JP2853347B2 - Current lead of superconducting magnet device - Google Patents

Current lead of superconducting magnet device

Info

Publication number
JP2853347B2
JP2853347B2 JP3033269A JP3326991A JP2853347B2 JP 2853347 B2 JP2853347 B2 JP 2853347B2 JP 3033269 A JP3033269 A JP 3033269A JP 3326991 A JP3326991 A JP 3326991A JP 2853347 B2 JP2853347 B2 JP 2853347B2
Authority
JP
Japan
Prior art keywords
current
low
lead
temperature side
side lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3033269A
Other languages
Japanese (ja)
Other versions
JPH04273109A (en
Inventor
俊夫 上出
清 滝田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP3033269A priority Critical patent/JP2853347B2/en
Publication of JPH04273109A publication Critical patent/JPH04273109A/en
Application granted granted Critical
Publication of JP2853347B2 publication Critical patent/JP2853347B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、真空断熱容器に収納
された超電導コイルに外部電源からの直流励磁電流を供
給する電流リード、ことに低温側リードに酸化物系超電
導導体を用いた電流リードのクエンチ保護構造に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a current lead for supplying a DC exciting current from an external power supply to a superconducting coil housed in a vacuum insulated container, and more particularly to a current lead using an oxide superconducting conductor for a low-temperature side lead. Quench protection structure.

【0002】[0002]

【従来の技術】超電導磁石装置の超電導コイルは液体ヘ
リウム等の極低温冷媒により冷却されて超電導状態を保
持するので、液体窒素を用いた輻射シールドや多層断熱
層を有する真空断熱容器に液体ヘリウムに浸漬した状態
で収納される。また、電流リードは液体ヘリウムが気化
した低温のヘリウムガスにより冷却され、常温側からの
侵入熱および電流リードで発生するジュール熱が極低温
部に侵入するのを阻止するよう構成される。従来電流リ
ードには導体として銅等の電気良導体を用いていたが、
銅は良導電体であると同時に良熱伝導体でもあるため極
低温部への侵入熱が増し、高価な液体ヘリウムの気化損
失が大きくなる。そこで、電流リードの低温側に高温超
電導体である酸化物系超電導導体を用い、ジュール熱を
零にすると同時にその低熱伝導性を利用して極低温部へ
の侵入熱を大幅に低減した電流リードが本願出願人等に
より既に提案されている(例えば、特願平2−8425
2号)。
2. Description of the Related Art Since a superconducting coil of a superconducting magnet device is cooled by a cryogenic refrigerant such as liquid helium to maintain a superconducting state, a liquid shield is provided in a vacuum shielded container having a radiation shield using liquid nitrogen or a multilayer heat insulating layer. It is stored in a immersed state. Further, the current lead is cooled by the low-temperature helium gas in which the liquid helium is vaporized, and is configured to prevent intrusion heat from the normal temperature side and Joule heat generated in the current lead from entering the cryogenic portion. Conventionally, electric current conductors such as copper were used as conductors for current leads.
Since copper is a good conductor at the same time as a good conductor, the heat penetrating into the cryogenic part increases, and the vaporization loss of expensive liquid helium increases. Therefore, a current lead that uses an oxide-based superconductor, which is a high-temperature superconductor, on the low-temperature side of the current lead, reduces the Joule heat to zero, and at the same time uses the low thermal conductivity to greatly reduce the heat that enters the cryogenic part. Has already been proposed by the applicant of the present application (for example, Japanese Patent Application No. 2-8425).
No. 2).

