JP2850976B2 - Granular carrier for treating wastewater using tires, method for producing the same, and wastewater treatment apparatus using the granular carrier - Google Patents

Granular carrier for treating wastewater using tires, method for producing the same, and wastewater treatment apparatus using the granular carrier

Info

Publication number
JP2850976B2
JP2850976B2 JP28447296A JP28447296A JP2850976B2 JP 2850976 B2 JP2850976 B2 JP 2850976B2 JP 28447296 A JP28447296 A JP 28447296A JP 28447296 A JP28447296 A JP 28447296A JP 2850976 B2 JP2850976 B2 JP 2850976B2
Authority
JP
Japan
Prior art keywords
pipe
carrier
wastewater
outer cylinder
granular carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28447296A
Other languages
Japanese (ja)
Other versions
JPH09164392A (en
Inventor
キム ハイ−スー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SAMU KUWAN AKUA KURIA Inc
Original Assignee
SAMU KUWAN AKUA KURIA Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SAMU KUWAN AKUA KURIA Inc filed Critical SAMU KUWAN AKUA KURIA Inc
Publication of JPH09164392A publication Critical patent/JPH09164392A/en
Application granted granted Critical
Publication of JP2850976B2 publication Critical patent/JP2850976B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/08Aerobic processes using moving contact bodies
    • C02F3/085Fluidized beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/2803Sorbents comprising a binder, e.g. for forming aggregated, agglomerated or granulated products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/288Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/10Packings; Fillings; Grids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L19/00Compositions of rubbers not provided for in groups C08L7/00 - C08L17/00
    • C08L19/003Precrosslinked rubber; Scrap rubber; Used vulcanised rubber
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0846Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
    • C08L23/0853Vinylacetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0846Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
    • C08L23/0869Acids or derivatives thereof
    • C08L23/0876Neutralised polymers, i.e. ionomers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は廃タイヤを用いた生
物処理用顆粒担体とその製造方法及びこの顆粒担体を用
いて汚廃水を処理するための装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a granular carrier for biological treatment using waste tires, a method for producing the same, and an apparatus for treating wastewater using the granular carrier.

【0002】[0002]

【従来の技術】一般に、実用化されている生物処理用微
生物固定化担体の主要要求特性としては、顆粒担体強度
及び無機質粉末の被着強度が大きいことが要求される。
従来より比表面積の小さいものや被覆された顆粒状担体
が用いられている。
2. Description of the Related Art In general, as a major required characteristic of a microorganism-immobilized carrier for biological treatment which is put into practical use, it is required that the strength of a granular carrier and the adhesion strength of an inorganic powder be large.
Conventionally, those having a smaller specific surface area or coated granular carriers have been used.

【0003】しかし、従来の比表面積が小さいものは、
付着微生物量が小さいという問題がある。また、比表面
積が大きいものは、長期間曝気時、被覆無機質粉末が脱
離され、特に、特定産業廃水の適用時、廃水温度及び機
械的衝撃により形態が磨耗されて、顆粒担体の比表面積
を十分に活用することができなく、製造行程上担体の粒
度管理が難しく、製造時、反応器の温度及び水分の制御
技術が随伴される欠点がある。
[0003] However, the conventional one having a small specific surface area is as follows.
There is a problem that the amount of attached microorganisms is small. In addition, for those having a large specific surface area, the coated inorganic powder is desorbed during long-term aeration, and particularly when a specific industrial wastewater is applied, the form is worn by the wastewater temperature and mechanical impact, and the specific surface area of the granular carrier is reduced. It cannot be fully utilized, it is difficult to control the particle size of the carrier during the production process, and there is a drawback in that a technology for controlling the temperature and moisture of the reactor is required during production.

【0004】一方、従来より高濃度難分解性汚廃水を処
理するための方法として広く使用される方法は活性スラ
ッジ法を用いることである。この方法は汚廃水内に溶存
されている汚染物質をただ曝気槽のスラッジ微生物によ
り分解して処理するが、この曝器槽内のMLSS(Mixed
Liquid Suspended Solid)が2,000乃至3,000m
g/L程度であるので処理時間が長くかかり、処理時間
の延長により空気消耗量が増えて空気を多量に必要とす
る。従って人為的に空気を吹き入れる曝気装置を大きく
しなければならないという問題がある。既存の活性スラ
ッジ法では多量の空気を安く得るため、費用が高くかか
るコンプレッサーよりはルートブローワ(Roots Blower)
が使用される。この時のルートブローワの圧力は0.5
乃至0.6 kg/Cm2であり、圧力の限界のため、水
槽の高さが大略4乃至6m程度に制限される。このよう
な一般の条件下では、供給される酸素の3乃至7%のみ
が水中に溶解されるため、多量の酸素供給のためには多
量の空気を供給しなければならないという問題がある。
On the other hand, a method which has been widely used as a conventional method for treating high-concentration hardly decomposable wastewater is to use an activated sludge method. In this method, pollutants dissolved in wastewater are simply decomposed and treated by sludge microorganisms in an aeration tank, and the MLSS (Mixed
Liquid Suspended Solid) is 2,000-3,000m
Since it is about g / L, the processing time is long, and the prolonged processing time increases the amount of air consumption and requires a large amount of air. Therefore, there is a problem that the size of the aeration device for blowing air artificially must be increased. Roots blowers are more expensive than expensive compressors because the existing activated sludge process produces a lot of air at a lower cost.
Is used. At this time, the pressure of the root blower is 0.5
To 0.6 kg / Cm 2 , and the height of the water tank is limited to about 4 to 6 m due to the pressure limit. Under such general conditions, since only 3 to 7% of the supplied oxygen is dissolved in water, there is a problem that a large amount of air must be supplied to supply a large amount of oxygen.

