positions of the leads and the leads do not shift due to thermal distortion or the like, and mounting at a fine pitch is possible. In addition, because of the Au / Au junction, a fragile intermetallic compound is not formed at the junction interface, and a semiconductor device with high connection reliability can be manufactured for a long time.

第8図は、本発明の低温固相接合プロセスにより組立
た液晶パネル端子の接続構造を示す。図において、ガラ
ス基板111の上に形成された配線112にフレキシブル配線
基板117のAuメッキ114されたCuリード115がAu細線113を
介して接合されている。接合の方法は、ガラス基板の端
子の配列方向にAu細線をセットし、その上方から減圧雰
囲気化でレーザあるいはプラズマガスにより表面の清浄
化を行い、一方別の工程で表面清浄化処理を行ったリー
ドを端子位置に合わせてAu細線上に載せ、その上部から
超音波を印加しつつ加圧を行い細線を潰して接合する。
接合後は、端子間のAu細線をYAGまたはエキシマのパル
スレーザにより切断除去し、短絡を防いで良好な結線状
態に仕上げている。
FIG. 8 shows a connection structure of liquid crystal panel terminals assembled by the low-temperature solid-state bonding process of the present invention. In the figure, an Au-plated Cu lead 115 of a flexible wiring board 117 is bonded to a wiring 112 formed on a glass substrate 111 via a thin Au wire 113. The method of bonding was to set the Au thin wire in the direction of the arrangement of the terminals on the glass substrate, clean the surface with a laser or plasma gas in a reduced-pressure atmosphere from above, and perform the surface cleaning treatment in another step. The lead is placed on the Au thin wire in accordance with the terminal position, and pressure is applied while applying ultrasonic waves from above to crush the thin wire for bonding.
After bonding, the Au thin wires between the terminals are cut and removed by a pulse laser of YAG or excimer to prevent short-circuits and finish in a good connection state.

本実施例によれば、液晶ガラス基板とフレキシブル配
線基板を半だ無しで高強度に接合できるため、高温での
接合強度並びに疲労寿命が高く、液晶表示装置としての
信頼性を非常に高くできる。
According to the present embodiment, since the liquid crystal glass substrate and the flexible wiring substrate can be joined to each other with a high strength without a half, the joining strength and the fatigue life at a high temperature are high, and the reliability as a liquid crystal display device can be very high.

また、接合部にAuバンプを形成しておく必要がなく、
位置合わせの必要のないAu細線をセットするだけでよい
ため、接合プロセスが簡単となり、生産性の向上が図れ
るのである。
Also, there is no need to form Au bumps at the junction,
Since it is only necessary to set Au thin wires that do not require alignment, the joining process is simplified and productivity can be improved.

第9図は、本発明の低温固相接合プロセスにより組立
られた薄膜モジュール基板の断面構造を示す。図におい
て、セラミック基板118の上に薄膜プロセスで第1の薄
膜要素基板119が形成されている。その第1の要素基板
の上面には第2の要素基板122を接合するためのAu接続
パッド120が形成されている。第2の要素基板の下面に
は第1の要素基板に接合するためのAuバンプ121が形成
され、第2の要素基板の上面には第3の要素基板125を
接合するためのAu接合パッド123が形成されている。そ
して、最上部の要素基板125の上面には、Siチップを搭
載するための微細な接続パッド126が形成されている。
各要素基板間の接合には、本発明による低温ボンディン
グ方法が用いられている。また、各要素基板は、1〜5
層の配線層からなる薄膜モジュール基板である。
FIG. 9 shows a cross-sectional structure of a thin-film module substrate assembled by the low-temperature solid-state bonding process of the present invention. In the figure, a first thin film element substrate 119 is formed on a ceramic substrate 118 by a thin film process. An Au connection pad 120 for joining the second element substrate 122 is formed on the upper surface of the first element substrate. Au bumps 121 for bonding to the first element substrate are formed on the lower surface of the second element substrate, and Au bonding pads 123 for bonding the third element substrate 125 to the upper surface of the second element substrate. Are formed. On the upper surface of the uppermost element substrate 125, fine connection pads 126 for mounting a Si chip are formed.
The low-temperature bonding method according to the present invention is used for bonding between the element substrates. Also, each element substrate is 1-5
This is a thin-film module substrate including a plurality of wiring layers.