【0003】図4は超電導磁石装置の電流リードの従来
構造を簡略化して示す一部破砕断面図、図5は図4の要
部を拡大して示す断面図である。図において、超電導コ
イル1は真空断熱容器2内に液体ヘリウムHe に浸漬し
た状態で収納され、リード線6により電流リード3の低
温端子5Aに導電接続される。電流リード3は上部に常
温端子4Aを有する高温側リード4と低温端子5Aを有
する低温側リード5の直列接続体として構成され、低温
のヘリウムガスGHe がリード内を通って常温端子4A
側に抜けることにより冷却される。低温側リードは図5
に示すように、例えばステンレス鋼,マンガン鋼,ニク
ロム鋼などの剛性が高く低熱伝導性を有する丸棒を心材
7として、その外側に酸化物系超電導導体8をら旋状に
巻装し、低熱伝導性金属からなる外管9に収納し、外管
との間に低温のヘリウムガスによる冷却通路を形成し、
酸化物系超電導導体8の温度を液体窒素温度(約77
K)以下に冷却することにより、酸化物系超電導導体は
超電導状態となり、低温側への侵入熱が少なく液体ヘリ
ウムの消費量が少ない超電導磁石装置の電流リードが得
られる。
FIG. 4 is a partially broken sectional view schematically showing a conventional structure of a current lead of a superconducting magnet device, and FIG. 5 is an enlarged sectional view showing a main part of FIG. In the figure, a superconducting coil 1 is housed in a vacuum insulated container 2 in a state of being immersed in liquid helium He, and is electrically connected to a low-temperature terminal 5A of a current lead 3 by a lead wire 6. The current lead 3 is formed as a series connection of a high-temperature side lead 4 having a normal-temperature terminal 4A on the upper side and a low-temperature side lead 5 having a low-temperature terminal 5A, and low-temperature helium gas GHe passes through the lead and enters the normal-temperature terminal 4A.
Cools by pulling out to the side. Fig. 5 for low-temperature lead
As shown in FIG. 1, a round bar having high rigidity and low thermal conductivity, such as stainless steel, manganese steel, or nichrome steel, is used as a core material 7, and an oxide superconducting conductor 8 is spirally wound around the core material 7. It is housed in an outer tube 9 made of a conductive metal and forms a cooling passage with low-temperature helium gas between the outer tube 9 and the outer tube.
The temperature of the oxide-based superconducting conductor 8 is set to the temperature of liquid nitrogen (about 77
By cooling to below K), the oxide-based superconducting conductor is brought into a superconducting state, and a current lead of a superconducting magnet device is obtained in which less heat enters the low-temperature side and consumption of liquid helium is small.

【0004】[0004]

【発明が解決しようとする課題】上述のように構成され
た電流リードにおいて、酸化物系超電導導体8は通電当
初から安定した超電導状態が得られることは稀であり、
初め超電導状態が局部的に破れて常電導転移するクエン
チ現象を繰り返しつつ電流を徐々に増加することによ
り、安定した超電導状態に到達するのが一般的である。
また、安定した超電導状態に到達しても予期しないとき
にクエンチが発生することもある。ところで、クエンチ
が発生する度に超電導コイルへの電流の供給を停止する
と、その度に超電導コイル1の電位振動による異常電圧
が発生し、これが原因で超電導コイルの絶縁が損傷して
コイルの短絡事故に発展する危険性が高まるという問題
がある。また、常電導転移した部分の酸化物系超電導導
体が局部的に過熱し、燃損する事態も発生する。そこ
で、低温リードでクエンチが万一発生しても超電導コイ
ルへの励磁電流の供給を継続して行えるとともに、クエ
ンチした部分の酸化物系超電導導体の燃損を防止できる
電流リードの開発が望まれている。この対策として、酸
化物系超電導導体に並列に銀などの電気的良導体を安定
化材として設けたものも知られているが、熱的良導体で
もある安定化材を通して侵入熱が増加するという問題が
新たに発生する。
In the current lead constructed as described above, a stable superconducting state is rarely obtained from the beginning of energization of the oxide superconducting conductor 8;
In general, a stable superconducting state is reached by gradually increasing the current while repeating a quenching phenomenon in which the superconducting state is locally broken and a normal conducting transition occurs.
In addition, even when a stable superconducting state is reached, quench may occur at an unexpected time. By the way, when the current supply to the superconducting coil is stopped every time a quench occurs, an abnormal voltage is generated due to the potential oscillation of the superconducting coil 1 each time, which causes damage to the insulation of the superconducting coil and short-circuit of the coil. There is a problem that the risk of developing is increased. In addition, a situation in which the oxide-based superconducting conductor in the portion where the normal conduction transition occurs is locally heated and burns out occurs. Therefore, it is desired to develop a current lead that can continuously supply the exciting current to the superconducting coil even if a quench occurs in the low-temperature lead and that can prevent burnout of the oxidized superconducting conductor in the quenched portion. ing. As a countermeasure for this, it is known to provide an electrically good conductor such as silver as a stabilizer in parallel with the oxide-based superconducting conductor, but the problem of increased heat penetration through the stabilizer, which is also a thermally good conductor, is known. Newly occurs.