【0005】[0005]

【発明が解決しようとする課題】このように、従来に
は、汚廃水を処理するための担体の粒度管理が難しく、
製造上の難点があり、さらに汚廃水を処理するための装
置にも多くの空気が必要であり、付帯費用が上昇する等
の問題点がある。
As described above, conventionally, it is difficult to control the particle size of a carrier for treating wastewater,
There is a problem in manufacturing, and furthermore, a large amount of air is required for a device for treating sewage wastewater, and there are problems such as an increase in incidental costs.

【0006】本発明は前記のような従来の問題点を解消
するためのものである。
The present invention is to solve the above-mentioned conventional problems.

【0007】本発明の第1目的は、機械的耐磨耗性及び
耐薬品性が強く、顆粒担体の強度及び無機質粉末の被着
強度が増大され、担体の比表面積を大きくし担体表面に
多くの微生物を固定させて汚廃水の高速処理が可能な顆
粒担体を提供することにある。 また、本発明の第2目
的は、顆粒担体を製造することにおいて、原料の配合調
節が容易であり、担体の大きさ及び比重の調節が容易で
あって製品の用途別要求事項の調節が容易であり、生産
収率を大幅向上させ得る顆粒担体の製造方法を提供する
ことにある。
[0007] A first object of the present invention is to enhance the mechanical abrasion resistance and chemical resistance, to increase the strength of the granular carrier and the adhesion strength of the inorganic powder, to increase the specific surface area of the carrier, and to increase the surface area of the carrier. It is an object of the present invention to provide a granular carrier capable of immobilizing microorganisms and enabling high-speed treatment of wastewater. Further, a second object of the present invention is to easily adjust the blending of the raw materials, easily adjust the size and specific gravity of the carrier, and easily adjust the requirements for each use of the product in manufacturing the granular carrier. It is another object of the present invention to provide a method for producing a granular carrier capable of greatly improving the production yield.

【0008】さらに本発明の第3目的は、前記のような
顆粒担体を用いて汚廃水を処理し得る装置を具現するこ
とで、処理槽の内部の顆粒担体を間欠的に交替しなく、
一度の投入により循環式で汚廃水をより迅速に処理する
とともに処理効率を増大させ得るようにすることであ
る。
Further, a third object of the present invention is to realize an apparatus capable of treating wastewater using the above-mentioned granular carrier, so that the granular carrier inside the treatment tank is not intermittently replaced.
The object of the present invention is to make it possible to treat wastewater more rapidly and to increase the treatment efficiency in a circulation manner by a single charge.

【0009】[0009]

【課題を解決するための手段】前記第1目的を達成する
ための本発明は、機械的耐磨耗性及び耐薬品性が強いタ
イヤ粉末と、結合体として、親水性があり結合力が強く
化学的に安定し高温にも耐えられるエチレンビニールア
セテート(Ethylene Vinyl Acetate、EVAと略称され
る)又はその誘導体と、活性炭又はこれに準ずる無機質
粉末とから構成される汚廃水処理用顆粒担体を提供する
ものである。
SUMMARY OF THE INVENTION In order to achieve the first object, the present invention provides a tire powder having a high mechanical wear resistance and a high chemical resistance, and a hydrophilic and strong bonding force as a combined body. Provided is a granular carrier for treating wastewater composed of ethylene vinyl acetate (abbreviated as EVA) or a derivative thereof, which is chemically stable and can withstand high temperatures, and activated carbon or an inorganic powder equivalent thereto. Things.

【0010】また、前記第2目的を達成するための本発
明は、タイヤ粉末と、EVA又はその誘導体とを100
重量部対30〜50重量部の比率で混合、攪拌した後、
温度を100〜250℃にした状態で、混合体中のEV
A又はその誘導体を溶解させて粉末タイヤと活性炭又は
これに準ずる無機質粉末を結合させた後、圧出機で圧出
し、切断し、担体の表面に粘着された状態で残留するE
VA又はその誘導体に粉末を被覆させることよりなるタ
イヤを用いた汚廃水処理用顆粒担体の製造方法を提供す
るものである。
In order to achieve the second object, the present invention provides a method for manufacturing a tire, comprising:
After mixing and stirring at a ratio of 30 to 50 parts by weight to parts by weight,
The EV in the mixture at a temperature of 100 to 250 ° C
A or a derivative thereof is dissolved to bind the powdered tire to activated carbon or an inorganic powder equivalent thereto, and then extruded by an extruder, cut, and left in a state of being adhered to the surface of the carrier.
An object of the present invention is to provide a method for producing a granular carrier for treating wastewater using a tire, which is obtained by coating VA or a derivative thereof with a powder.

【0011】さらに前記第2目的を達成するための他の
本発明は、タイヤ粉末100重量部に対してEVA又は
その誘導体30〜50重量部を混合、攪拌して均質状態
に維持した後、100〜250℃の状態で、混合体中の
EVA又はその誘導体を溶融させて粉末タイヤを結合し
た後、圧出機で圧出し、圧出時、自体保有熱により表面
に溶解されていたEVA又はその誘導体を用いて表面に
活性炭又はこれに準ずる無機質粉末を付着させ、冷却
後、一定大きさに切断することよりなるタイヤを用いた
汚廃水処理用顆粒担体の製造方法を提供するものであ
る。
Another object of the present invention to achieve the second object is to mix 30 to 50 parts by weight of EVA or a derivative thereof with 100 parts by weight of tire powder, stir and maintain 100% by weight. At a temperature of ~ 250 ° C, the EVA or its derivative in the mixture is melted and the powdered tire is combined, and then extruded with an extruder. At the time of extruding, EVA or its EVA which has been melted on the surface by its own retained heat An object of the present invention is to provide a method for producing a granular carrier for wastewater treatment using a tire, which comprises attaching activated carbon or an equivalent inorganic powder to the surface thereof using a derivative, cooling, and cutting the same into a certain size.