本実施例によれば、要素基板間の接続パッドが微細で
ピッチが微小であっても接合プロセスで加熱されること
がないため、初期の位置決めを正確に行うことでAuバン
プとAuパッドの位置ずれを防ぐことが容易となり、しか
も接続強度がたかいため、薄膜モジュール基板としての
信頼性を高くすることが可能となるのである。また、こ
の製造プロセスは、従来の全工程を薄膜プロセスで製作
する逐次積層組立方式と違って、数層に形成された良品
の薄膜モジュール基板を接合により積層して組立るた
め、製品歩留まりが高くしかも最終製品までの組立時間
を大幅に短縮できる。
According to the present embodiment, even if the connection pads between the element substrates are fine and the pitch is minute, they are not heated in the bonding process. The displacement can be easily prevented, and the connection strength is high, so that the reliability as a thin film module substrate can be increased. Also, this manufacturing process is different from the conventional sequential assembly method in which all the steps are manufactured by a thin film process. Moreover, the assembly time to the final product can be greatly reduced.

〔発明の効果〕〔The invention's effect〕

以上詳述したように本発明によれば、接合したいリー
ド表面に酸化量や水分、油脂、ガスなどの吸着層がある
場合あるいは有機物の皮膜がある場合でも、プラズマガ
スやレーザビームの熱的および化学的な作用により金属
表面を完全に清浄化でき、しかも、酸素や水分のほとん
ど存在しない減圧還元雰囲気下で保持およびボンディン
グを行うことが可能となるので、常温〜200℃の低い温
度でかつ加圧力や超音波エネルギーの小さい接合条件で
接合不良の発生が非常に少なく、接合部の強度が高くか
つその強度ばらつきが小さい高信頼度の継手が得られる
のである。
As described in detail above, according to the present invention, even when the lead surface to be bonded has an adsorption layer such as an oxidized amount, moisture, oil, or gas, or a coating of an organic substance, the thermal and plasma gas and laser beam The metal surface can be completely cleaned by chemical action, and can be held and bonded in a reduced-pressure reducing atmosphere where there is almost no oxygen or moisture. Under the joining conditions of low pressure and ultrasonic energy, the occurrence of poor joining is very small, and a highly reliable joint having high joint strength and small variation in strength is obtained.