【0005】この発明の目的は、低温側リードの酸化物
系超電導導体に万一クエンチが発生した場合にも、超電
導コイルへの電流の供給を継続でき、かつ酸化物系超電
導導体の損傷も防止できる、侵入熱の少ない電流リード
を得ることにある。
SUMMARY OF THE INVENTION It is an object of the present invention to supply current to a superconducting coil and prevent damage to the oxide superconducting conductor even if a quench occurs in the oxide superconducting conductor of the low-temperature lead. An object of the present invention is to obtain a current lead with less invasion heat.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に、この発明によれば、真空断熱容器に収納されて極低
温に保持された超電導コイルに外部電源からの励磁電流
を通流する電流リードが、良導電性金属からなる高温側
リードと、酸化物系超電導導体からなる低温側リードの
直列接続体からなり、低温の冷媒ガスで冷却されるもの
において、前記酸化物系超電導導体のクエンチにより前
記低温側リードに生ずる異常電圧を検知して導通状態と
なるバイパス回路を、前記低温側リードに並列に設ける
ものとする。
According to the present invention, there is provided a superconducting coil which is housed in a vacuum insulated container and maintained at a very low temperature, and a current which flows an exciting current from an external power supply to the superconducting coil. The lead is composed of a series connection of a high-temperature side lead made of a good conductive metal and a low-temperature side lead made of an oxide-based superconductor, and cooled by a low-temperature refrigerant gas, wherein the quench of the oxide-based superconductor is performed. A bypass circuit that detects an abnormal voltage generated in the low-temperature side lead and becomes conductive is provided in parallel with the low-temperature side lead.

【0007】また、バイパス回路が、低温側リードの異
常電圧を接合面の電位障壁により感知してバイパス電流
としての順方向電流を通流するパワーダイオードである
ものとする。
[0007] It is also assumed that the bypass circuit is a power diode that senses an abnormal voltage of the low-temperature side lead by a potential barrier on the junction surface and passes a forward current as a bypass current.

【0008】さらに、バイパス回路が、低温側リードの
異常電圧をトリガー信号として受けて導通状態となり、
低温側リードと同方向に電流を側路するスイッチング半
導体素子であるものとする。
Further, the bypass circuit is turned on by receiving the abnormal voltage of the low-temperature side lead as a trigger signal,
It is assumed that the switching semiconductor element is a switching semiconductor element that passes current in the same direction as the low-temperature side lead.

【0009】さらにまた、バイパス回路が電圧非直線抵
抗素子であるものとする。
Further, it is assumed that the bypass circuit is a voltage non-linear resistance element.

【0010】[0010]

【作用】この発明の構成において、低温側リードに並列
にバイパス回路を設け、酸化物系超電導導体のクエンチ
により低温側リードに生ずる異常電圧を検知してバイパ
ス回路を導通状態とするよう構成したことにより、クエ
ンチ発生と同時に低温側リードの電流をバイパス回路側
に側路して超電導コイルに励磁電流を継続して供給する
作用が得られ、したがって超電導コイルの励磁電流が急
停止することによる異常電圧の発生と、これによる超電
導コイルの損傷を回避できるとともに、クエンチ部分に
おける酸化物系超電導導体の発熱を抑制し、クエンチの
回復を促進する機能が得られる。
In the configuration of the present invention, a bypass circuit is provided in parallel with the low-temperature side lead, and an abnormal voltage generated in the low-temperature side lead due to the quench of the oxide superconductor is detected to make the bypass circuit conductive. As a result, the current of the low-temperature side lead is bypassed to the bypass circuit side at the same time as the occurrence of the quench, so that the exciting current is continuously supplied to the superconducting coil. And the damage of the superconducting coil due to this can be avoided, and the function of suppressing the heat generation of the oxide superconducting conductor in the quench portion and promoting the recovery of the quench can be obtained.