【0012】これら本発明によれば、廃棄物である廃タ
イヤを用いて汚廃水を高速処理することができ、担体は
圧出部の内部の圧力により収縮されたゴム部分が外部へ
出て膨脹されて不定形になることにより担体の比表面積
を2倍以上とすることができる。従って表面に活性炭又
はそれに類似した無機質微粉末を担体表面に付着させる
ことで担体表面に多くの微生物を固定化して汚廃水の高
速処理が可能にし、製造行程上原料の配合調節が容易で
あり、特に圧出部のノズル大きさ及び切断速度の調節に
より担体の大きさ及び比重の調節が容易であって製品の
用途別要求事項の調節が簡便であり、生産収率を大幅向
上させることができる。
According to the present invention, waste water can be treated at high speed using waste tires, and the rubber portion contracted by the internal pressure of the extruding portion comes out and expands. The specific surface area of the carrier can be made to be twice or more as a result of being made amorphous. Therefore, by adhering activated carbon or a similar inorganic fine powder to the surface of the carrier, the surface of the carrier can be used to immobilize a large number of microorganisms, thereby enabling high-speed treatment of wastewater. In particular, it is easy to adjust the size and specific gravity of the carrier by adjusting the nozzle size and the cutting speed of the extruded part, it is easy to adjust the requirements for each product use, and the production yield can be greatly improved. .

【0013】また、前記第3目的を達成するための汚廃
水処理装置は、外筒と、この外筒の内部に備えれた内筒
と、外筒の上部に設置されて汚廃水を供給する供給部
と、前記内筒の上部に設置され、顆粒担体に付着された
気泡を分離して下向誘導する担体分離部と、この担体分
離部の上部一側に備えられ、処理された汚廃水を排出さ
せる排出管と、内筒の外側に一定間隔を置きそれぞれ設
置される内筒散気管及び外筒散気管と、前記内筒の下部
に設置され、圧縮された空気が投入されるようにする噴
射管と、この噴射管の内側に汚廃水と顆粒担体の誘導方
向を誘導し得るようにする傾斜管とから構成された、顆
粒担体を用いる汚廃水処理装置を提供するものである。
Further, the wastewater treatment apparatus for achieving the third object is an outer cylinder, an inner cylinder provided inside the outer cylinder, and a wastewater treatment apparatus installed at an upper portion of the outer cylinder to supply the wastewater. A supply unit, a carrier separation unit installed at the upper part of the inner cylinder and separating and guiding bubbles attached to the granular carrier, and a treated wastewater provided at one upper side of the carrier separation unit and treated And an inner pipe diffuser pipe and an outer pipe diffuser pipe which are respectively installed at regular intervals outside the inner pipe, and are installed at a lower portion of the inner pipe so that compressed air is introduced. It is an object of the present invention to provide a wastewater treatment apparatus using a granular carrier, comprising: an injection pipe that performs the induction of the wastewater and the granular carrier inside the injection pipe.

【0014】この発明によれば、顆粒担体を投入した汚
廃水処理装置により迅速な汚廃水の処理が可能であり、
処理効率が向上される。
According to the present invention, it is possible to quickly treat wastewater by the wastewater treatment apparatus into which the granular carrier is charged.
Processing efficiency is improved.

【0015】[0015]

【発明の実施の形態】以下、本発明の実施形態を説明す
る。
Embodiments of the present invention will be described below.

【0016】本発明の顆粒担体はタイヤ粉末と、活性炭
又はこれに準ずる無機質の微粉末とを、EVA又はその
誘導体で結合させたものである。
The granular carrier of the present invention is obtained by binding tire powder to activated carbon or an inorganic fine powder equivalent thereto with EVA or a derivative thereof.

【0017】タイヤ粉末は機械的耐磨耗性及び耐薬品性
に優れるので、これを用いることにより顆粒担体の強度
が向上する。タイヤ粉末の粒径は特には限定されない
が、粒径0.2〜3mmのタイヤ粉末が好適に用いられ
る。タイヤは廃タイヤを用いることができ、地球環境保
護の点から好ましい。
Since the tire powder is excellent in mechanical abrasion resistance and chemical resistance, the use of the powder improves the strength of the granular carrier. The particle size of the tire powder is not particularly limited, but tire powder having a particle size of 0.2 to 3 mm is preferably used. As the tire, a waste tire can be used, which is preferable from the viewpoint of global environmental protection.

【0018】結合体としては親水性があり結合力が強く
化学的に安定し高温にも耐えられる樹脂が用いられる。
このような樹脂としてEVA及びEVAに類似し結合力
及び親水性のある樹脂が挙げられる。EVAに類似し結
合力及び親水性のある樹脂としてはEVAの誘導体が挙
げられる。これらの樹脂を用いることにより、タイヤ粉
末同士又はタイヤ粉末と無機質微粉末の結合が強くな
る。EVAの配合量は、タイヤ粉末100重量部に対し
て30〜50重量部が好ましい。
As the binder, a resin which is hydrophilic, has a strong binding force, is chemically stable, and can withstand high temperatures is used.
Examples of such a resin include EVA and a resin similar to EVA and having a binding force and a hydrophilic property. Examples of the resin having a binding force and a hydrophilic property similar to EVA include a derivative of EVA. By using these resins, the bonding between the tire powders or between the tire powders and the inorganic fine powders becomes stronger. The compounding amount of EVA is preferably 30 to 50 parts by weight based on 100 parts by weight of the tire powder.

【0019】活性炭に準ずる無機質微粉末としてはゼオ
ライト、無煙炭(anthrocite)等が挙げられる。無機質
微粉末の配合量(後に被覆させる場合の被覆量)は、タ
イヤ粉末100重量部に対して5〜15重量部が好まし
い。
Examples of the inorganic fine powder similar to activated carbon include zeolite and anthrocite. The compounding amount of the inorganic fine powder (the coating amount when coated later) is preferably 5 to 15 parts by weight based on 100 parts by weight of the tire powder.