その結果、メッキレスリードフレームを用いた半導体
パッケージの組立て歩留まりおよび信頼性の向上、アク
ティブエリヤにパッドを形成した将来のDRAMメモリデバ
イスの固相結合に起因するチップ損傷や素子性能の劣化
の防止、半導体デバイスのTAB実装における微細・狭ピ
ッチ端子接続の組立て歩留まり向上、液晶パネル端子接
続部の接続強度と疲労寿命の向上、薄膜モジュール基板
の製造プロセスの短縮および製品信頼性の向上を可能に
することができるのである。
As a result, the assembly yield and reliability of semiconductor packages using plating-less lead frames have been improved, and chip damage and deterioration of element performance due to solid-state coupling of future DRAM memory devices with pads formed in active areas have been prevented. To improve the assembly yield of fine and narrow pitch terminal connections in TAB mounting of semiconductor devices, improve the connection strength and fatigue life of liquid crystal panel terminal connections, shorten the manufacturing process of thin film module substrates, and improve product reliability. You can do it.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、本発明によるチップのワイヤ固相結合を示す
図、第2図は、本発明の固相結合方法における結合性改
善の原理を示す図、第3図は、本発明の接合方法を行う
ための接合装置の一実施例を示す図、第4図および第5
図は、表面処理を行う装置の一実施例を示す図、第6図
は、本発明を適用したメモリデバイスの組立構造の例を
示す図、第7図は、本発明を適用したTAB実装の継手構
造の一例を示す図、第8図は、本発明を適用した液晶パ
ネル端子の接続構造の一例を示す図、第9図は、本発明
を適用して組立てた薄膜モジュール基板の断面構造を示
す図、第10図は、従来のワイヤボンディングプロセスを
示す図、第11図は、従来のメモリデバイスの組立構造を
示す図である。 1:Siチップ、2:Alパッド、3:リードフレーム、4:ダイパ
ッド、5:半だシート、6:還元ガスシールド、7:加熱台、
8:半だフィレット、9:真空チャンバー、10:レーザ光学
系、11:レーザビーム、12還元雰囲気、13:金属細線、1
4:金属ボール、15:キャピラリ、16,17:加熱台、18:ワー
ク、19:真空ポンプ、20:プラズマガス、21:石英ガラス
管、22:マイクロ波導波管、23:マイクロ波発振装置、2
4:水冷パイプ、25:ガス導入バルブ、26:レーザビーム、
27:光学レンズ系、28:真空窓、29:レンズ、30:光ファイ
バー、31:レーザ発振機、32:金属細線、33:ボンディン
グ装置、34:真空チャンバー、35,36:真空ポンプ、37:ワ
ーク導入室、38,39:ゲートバルブ、40:ワーク取り出し
室、41,42:カセット。
FIG. 1 is a view showing a solid-phase wire bonding of a chip according to the present invention, FIG. 2 is a view showing a principle of improving the bonding property in the solid-phase bonding method of the present invention, and FIG. 3 is a joining method of the present invention. Showing an embodiment of a bonding apparatus for performing the bonding, FIG. 4 and FIG.
FIG. 6 is a view showing an embodiment of an apparatus for performing surface treatment, FIG. 6 is a view showing an example of an assembly structure of a memory device to which the present invention is applied, and FIG. FIG. 8 shows an example of a joint structure, FIG. 8 shows an example of a connection structure of a liquid crystal panel terminal to which the present invention is applied, and FIG. 9 shows a cross-sectional structure of a thin film module substrate assembled by applying the present invention. FIG. 10 is a diagram showing a conventional wire bonding process, and FIG. 11 is a diagram showing an assembly structure of a conventional memory device. 1: Si chip, 2: Al pad, 3: Lead frame, 4: Die pad, 5: Half sheet, 6: Reducing gas shield, 7: Heating table,
8: half fillet, 9: vacuum chamber, 10: laser optics, 11: laser beam, 12 reducing atmosphere, 13: thin metal wire, 1
4: Metal ball, 15: Capillary, 16, 17: Heating table, 18: Work, 19: Vacuum pump, 20: Plasma gas, 21: Quartz glass tube, 22: Microwave waveguide, 23: Microwave oscillator, Two
4: water cooling pipe, 25: gas introduction valve, 26: laser beam,
27: Optical lens system, 28: Vacuum window, 29: Lens, 30: Optical fiber, 31: Laser oscillator, 32: Fine metal wire, 33: Bonding device, 34: Vacuum chamber, 35, 36: Vacuum pump, 37: Work Introducing room, 38, 39: gate valve, 40: work take-out room, 41, 42: cassette.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 関根 節夫 神奈川県小田原市国府津2880番地 株式 会社日立製作所小田原工場内 (56)参考文献 特開 平4−123430(JP,A) 特開 平3−159143(JP,A) ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Setsuo Sekine 2880 Kozu, Odawara City, Kanagawa Prefecture Inside the Odawara Plant of Hitachi, Ltd. (56) References JP-A-4-123430 (JP, A) JP-A-3-159143 (JP, A)