【0011】また、バイパス回路を、バイパス電流とし
ての順方向電流を通流するパワーダイオードとすれば、
クエンチによる低温側リードの異常電圧がバワーダイオ
ードの接合面の電位障壁を越えるとダイオードに順方向
電流が流れ、超電導コイルへの励磁電流をバイパス回路
を経由して供給できるので、上記と同様な作用が得られ
るとともに、ダイオード自身が異常電圧上昇を感知して
保護動作するので、制御回路を必要とせず、簡素な構成
のバイパス回路が得られる。
Further, if the bypass circuit is a power diode that allows a forward current as a bypass current to flow,
When the abnormal voltage of the low-temperature side lead due to the quench exceeds the potential barrier at the junction surface of the power diode, a forward current flows through the diode, and the exciting current to the superconducting coil can be supplied via the bypass circuit. Is obtained, and the diode itself senses an abnormal voltage rise to perform a protection operation. Therefore, a bypass circuit having a simple configuration without a control circuit can be obtained.

【0012】さらに、バイパス回路を、低温側リードの
異常電圧をトリガー信号として受けて導通状態となり、
低温側リードと同方向に電流を側路するスイッチング半
導体素子で構成すれば、サイリスタ,パワートランジス
タなどの電力用スイッチング素子を用いて上記と同様な
作用が得られるとともに、異常電圧の検知レベルを調整
することによりノイズなどで誤動作することのない信頼
性の高い保護動作を行うことができる。
Further, the bypass circuit is brought into conduction by receiving an abnormal voltage of the low temperature side lead as a trigger signal,
By using a switching semiconductor element that bypasses the current in the same direction as the low-temperature side lead, the same operation as described above can be obtained using a power switching element such as a thyristor or power transistor, and the abnormal voltage detection level is adjusted. By doing so, a highly reliable protection operation that does not malfunction due to noise or the like can be performed.

【0013】さらにまた、バイパス回路は、酸化亜鉛サ
ージアブソーバ,シリコンサージアブソーバなどの電圧
非直線抵抗素子を用いても、その電圧抑制作用,放電耐
量を活かして電流を側路するクエンチ保護動作が得られ
る。
Furthermore, even if a voltage non-linear resistance element such as a zinc oxide surge absorber or a silicon surge absorber is used in the bypass circuit, a quench protection operation for bypassing a current can be obtained by utilizing its voltage suppressing action and discharge capability. Can be

【0014】[0014]

【実施例】以下、この発明を実施例に基づいて説明す
る。図1はこの発明の実施例になる超電導磁石装置の電
流リードを模式化して示す構成図であり、以下従来技術
と同じ部分には同一参照符号を付すことにより重複した
説明を省略する。図において、高温側リード4と低温側
リード5の直列体からなる電流リード10は、その電流
リード5に並列にパワーダイオード12を主体とするバ
イパス回路11を備え、パワーダイオード12はその順
方向が電流リードに流れる直流励磁電流Iと同方向にな
るよう低温端子5Aおよび高温側リードの適所に導電接
続される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below based on embodiments. FIG. 1 is a configuration diagram schematically showing a current lead of a superconducting magnet device according to an embodiment of the present invention. In the following, the same parts as those in the prior art are denoted by the same reference numerals, and redundant description will be omitted. In the figure, a current lead 10 composed of a series body of a high-temperature side lead 4 and a low-temperature side lead 5 includes a bypass circuit 11 mainly composed of a power diode 12 in parallel with the current lead 5, and the power diode 12 has a forward direction. The low-temperature terminal 5A and the high-temperature side lead are conductively connected to appropriate places so as to be in the same direction as the DC exciting current I flowing through the current lead.