【0020】次に本発明の顆粒担体の製造方法を説明す
る。まずタイヤ粉末と、結合体である樹脂とをミキサー
で攪拌して組成を一定に維持した後、高温下で混合体中
の樹脂を溶解させて粉末タイヤを結合させる。次にこの
混合体を圧出機で圧出し、一定大きさに切断し、この切
断された担体の保有熱により、表面に溶解されていた樹
脂を用いて活性炭又はこれに準ずる無機質の微粉末を付
着させる。なお、活性炭又はこれに準ずる無機質の微粉
末は圧出前にタイヤ粉末と結合させてもよい。
Next, the method for producing the granular carrier of the present invention will be described. First, the tire powder and the resin as a combined body are stirred by a mixer to maintain a constant composition, and then the resin in the mixture is dissolved at a high temperature to bond the powdered tire. Next, the mixture is extruded with an extruder, cut into a predetermined size, and the retained heat of the cut carrier is used to form activated carbon or an inorganic fine powder equivalent thereto using the resin dissolved on the surface. Attach. Activated carbon or a similar inorganic fine powder may be combined with tire powder before being extruded.

【0021】このように圧出により担体を製造すれば、
圧出部の内部の圧力により収縮されたゴム部分が外部へ
出て膨脹されて不定形になるため、担体の比表面積を2
倍以上とすることができる。従ってその表面に活性炭又
はそれに類似した無機質微粉末を多く付着させることで
担体表面に多くの微生物を固定化することができ、汚廃
水の高速処理が可能となり、製造行程上原料の配合調節
が容易となる。また、圧出によって担体を製造すれば、
圧出部のノズル大きさ及び切断速度の調節により担体の
大きさ及び比重の調節が容易であって製品の用途別要求
事項の調節が簡便であり、生産収率を大幅向上させるこ
とができる。
When the carrier is manufactured by extrusion as described above,
Since the rubber portion contracted by the pressure inside the extruded portion is expanded to the outside and becomes indefinite, the specific surface area of the carrier is reduced to 2
It can be more than double. Therefore, many microorganisms can be immobilized on the carrier surface by attaching a large amount of activated carbon or a similar inorganic fine powder to the surface thereof, and high-speed treatment of wastewater becomes possible, and the blending of raw materials can be easily adjusted in the production process. Becomes Also, if the carrier is manufactured by extrusion,
The size and specific gravity of the carrier can be easily adjusted by adjusting the size of the nozzle and the cutting speed of the extruding section, so that the requirements for each use of the product can be easily adjusted, and the production yield can be greatly improved.

【0022】次に、前記のような顆粒担体を用いて汚廃
水を効果的に処理するための装置を図1から図3を用い
て説明する。この装置は、図1に示すように、外筒10
と、この外筒10の内部に備えれた内筒20と、外筒1
0の上部に設置されて汚廃水を供給する供給部30と、
前記内筒20の上部に設置され、顆粒担体Cに付着され
た気泡Bを分離して下向誘導する担体分離部40と、こ
の担体分離部40の上部一側に備えられ、処理された汚
廃水を排出させる排出管50と、内筒20の外側に一定
間隔を置きそれぞれ設置される内筒散気管60及び外筒
散気管70と、前記内筒20の下部に設置され、圧縮さ
れた空気が投入されるようにする噴射管80と、担体分
離部40の上部に位置し、一定水位を越えるとオーバー
フローされるようにするオーバーフロー管90と、この
オーバーフロー管90から溢れる汚廃水を受けて一側方
向に誘導する誘導管100と、前記噴射管80の内側に
汚廃水と顆粒担体Cの誘導方向を誘導し得るようにする
傾斜管110とから構成されている。
Next, an apparatus for effectively treating wastewater using the above granular carrier will be described with reference to FIGS. This device is, as shown in FIG.
And an inner cylinder 20 provided inside the outer cylinder 10 and an outer cylinder 1
A supply unit 30 installed at the upper part of the feed unit 0 to supply wastewater;
A carrier separating unit 40 installed at the upper part of the inner cylinder 20 for separating and guiding the bubbles B attached to the granular carrier C downward; A discharge pipe 50 for discharging waste water, an inner pipe diffuser 60 and an outer pipe diffuser 70 which are respectively provided at predetermined intervals outside the inner pipe 20, and compressed air which is provided below the inner pipe 20 and is provided below the inner pipe 20. An injection pipe 80 through which the wastewater is supplied, an overflow pipe 90 located above the carrier separating section 40 and overflowing when the water level exceeds a certain level, and a wastewater overflowing from the overflow pipe 90 receiving the wastewater. The guide tube 100 includes a guide tube 100 that guides the wastewater in the lateral direction and an inclined tube 110 that guides the guide direction of the wastewater and the granular carrier C inside the spray tube 80.

【0023】前記外筒10は円筒形をなし、実際高さが
10〜15m程度に製作可能であって処理効率がさらに
向上され、エアリフティング(air lifting)作用により
上昇する汚廃水/顆粒担体が再度循環されるよう、外筒
10の上部壁の所定位置にはガイド部材11が突出され
ている。
The outer cylinder 10 has a cylindrical shape, and can be manufactured to have an actual height of about 10 to 15 m so that the treatment efficiency is further improved, and the wastewater / granule carrier which rises by air lifting action is formed. A guide member 11 protrudes from a predetermined position on the upper wall of the outer cylinder 10 so as to be circulated again.