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】半導体デバイスとリードとを金属細線を用
いて結線する半導体装置の製造方法に用いる固相接合方
法であって、リード及びデバイスの接続パッドの表面に
低圧雰囲気下でレーザ照射あるいはプラズマ照射を行
い、同じ雰囲気下でそれぞれの処理した面に細線を超音
波接合することを特徴とする固相接合方法。
1. A solid-state bonding method used in a method of manufacturing a semiconductor device in which a semiconductor device and a lead are connected by using a fine metal wire, wherein laser irradiation or plasma is applied to the surface of the lead and the connection pad of the device under a low-pressure atmosphere. A solid-phase bonding method comprising irradiating and ultrasonically bonding a fine wire to each treated surface under the same atmosphere.
【請求項2】低圧雰囲気が酸素分圧3000ppm以下で圧力
で10-2〜102Paの不活性ガス雰囲気であることを特徴と
する請求項1記載の固相接合方法。
2. A solid phase bonding method of claim 1, wherein the low pressure atmosphere is an inert gas atmosphere at a pressure below the oxygen partial pressure of 3000ppm 10 -2 ~10 2 Pa.
【請求項3】低圧雰囲気が酸素分圧3000ppm以下で圧力
が10-2〜102Paの水素を含む還元性雰囲気であることを
特徴とする請求項1記載の固相接合方法。
3. A solid phase bonding method of claim 1, wherein the pressure in the low pressure atmosphere less oxygen partial pressure 3000ppm is a reducing atmosphere containing hydrogen of 10 -2 ~10 2 Pa.
【請求項4】SiチップのAlパッドとメッキレスのCuリー
ドとを金属細線を用いて結線し樹脂でモールドするプラ
スチックパッケージの製造方法であって、Cuリードの接
合面に減圧あるいは減圧かつ還元雰囲気下でレーザ照射
あるいはレーザ照射とプラズマ照射を同時に行い、同一
の雰囲気下で200℃以下の温度で超音波接合する固相接
合方法を用いたことを特徴とするプラスチックパッケー
ジの製造方法。
4. A method of manufacturing a plastic package in which an Al pad of a Si chip and a plating-less Cu lead are connected by using a thin metal wire and molded with a resin, and the bonding surface of the Cu lead is subjected to reduced pressure or reduced pressure and reducing atmosphere. A laser irradiation or a laser irradiation and a plasma irradiation at the same time, and a solid-state bonding method of performing ultrasonic bonding at a temperature of 200 ° C. or lower under the same atmosphere.
【請求項5】固相接合方法が、メッキレスCuリードの接
合面を予め酸化させ、真空または不活性または還元性雰
囲気中において尖頭出力10kW以上のパルスレーザを接合
面に照射し、接合面の表面層を局部的に溶融させた後、
その面に金属細線を超音波接合する固相接合方法である
ことを特徴とする請求項4記載のプラスチックパッケー
ジの製造方法。
5. A solid phase bonding method comprising: oxidizing a bonding surface of a plating-less Cu lead in advance; irradiating the bonding surface with a pulse laser having a peak output of 10 kW or more in a vacuum or an inert or reducing atmosphere; After locally melting the surface layer,
5. The method for manufacturing a plastic package according to claim 4, wherein the method is a solid-state bonding method in which a thin metal wire is ultrasonically bonded to the surface.
【請求項6】メッキレスCuリードの接合面を予め酸化さ
せる方法が、メッキレスCuリードの接合面にArとO2の混
合ガスをプラズマ化して照射し、酸化させる方法である
ことを特徴とする請求項5記載のプラスチックパッケー
ジの製造方法。
6. A method for pre-oxidizing a bonding surface of a plating-less Cu lead by oxidizing the bonding surface of a plating-less Cu lead by irradiating a mixed gas of Ar and O 2 with plasma. Item 6. The method for producing a plastic package according to Item 5.
【請求項7】半導体デバイスとリードとを金属細線を用
いて結線する半導体装置の製造装置に用いる固相接合装
置であって、リード及びパッドの表面にレーザあるいは
プラズマを照射する表面処理空間と超音波固相接合する
接合処理空間とが圧力が10-2〜102Pa雰囲気下の一つの
気密室に設けられていることを特徴とする固相接合装
置。
7. A solid-state bonding apparatus used in a semiconductor device manufacturing apparatus for connecting a semiconductor device and a lead using a thin metal wire, wherein a surface treatment space for irradiating laser or plasma to the surface of the lead and the pad is provided. A solid-state bonding apparatus, wherein a bonding processing space for sonic solid-phase bonding is provided in one airtight chamber under a pressure of 10 -2 to 10 2 Pa.
【請求項8】半導体デバイスのAlパッドの上にTa,Nb,V,
Ni,Pd,Pt,Zr,Hfの中から選択された金属を2μm以下の
厚さに形成し、その面にAuまたはCu細線をボール固相接
合あるいはウェッジ固相接合した構造であることを特徴
とする請求項1記載の固相接合方法により製造された半
導体装置。
8. The semiconductor device according to claim 1, wherein Ta, Nb, V,
Metals selected from Ni, Pd, Pt, Zr, and Hf are formed to a thickness of 2 μm or less, and Au or Cu fine wires are ball-solid bonded or wedge solid bonded to the surface. A semiconductor device manufactured by the solid-state bonding method according to claim 1.
JP2323110A 1990-11-28 1990-11-28 Solid phase bonding method and apparatus Expired - Lifetime JP2854963B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2323110A JP2854963B2 (en) 1990-11-28 1990-11-28 Solid phase bonding method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2323110A JP2854963B2 (en) 1990-11-28 1990-11-28 Solid phase bonding method and apparatus