【0015】このように構成された超電導磁石装置の電
流リード10において、低温側リード5の酸化物系超電
導導体が超電導状態に保持され、その電気抵抗が零であ
る定常の通流状態では、パワーダイオード12の端子間
の電圧はその接合面の電位障壁(接触電位とも呼ぶ)よ
り低く、パワーダイオードに電流は流れず、酸化物系超
電導導体を通して超電導コイルに励磁電流Iが供給され
る。一方、酸化物系超電導導体にクエンチが発生して局
部的に電気抵抗が増大すると、電流は低温側リードの低
導電性金属からなる心材7や外管9を通って超電導コイ
ルに流れようとするが、心材や外管の電気抵抗が高いた
めに低温側リードの電圧(抵抗ドロップ)が異常に上昇
し、パワーダイオード12の両端間の電圧が接合面の電
位障壁を越えて上昇する。その結果、パワーダイオード
12にバイパス電流としての順方向電流が電流リードと
同じ方向に流れて超電導コイルに励磁電流を継続して供
給する。従って、電流の供給が急停止することが原因で
発生する超電導コイルの異常電圧を回避し、超電導コイ
ルを保護することができる。また、このときパワーダイ
オード12は低い順方向ドロップを保持するので、低温
側リードに流れていた電流の殆どの部分がバイパス回路
に側路して流れるので、酸化物系超電導導体の過熱は止
み,ヘリウムガスにより冷却されることによりクエンチ
の回復が促進される。
In the current lead 10 of the superconducting magnet device having the above-described structure, the oxide superconductor of the low-temperature side lead 5 is kept in a superconducting state, and in a steady conduction state where the electric resistance is zero, the power is not increased. The voltage between the terminals of the diode 12 is lower than the potential barrier (also referred to as contact potential) at the junction surface, no current flows through the power diode, and the exciting current I is supplied to the superconducting coil through the oxide-based superconducting conductor. On the other hand, when quenching occurs in the oxide-based superconducting conductor and the electric resistance locally increases, current tends to flow to the superconducting coil through the core material 7 made of a low conductive metal of the low-temperature side lead and the outer tube 9. However, since the electrical resistance of the core material and the outer tube is high, the voltage (resistance drop) of the low-temperature side lead rises abnormally, and the voltage between both ends of the power diode 12 rises beyond the potential barrier of the junction surface. As a result, a forward current as a bypass current flows in the power diode 12 in the same direction as the current lead, and continuously supplies an exciting current to the superconducting coil. Therefore, it is possible to avoid the abnormal voltage of the superconducting coil caused by the sudden stop of the current supply and to protect the superconducting coil. At this time, since the power diode 12 keeps a low forward drop, most of the current flowing in the low-temperature side lead flows by-passing to the bypass circuit, so that overheating of the oxide-based superconducting conductor stops. Cooling by helium gas promotes quench recovery.

【0016】図2はこの発明の異なる実施例を示す構成
図であり、電流リード20がその低温側リード5に並列
にサイリスタ22およびその駆動回路23を含むバイパ
ス回路21を備えた点が前述の実施例と異なっている。
すなわち、サイリスタ22はその順方向が低温側リード
5に流れる電流Iと同方向になるよう接続され、クエン
チによる低温側リードの異常電圧を駆動回路23が検出
し、サイリスタのゲートパルスに変換して供給すること
によりサイリスタ22がターンオンし、超電導コイルに
電流を継続して供給する。なお、この実施例の場合、サ
イリスタがターンオンする電圧レベルを駆動回路で調整
できるので、外来ノイズにより誤動作することのないバ
イパス回路が得られる。また、サイリスタに限らず、バ
イポーラ形やユニポーラ形のパワートランジスタをスイ
ッチング素子として用いても、上記と同様の機能が得ら
れる。
FIG. 2 is a block diagram showing a different embodiment of the present invention. The current lead 20 is provided with a bypass circuit 21 including a thyristor 22 and a drive circuit 23 in parallel with the low-temperature side lead 5. This is different from the embodiment.
In other words, the thyristor 22 is connected so that its forward direction is the same as the current I flowing through the low-temperature side lead 5, the drive circuit 23 detects an abnormal voltage of the low-temperature side lead due to quench, and converts it into a thyristor gate pulse. The thyristor 22 is turned on by the supply, and the current is continuously supplied to the superconducting coil. In this embodiment, since the voltage level at which the thyristor is turned on can be adjusted by the drive circuit, a bypass circuit that does not malfunction due to external noise can be obtained. The same function as described above can be obtained by using not only a thyristor but also a bipolar or unipolar power transistor as a switching element.