【0024】前記内筒20は外筒10との間に一定空間
部21を置いて設置され、内筒散気管60及び外筒散気
管70から供給される空気と共に汚廃水を下向移動させ
た後、前記空間部21を介してリフティングさせるよう
になっている。
The inner cylinder 20 is installed with a fixed space 21 between the inner cylinder 20 and the outer cylinder 10 and moves the waste water downward together with the air supplied from the inner cylinder diffuser 60 and the outer cylinder diffuser 70. After that, lifting is performed through the space 21.

【0025】また、前記供給部30は外筒10の最上端
に設置され、この供給部30から外筒10の内部に汚廃
水が供給されるよう、所定長さを有する流入管31が担
体分離部40を通過して内筒20の内部まで延長設置さ
れ、この流入管31を介して汚廃水が供給されて所定水
位を表すものである。
The supply section 30 is provided at the uppermost end of the outer cylinder 10 and an inflow pipe 31 having a predetermined length is provided so that waste water is supplied from the supply section 30 into the outer cylinder 10. It extends through the part 40 to the inside of the inner cylinder 20, and is supplied with wastewater via the inflow pipe 31 to indicate a predetermined water level.

【0026】一方、前記担体分離部40は漏斗形を成す
もので、傾斜面41が形成されており、前記オーバーフ
ロー管90の一側には誘導管100内に処理された汚廃
水がオーバーフローされて供給されるようにする排出孔
91が形成されており、誘導管100は排出管50に連
通されるように設置されている。
On the other hand, the carrier separating section 40 has a funnel shape, and has an inclined surface 41. On one side of the overflow pipe 90, the wastewater treated in the guide pipe 100 overflows. A discharge hole 91 to be supplied is formed, and the guide tube 100 is installed so as to communicate with the discharge tube 50.

【0027】また、前記内筒散気管60と外筒散気管7
0は、図3に示すように、外筒10を貫通して設置さ
れ、内筒20の内外周に一定間隔を置いてそれぞれ内筒
用環状管61及び外筒用環状管71が環設され、この
内、外筒用環状管61、71には複数の排気孔62、7
2が形成されて、流入された空気が噴射されるようにな
っている。前記排気孔62、72の形成位置は内筒用環
状管61及び外筒用環状管71の上部又は下部に形成し
てもかまわない。
The inner diffuser 60 and the outer diffuser 7 are also provided.
As shown in FIG. 3, 0 is installed through the outer cylinder 10, and an inner cylinder annular pipe 61 and an outer cylinder annular pipe 71 are arranged around the inner and outer circumferences of the inner cylinder 20 at regular intervals. Of these, a plurality of exhaust holes 62, 7 are formed in the annular pipes 61, 71 for the outer cylinder.
2 is formed so that the inflowing air is injected. The positions where the exhaust holes 62 and 72 are formed may be formed above or below the annular pipe 61 for the inner cylinder and the annular pipe 71 for the outer cylinder.

【0028】一方、前記内筒20の下部には噴射管80
が設置され、この噴射管80は圧縮機(図示せず)からの
圧縮空気が間欠的に流入されて外筒10の内側下部から
上部に噴射されて、沈澱される汚染物質と顆粒担体を上
昇させるようになっている。前記噴射管80の内側には
スラッジ及び顆粒担体の誘導方向を誘導し得るようにす
る傾斜管110が備えられ、この傾斜管110は上部が
円錐形に形成されて、スラッジと顆粒担体の混合液の誘
導方向を自然に下方から上方に誘導し、液状を外筒に均
等に供給し得るようにするものである。
On the other hand, an injection pipe 80 is provided below the inner cylinder 20.
The compressed air from the compressor (not shown) is intermittently introduced into the injection pipe 80 and injected from the lower inside to the upper part of the outer cylinder 10 to raise the contaminants and the granular carrier to be precipitated. It is made to let. An inclined pipe 110 is provided inside the injection pipe 80 so as to guide the guiding direction of the sludge and the granular carrier. The inclined pipe 110 has an upper portion formed in a conical shape, and a mixed liquid of the sludge and the granular carrier is provided. Is naturally guided upward from below, so that the liquid can be evenly supplied to the outer cylinder.

【0029】また、前記噴射管80の上部には砂利層1
20が備えられ、この砂利層120は噴射管80内に各
種汚染物質が流入されないようにし、発生された気泡B
を細かく壊す役目を果たすものである。従って、噴射管
80を介して圧縮空気が供給される時、各種汚染物質及
び顆粒担体の浮遊がより円滑になる。
Further, a gravel layer 1 is provided above the injection pipe 80.
The gravel layer 120 prevents various contaminants from flowing into the injection pipe 80 and generates the generated air bubbles B.
It plays the role of breaking down the details. Therefore, when the compressed air is supplied through the injection pipe 80, the floating of various contaminants and the granular carrier becomes smoother.