Publications (2)

Publication Number Publication Date
JPH04196333A JPH04196333A (en) 1992-07-16
JP2854963B2 true JP2854963B2 (en) 1999-02-10

Family

ID=18151193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2323110A Expired - Lifetime JP2854963B2 (en) 1990-11-28 1990-11-28 Solid phase bonding method and apparatus

Country Status (1)

Country Link
JP (1) JP2854963B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002231754A (en) * 2001-02-05 2002-08-16 Nec Corp Manufacturing method for semiconductor device
AU2003271061A1 (en) * 2002-09-25 2004-04-19 Toray Engineering Co., Ltd. Connection method and connection device
JP2006080099A (en) * 2002-09-26 2006-03-23 Toray Eng Co Ltd Bonding method and bonding device
JP2006332152A (en) * 2005-05-24 2006-12-07 Matsushita Electric Works Ltd Method of packaging semiconductor device
JP4787104B2 (en) * 2006-07-31 2011-10-05 株式会社新川 Bonding equipment
FR2911003B1 (en) * 2006-12-28 2009-10-02 Cnes Epic METHOD AND INSTALLATION FOR PLACING THE SURFACE OF AN INTEGRATED CIRCUIT
JP4852521B2 (en) * 2007-12-07 2012-01-11 株式会社新川 Bonding apparatus and bonding method
JP4369507B2 (en) * 2007-12-07 2009-11-25 株式会社新川 Bonding apparatus and bonding method
CN114496872B (en) * 2022-01-21 2023-04-07 江苏新智达新能源设备有限公司 Production equipment and method of diode Clip Bond

Also Published As

Publication number Publication date
JPH04196333A (en) 1992-07-16

Similar Documents

Publication Publication Date Title
US5188280A (en) Method of bonding metals, and method and apparatus for producing semiconductor integrated circuit device using said method of bonding metals
US5090609A (en) Method of bonding metals, and method and apparatus for producing semiconductor integrated circuit device using said method of bonding metals
JP4663165B2 (en) Semiconductor device and manufacturing method thereof
JP2786700B2 (en) Method and apparatus for manufacturing semiconductor integrated circuit device
US6905063B2 (en) Method of manufacturing semiconductor device
US4535219A (en) Interfacial blister bonding for microinterconnections
JP5256407B2 (en) Bonding method, device made by this method, bonding apparatus, and substrate bonded by this method
JP2009110995A (en) Three-dimensional packaging method and apparatus
JP2854963B2 (en) Solid phase bonding method and apparatus
JP5523680B2 (en) Bonded body, semiconductor device, and manufacturing method of bonded body
JPH11509375A (en) Method and apparatus for soldering to a substrate or chip without flux
JPS6332941A (en) Connection structure for electronic circuit
WO2005055317A1 (en) Packaged electronic element and method of producing electronic element package
JP3447690B2 (en) Semiconductor chip stacking method
WO2000019514A1 (en) Semiconductor package and flip-chip bonding method therefor
JP2000138255A (en) Method and system for manufacturing semiconductor device
US5046656A (en) Vacuum die attach for integrated circuits
WO1998041354A1 (en) Method of solid-phase welding members
CN111584377B (en) Ultrasonic welding method
JP3407839B2 (en) Method of forming solder bump for semiconductor device
JP4483136B2 (en) Semiconductor device mounting method and semiconductor device manufacturing method
Wang et al. Reliability of High Density Wire Bonding in X band T/R Module
JP2006332151A (en) Method of packaging semiconductor device
JPH07202427A (en) Production of multilayer organic resin wiring layer
JPH0637139A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071120

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081120

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081120

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091120

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101120

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111120

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111120

Year of fee payment: 13