【0017】図3はこの発明の他の実施例を示す構成図
であり、バイパス回路31を酸化亜鉛サージアブソー
バ,シリコンサージアブソーバなどの電圧非直線抵抗素
子32で構成した点が前述の各実施例と異なっている。
このように構成された電流リードにおいて、低温側リー
ド4の酸化物系超電導導体にクエンチが発生し、その電
圧が上昇すると、素子32の電気抵抗が非直線的に低下
して低温側リードの電流をバイパス回路31側に側路す
るので、上記実施例と同様な保護動作が得られる。こと
に、シリコンサージアブソーバのように負性抵抗特性を
有する素子を用いれば、素子32の端子電圧を一定値に
保持して電流を側路できるので、素子のブレークオーバ
電圧の選択の仕方により高い保護性能を有するバイパス
回路を構成できる利点が得られる。
FIG. 3 is a block diagram showing another embodiment of the present invention. In each of the above embodiments, the bypass circuit 31 is constituted by a voltage non-linear resistance element 32 such as a zinc oxide surge absorber and a silicon surge absorber. Is different.
In the current lead configured as described above, when the quench occurs in the oxide-based superconductor of the low-temperature side lead 4 and the voltage increases, the electric resistance of the element 32 decreases nonlinearly and the current of the low-temperature side lead increases. Is bypassed to the bypass circuit 31 side, so that the same protection operation as in the above embodiment can be obtained. In particular, when an element having a negative resistance characteristic such as a silicon surge absorber is used, the terminal voltage of the element 32 can be maintained at a constant value and the current can be bypassed, so that the method of selecting the breakover voltage of the element is higher. The advantage that a bypass circuit having protection performance can be configured can be obtained.

【0018】[0018]

【発明の効果】この発明は前述のように、低温側リード
に並列にバイパス回路を設け、酸化物系超電導導体のク
エンチにより低温側リードに生ずる異常電圧を検知して
バイパス回路を導通状態とするよう構成したことによ
り、クエンチ発生と同時に低温側リードの電流をバイパ
ス回路側に側路して超電導コイルに励磁電流を継続して
供給できるので、従来技術で問題になった超電導コイル
の励磁電流が急停止することによる異常電圧の発生と、
これによる超電導コイルの損傷を回避できるとともに、
クエンチ部分における酸化物系超電導導体の発熱を抑制
し、クエンチの回復を促進する機能を有する電流リード
を備えた超電導磁石装置を提供することができる。
As described above, according to the present invention, the bypass circuit is provided in parallel with the low-temperature side lead, and an abnormal voltage generated in the low-temperature side lead due to the quench of the oxide superconductor is detected to make the bypass circuit conductive. With this configuration, the current of the low-temperature side lead can be bypassed to the bypass circuit side and the excitation current can be continuously supplied to the superconducting coil at the same time as the occurrence of quench. Abnormal voltage caused by sudden stop,
This can avoid damage to the superconducting coil,
It is possible to provide a superconducting magnet device including a current lead having a function of suppressing heat generation of the oxide-based superconducting conductor in the quench portion and promoting recovery of the quench.