【0030】このように構成された本発明による汚廃水
処理装置は、汚廃水が供給部30を介して供給され、外
筒10の内部に直立状態で貫通、設置された流入管31
を介して内筒20の内部を通過し、上下部が開口された
内筒20の下部を通り、内筒20と外筒10間の空間部
21を介して再度上昇するようになっている。ところ
で、内筒20には内筒散気管60が設置されており、こ
の内筒散気管60の延長部には内筒20の内周面に沿っ
て内筒用環状管61が備えられているため、この環状管
61の排気孔62を介して空気が排気されてスラッジを
浮遊させる。また、外筒散気管70の延長部には内筒2
0の外周面に沿って外筒用環状管71が備えられ、この
環状管71を介して空気が流入され、この空気は環状管
71に形成された排気は環状管71に形成された排気孔
72を介して排気されて、外筒10内の汚廃水を空気の
浮力により上方に移動させる。ところで、内筒20の断
面積は外筒10の断面積より小さく、これにより空間部
21の面積が内筒20の断面積より相対的に大きいた
め、1次に流入された汚廃水の流動速度が空間部21を
通る流動速度の数倍(大略4〜5倍)に達して、空気の浮
上速度が速くなる。従って、内筒用環状管61を介して
供給される空気は下向移動して下端部を通過した後、再
度上昇する作用をし、これにより汚廃水の再循環が容易
になる。
In the wastewater treatment apparatus according to the present invention, the wastewater is supplied through the supply part 30 and penetrates through the outer cylinder 10 in an upright state.
, Passes through the lower part of the inner cylinder 20 whose upper and lower parts are opened, and rises again via the space 21 between the inner cylinder 20 and the outer cylinder 10. The inner cylinder 20 is provided with an inner cylinder air diffuser 60, and an extension of the inner cylinder air diffuser 60 is provided with an inner cylinder annular pipe 61 along the inner peripheral surface of the inner cylinder 20. Therefore, the air is exhausted through the exhaust hole 62 of the annular pipe 61 to float the sludge. The inner cylinder 2 is provided at the extension of the outer cylinder air diffuser 70.
An annular pipe 71 for the outer cylinder is provided along the outer peripheral surface of the outer pipe 0, and air flows in through the annular pipe 71, and the air is exhausted in the annular pipe 71 and exhausted in the annular pipe 71. The exhaust gas is exhausted through 72, and the wastewater in the outer cylinder 10 is moved upward by the buoyancy of air. By the way, since the cross-sectional area of the inner cylinder 20 is smaller than the cross-sectional area of the outer cylinder 10 and the area of the space 21 is relatively larger than the cross-sectional area of the inner cylinder 20, Reaches several times (approximately 4 to 5 times) the flow velocity of the air passing through the space 21, and the air floating speed increases. Therefore, the air supplied through the inner cylinder annular pipe 61 moves downward, passes through the lower end portion, and then rises again, thereby facilitating the recirculation of the wastewater.

【0031】ここで、前記空気は水圧により下がりなが
らその容積が減少し、上昇しながら容積が増加するの
で、エアリフトの役割が増大される。また、水圧を下端
部では約1〜1.5kg/cm2を受けることになって、
空気伝達効果が相対的に大きくなる。この際に、前記外
筒10の内部には、予め本発明による顆粒担体Cが投入
されているので、汚廃水と共に流動しながら廃水中の汚
染物質を顆粒担体に付着された微生物が処理する。従っ
て、外筒10の内部には顆粒担体Cが浮遊する状態で存
在し、汚廃水の再循環流動により顆粒担体Cも流動しな
がら汚廃水を処理して浄化させることになる。
Here, the volume of the air decreases while decreasing due to the water pressure, and the volume increases while increasing the air, so that the role of the air lift is increased. In addition, the water pressure will receive about 1 to 1.5 kg / cm 2 at the lower end,
The air transmission effect becomes relatively large. At this time, since the granular carrier C according to the present invention has been charged into the outer cylinder 10 in advance, the microorganisms attached to the granular carrier treat the contaminants in the wastewater while flowing together with the wastewater. Therefore, the granular carrier C exists in a floating state inside the outer cylinder 10, and the wastewater is treated and purified while the granular carrier C also flows by the recirculation flow of the wastewater.

【0032】この過程で、外筒10の内部に空気が噴出
されて気泡Bが発生され、この気泡Bは上昇しながら気
泡B同士合体されてより大きく形成され、水面に接面し
て破れることになる。ところで、汚廃水を処理するため
の顆粒担体Cにも微細な気泡Bが付着され、この気泡B
が付着された顆粒担体Cは浮遊しながら上昇することに
なる。顆粒担体Cは上昇過程で、担体分離部40の傾斜
面41により外筒10の下部から上部にいくほどに空間
面積が小さくなるので、顆粒担体C間の衝突が激しくな
って、顆粒担体Cに付いていた気泡Bが破れながら顆粒
担体Cから分離されると同時に振動が発生することにな
る。これにより、浮遊している小気泡Bは振動を受けて
破れることになる。この状態で、本発明による担体分離
部40の傾斜面41に沿って上昇しながら顆粒担体Cと
気泡Bが分離され、気泡Bから分離された顆粒担体Cは
担体分離部40の傾斜面41の内側面に沿って下向誘導
されて内筒20の内部に吸い込まれる。
In this process, air is jetted into the outer cylinder 10 to generate air bubbles B. The air bubbles B are combined with the air bubbles B while rising, and are formed larger and come into contact with the water surface and break. become. By the way, fine bubbles B are also attached to the granular carrier C for treating the wastewater, and the bubbles B
The granular carrier C to which the particles are attached rises while floating. In the ascending process, the granular carrier C becomes smaller in space from the lower part to the upper part of the outer cylinder 10 due to the inclined surface 41 of the carrier separating part 40, so that the collision between the granular carriers C becomes severe, and the granular carrier C At the same time, the attached bubbles B are separated from the granular carrier C while being broken, and vibration is generated at the same time. Thereby, the floating small bubbles B are broken by the vibration. In this state, the granular carrier C and the bubble B are separated while rising along the inclined surface 41 of the carrier separating unit 40 according to the present invention, and the granular carrier C separated from the bubble B is formed on the inclined surface 41 of the carrier separating unit 40. It is guided downward along the inner surface and is sucked into the inner cylinder 20.