【0019】また、バイパス回路を、バイパス電流とし
ての順方向電流を通流するパワーダイオードとすれば、
クエンチの発生をバワーダイオードがその接合面の電位
障壁により自己検知して保護動作するので、制御回路を
必要とせず、簡素な構成のバイパス回路を有する電流リ
ードを備えた超電導磁石装置を経済的に有利に提供でき
る利点が得られる
Further, if the bypass circuit is a power diode that passes a forward current as a bypass current,
Since the power diode self-detects the occurrence of quench by the potential barrier at its junction surface and performs a protection operation, a control circuit is not required, and a superconducting magnet device equipped with a current lead having a bypass circuit with a simple configuration can be economically manufactured. Advantages that can be provided advantageously

【0020】さらに、バイパス回路を、低温側リードの
異常電圧をトリガー信号として受けて導通状態となり、
低温側リードと同方向に電流を側路するスイッチング半
導体素子で構成すれば、サイリスタ,パワートランジス
タなどの電力用スイッチング素子を用いてその異常電圧
の検知レベルを調整することにより、ノイズなどで誤動
作することのない信頼性の高いバイパス回路を有する超
電導磁石装置の電流リードを提供することができる。
Further, the bypass circuit is turned on by receiving an abnormal voltage of the low-temperature side lead as a trigger signal,
If it is composed of a switching semiconductor element that bypasses the current in the same direction as the low-temperature side lead, it malfunctions due to noise etc. by adjusting the detection level of the abnormal voltage using a power switching element such as a thyristor or a power transistor. It is possible to provide a current lead of a superconducting magnet device having a highly reliable bypass circuit without any problem.

【0021】さらにまた、酸化亜鉛サージアブソーバ,
シリコンサージアブソーバなどの電圧非直線抵抗素子を
用いても、クエンチによる低温側リードの異常電圧を検
知して保護動作する簡素な構成のバイパス回路を有する
電流リードを提供することができる。
Furthermore, a zinc oxide surge absorber,
Even if a voltage non-linear resistance element such as a silicon surge absorber is used, it is possible to provide a current lead having a simple configuration of a bypass circuit that performs protection operation by detecting an abnormal voltage of a low-temperature side lead due to quench.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施例になる超電導磁石装置の電流
リードを模式化して示す構成図
FIG. 1 is a configuration diagram schematically showing a current lead of a superconducting magnet device according to an embodiment of the present invention.

【図2】この発明の異なる実施例を示す構成図FIG. 2 is a block diagram showing a different embodiment of the present invention.

【図3】この発明の他の実施例を示す構成図FIG. 3 is a configuration diagram showing another embodiment of the present invention.

【図4】超電導磁石装置の電流リードの従来構造を簡略
化して示す一部破砕断面図
FIG. 4 is a partially broken sectional view showing a simplified structure of a conventional current lead of a superconducting magnet device.

【図5】図4の要部を拡大して示す断面図FIG. 5 is an enlarged sectional view showing a main part of FIG. 4;

【符号の説明】[Explanation of symbols]

1 超電導コイル 2 真空断熱容器 3 電流リード 4 高温側リード 5 低温側リード 7 心材 8 酸化物系超電導導体 9 外管 10 電流リード 11 バイパス回路 12 パワーダイオード 21 バイパス回路 22 サイリスタ 23 駆動回路 31 バイパス回路 32 電圧非直線抵抗素子 DESCRIPTION OF SYMBOLS 1 Superconducting coil 2 Vacuum insulation container 3 Current lead 4 High temperature side lead 5 Low temperature side lead 7 Core material 8 Oxide superconducting conductor 9 Outer tube 10 Current lead 11 Bypass circuit 12 Power diode 21 Bypass circuit 22 Thyristor 23 Drive circuit 31 Bypass circuit 32 Voltage non-linear resistance element

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】真空断熱容器に収納されて極低温に保持さ
れた超電導コイルに外部電源からの励磁電流を通流する
電流リードが、良導電性金属からなる高温側リードと、
酸化物系超電導導体からなる低温側リードとの直列接続
体からなり、低温の冷媒ガスで冷却されるものにおい
て、前記酸化物系超電導導体のクエンチにより生ずる前
記低温側リードの異常電圧を検知して導通状態となるバ
イパス回路を、前記低温側リードに並列に設けたことを
特徴とする超電導磁石装置の電流リード。
A current lead for passing an exciting current from an external power supply through a superconducting coil housed in a vacuum insulated container and kept at a very low temperature; a high-temperature side lead made of a good conductive metal;
It consists of a series connection with a low-temperature side lead made of an oxide-based superconducting conductor and is cooled by a low-temperature refrigerant gas, and detects an abnormal voltage of the low-temperature side lead caused by quenching of the oxide-based superconducting conductor. A current lead for a superconducting magnet device, wherein a bypass circuit that is in a conductive state is provided in parallel with the low-temperature side lead.
【請求項2】バイパス回路が、低温側リードの異常電圧
を接合面の電位障壁により感知してバイパス電流として
の順方向電流を通流するパワーダイオードであることを
特徴とする請求項1記載の超電導磁石装置の電流リー
ド。
2. The power supply according to claim 1, wherein the bypass circuit is a power diode that senses an abnormal voltage of the low-temperature side lead by a potential barrier at the junction surface and passes a forward current as a bypass current. Current lead of superconducting magnet device.
【請求項3】バイパス回路が、低温側リードの異常電圧
をトリガー信号として導通状態となり、低温側リードと
同方向に電流を側路するスイッチング半導体素子である
ことを特徴とする請求項1記載の超電導磁石装置の電流
リード。
3. The switching circuit according to claim 1, wherein the bypass circuit is a switching semiconductor element which is rendered conductive by an abnormal voltage of the low-temperature side lead as a trigger signal and bypasses the current in the same direction as the low-temperature side lead. Current lead of superconducting magnet device.
【請求項4】バイパス回路が電圧非直線抵抗素子である
ことを特徴とする請求項1記載の超電導磁石装置の電流
リード。
4. A current lead for a superconducting magnet device according to claim 1, wherein said bypass circuit is a voltage non-linear resistance element.
JP3033269A 1991-02-28 1991-02-28 Current lead of superconducting magnet device Expired - Lifetime JP2853347B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3033269A JP2853347B2 (en) 1991-02-28 1991-02-28 Current lead of superconducting magnet device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3033269A JP2853347B2 (en) 1991-02-28 1991-02-28 Current lead of superconducting magnet device

Publications (2)

Publication Number Publication Date
JPH04273109A JPH04273109A (en) 1992-09-29
JP2853347B2 true JP2853347B2 (en) 1999-02-03

Family

ID=12381808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3033269A Expired - Lifetime JP2853347B2 (en) 1991-02-28 1991-02-28 Current lead of superconducting magnet device

Country Status (1)

Country Link
JP (1) JP2853347B2 (en)

Also Published As

Publication number Publication date
JPH04273109A (en) 1992-09-29

Similar Documents

Publication Publication Date Title
JPH04359626A (en) Current limiter
KR20050031750A (en) Resistive type superconducting fault current limiter
JPH0576162B2 (en)
US20150255200A1 (en) Fast Superconducting Switch for Superconducting Power Devices
JP3032610B2 (en) Superconducting device current leads
JP2853347B2 (en) Current lead of superconducting magnet device
JP3569997B2 (en) Current leads for superconducting devices
JP3358958B2 (en) Thermal control type permanent current switch
JP4959555B2 (en) Current limiting device with superconducting switching element
JPH06231952A (en) Current lead of superconducting magnet device
JP7110035B2 (en) Superconducting magnet device
JP3284656B2 (en) Current lead using oxide superconductor
JP3231837B2 (en) Superconducting current limiting device
WO2024048179A1 (en) Superconducting magnet device and nuclear magnetic resonance diagnosis device
JP2889485B2 (en) Superconducting wire connection method and device, and superconducting coil device
JPH08130112A (en) Superconducting magnet device
JP5749126B2 (en) Conduction cooled superconducting magnet system
JP3125474B2 (en) Current lead using oxide superconductor
JPH09233692A (en) Superconuctive current limiter
JPH1027721A (en) Superconductive coil
JP2023156649A (en) superconducting device
JPH10326915A (en) Connection structure of superconductive wire
JPH0584652B2 (en)
JP3218649B2 (en) Current leads for superconducting devices
JP2001155917A (en) Superconducting magnet, superconducting magnet coil excitation method and refrigerant flow rate control device