【0033】このような作用を繰り返すにつれて、顆粒
担体Cに付着された微生物が各種汚水を分解しながら生
成、発育されて顆粒担体Bに付着されて大きくなり、こ
の状態で、流動する顆粒担体Cが互いに衝突しながらカ
ッティングされ、カッティングされた顆粒担体Cは担体
分離部40の傾斜面41に拾って下向移動して一定大き
さの顆粒担体Cとして維持し得る。また、分離されたス
ラッジは軽いため、処理された水と共にオーバーフロー
管90を介して誘導管100を経由して排出管50の外
に排出される。このように分離された汚廃水を別の沈澱
槽(図示せず)に貯蔵した後、一定時間放置して置くと、
分解されたスラッジは沈澱され、これにより浄化された
水が形成されることになる。
As the above action is repeated, the microorganisms attached to the granular carrier C are generated and developed while decomposing various sewage, attached to the granular carrier B, and become larger. Are cut while colliding with each other, and the cut granular carrier C can be picked up by the inclined surface 41 of the carrier separating section 40 and moved downward to maintain the granular carrier C of a certain size. Further, since the separated sludge is light, it is discharged to the outside of the discharge pipe 50 through the overflow pipe 90 and the guide pipe 100 together with the treated water. After storing the separated wastewater in another sedimentation tank (not shown), and leaving it for a certain period of time,
The decomposed sludge is settled, thereby forming purified water.

【0034】一方、前記外筒10の下部に配置された噴
射管80は間欠的に圧縮空気を流入させて、外筒10の
下部に堆積しようとする顆粒担体を上方に浮上させる。
この際に、所定高さ(10〜20cm)の砂利層120が
形成されているため、汚染物質及び顆粒担体の浮上が容
易であり、噴射される圧縮空気は砂利層120と衝突し
て小気泡Bになるので、酸素溶存率が向上される。ま
た、汚染物質及び顆粒担体が外筒10の下端にすぐ堆積
されないので、噴射管80の噴射孔が支える現象を防止
し得るものである。
On the other hand, the injection pipe 80 arranged at the lower part of the outer cylinder 10 allows the compressed air to flow intermittently to float the granular carrier to be deposited at the lower part of the outer cylinder 10 upward.
At this time, since the gravel layer 120 having a predetermined height (10 to 20 cm) is formed, the floating of the contaminants and the granular carrier is easy, and the compressed air injected collides with the gravel layer 120 to cause small bubbles. Since it becomes B, the oxygen dissolution rate is improved. In addition, since the contaminants and the granular carrier are not immediately deposited on the lower end of the outer cylinder 10, the phenomenon that the injection holes of the injection pipe 80 are supported can be prevented.

【0035】[0035]

【実施例】以下、実施例により本発明を説明する。The present invention will be described below with reference to examples.

【0036】実験例1 タイヤ粉末(粒度0.2〜3mm)100重量部と、EV
A30重量部と、200メッシュ微粉末活性炭10重量
部とをミキサーを用いてよく混合した後、170℃に加
熱してEVAを全く溶かして圧出機に引き込んだ。圧出
機の出口を介して圧出される担体を一定大きさに切断
し、この切断される担体の保有熱により表面に粘着され
た状態で残留するEVAに活性炭粉末を被覆させて比表
面積の大きい顆粒担体を製造し、実施例1とした。
Experimental Example 1 100 parts by weight of tire powder (particle size: 0.2 to 3 mm) and EV
After 30 parts by weight of A and 10 parts by weight of 200- mesh fine powdered activated carbon were mixed well using a mixer, the mixture was heated to 170 ° C. to completely dissolve EVA, and the mixture was drawn into an extruder. The carrier extruded through the outlet of the extruder is cut into a certain size, and the activated carbon powder is coated on the EVA remaining in a state of being adhered to the surface by the retained heat of the cut carrier, thereby increasing the specific surface area. A granule carrier was produced and was referred to as Example 1.

【0037】また、配合するEVAの量を40重量部と
した他は実施例1と同様にして、実施例2の顆粒担体を
得た。さらに、配合するEVAの量を50重量部とした
他は実施例1と同様にして、実施例3の顆粒担体を得
た。
A granular carrier of Example 2 was obtained in the same manner as in Example 1 except that the amount of EVA to be blended was 40 parts by weight. Further, a granular carrier of Example 3 was obtained in the same manner as in Example 1, except that the amount of EVA to be blended was changed to 50 parts by weight.

【0038】このように製造された顆粒担体の平均粒度
は2〜11mmであり、収率は97%以上であった。ま
た、これら顆粒担体を水中に浸漬した結果、7時間経過
後に70%程度が浸漬され、20時間経過後に全量が浸
漬された。これに対する結果を表1に示す。
The average particle size of the granular carrier thus produced was 2 to 11 mm, and the yield was 97% or more. Also, as a result of immersing these granular carriers in water, about 70% was immersed after 7 hours, and the entire amount was immersed after 20 hours. Table 1 shows the results.

【0039】[0039]

【表1】 [Table 1]

【0040】実験例2 平均球径を下記の表2に記載のようにした他は、実験例
1の実施例3と同様にして実施例4から6の顆粒担体を
得た。これに対する結果を表2に示す。
Experimental Example 2 Granular carriers of Examples 4 to 6 were obtained in the same manner as in Example 3 of Experimental Example 1, except that the average sphere diameter was as shown in Table 2 below. Table 2 shows the results.

【0041】[0041]

【表2】 [Table 2]

【0042】実験例3 タイヤ粉末(粒度0.2〜3mm)100重量部と、こ
れに対してそれぞれ30、40、50重量部のEVAを
ミキサーでよく混合してEVAを全く溶かし圧出機に引
込んだ。圧出部の出口はそれぞれ直径8mmにし、圧出
部の温度は120℃程度に維持した。この際に、担体は
線形状態で圧出され、この線形状態の担体を200メッ
シュの粉末活性炭の入っている浴槽を通過させることに
より、自体保有熱により担体表面に溶けていたEVA又
はその誘導体に活性炭を付着させた後、冷水の入ってい
る浴槽を再度通過させて急冷させることにより担体表面
に活性炭を被覆させ、冷却された線形被覆担体を切断機
に導入して一定大きさに切断した。製造された顆粒担体
の平均粒度は9.8mmであり、収率は99%以上であ
った。また、担体を水中に浸漬した結果、7時間経過後
に70%程度が浸漬され、20時間経過後に全量が浸漬
された。
EXPERIMENTAL EXAMPLE 3 100 parts by weight of tire powder (particle size: 0.2 to 3 mm) and 30, 40, and 50 parts by weight of EVA, respectively, were thoroughly mixed with a mixer, and the EVA was completely melted. I retracted. The outlets of the extruder were each 8 mm in diameter, and the temperature of the extruder was maintained at about 120 ° C. At this time, the carrier is extruded in a linear state, and by passing the carrier in the linear state through a bath containing powdered activated carbon of 200 mesh, EVA or its derivative dissolved on the surface of the carrier due to its own heat is obtained. After adhering the activated carbon, the carrier surface was coated with activated carbon by passing again through a bath containing cold water and rapidly cooled, and the cooled linear coated carrier was introduced into a cutting machine and cut into a predetermined size. The average particle size of the produced granular carrier was 9.8 mm, and the yield was 99% or more. Further, as a result of immersing the carrier in water, about 70% was immersed after 7 hours, and the entire amount was immersed after 20 hours.

【0043】実験例4 本発明による処理装置を用いて、次の表3の条件にて生
活汚廃水の処理実験を行った。顆粒担体としては実施例
1のものを用いた。その結果を表3に示す。
EXPERIMENTAL EXAMPLE 4 Using the treatment apparatus according to the present invention, an experiment for treating domestic wastewater was conducted under the conditions shown in Table 3 below. The granule carrier used in Example 1 was used. Table 3 shows the results.

【0044】[0044]

【表3】 [Table 3]

【0045】表3から分かるように、汚廃水の生物学的
酸素要求量(BOD)は150〜250(平均200)mg
/Lであり、1日汚廃水発生量が120000m3であ
る生活汚水を処理する施設を設置する場合、標準活性ス
ラッジ法では6時間処理して約90%前後の処理率を達
成し、この時の曝気槽の容量は30000m3である。
従って、BOD容積負荷は0.8kg/m3/日であ
り、F/M比は0.27〜0.40となる。このような
曝気槽を設置する敷地は7500m2であり、約227
3坪が所要される。しかし、本発明の処理装置を用いて
有効水深10mで設置する場合、F/M比は0.24〜
0.32で、活性スラッジ法に類似した数値であるもの
にもかかわらず、曝気槽の容積は6000m3で、6分
の1に減らすことができる。そして、BOD容積負荷は
4.8kg/m3/日で、6倍高くすることができる。
従って、曝気槽を設置するに必要な敷地面積は500m
2で、15分の1に減らすことができる。
As can be seen from Table 3, the biological oxygen demand (BOD) of the wastewater is between 150 and 250 (average 200) mg.
/ L, and when a facility for treating domestic sewage with a daily wastewater generation of 120,000 m 3 is installed, the standard activated sludge process is performed for 6 hours to achieve a treatment rate of about 90%. Has a capacity of 30,000 m 3 .
Therefore, the BOD volume load is 0.8 kg / m 3 / day, and the F / M ratio is 0.27 to 0.40. The site where such an aeration tank is installed is 7500 m 2 , and about 227
3 tsubo is required. However, when installed at an effective water depth of 10 m using the treatment apparatus of the present invention, the F / M ratio is 0.24 to
Despite 0.32, a value similar to the activated sludge process, the volume of the aeration tank can be reduced by a factor of 6 to 6000 m 3 . The BOD volume load is 4.8 kg / m 3 / day, which can be increased six times.
Therefore, the site area required to install the aeration tank is 500m
With 2 , it can be reduced by a factor of 15.

【0046】有効水深15mで設置する場合、他の運転
指標は有効水深10m設置の場合と同一であるが、設置
に必要な敷地は334m2に減ることになる。また、酸
素消費量を計算して見ると、標準活性スラッジ法と本発
明を用いて設置した施設の全てが7537.5kgO2
/日で、同一である。しかし、実際に供給すべき空気量
はその差が大きいことが分かる。そして、有効水深10
mで設置した場合には毎分当たり270Nm3で、約半
分のみを供給しても処理し得る。そして、有効水深15
mで設置した場合は237Nm3/分で、標準活性スラ
ッジ法の43.9%のみを供給しても可能である。
When installed at an effective water depth of 15 m, other operation indices are the same as those at an effective water depth of 10 m, but the site required for installation is reduced to 334 m 2 . In addition, when the oxygen consumption was calculated and observed, all the facilities installed using the standard activated sludge method and the present invention showed 7547.5 kg O 2.
/ Day, same. However, it can be seen that the difference in the amount of air to be actually supplied is large. And effective water depth 10
m, 270 Nm 3 per minute, about half the supply can be processed. And effective water depth 15
m and 237 Nm 3 / min, it is possible to supply only 43.9% of the standard activated sludge method.

【0047】実験例5 本発明による処理装置を用いて、次の表4の条件にて生
活汚廃水の処理実験を行った。顆粒担体としては実施例
1のものを用いた。その結果を表4に示す。
EXPERIMENTAL EXAMPLE 5 Using the treatment apparatus according to the present invention, an experiment for treating domestic wastewater was performed under the conditions shown in Table 4 below. The granule carrier used in Example 1 was used. Table 4 shows the results.

【0048】[0048]

【表4】 [Table 4]

【0049】表4から分かるように、汚廃水の化学的酸
素要求量(COD)が350〜450(平均400)mg/
Lであり、1日廃水発生量が10000m3である難分
解性製紙廃水を処理する施設を設置する場合、活性スラ
ッジ法では24〜30時間処理して約90%前後の処理
率を達成することになり、この時の曝気槽の容量は10
00m3である。従って、COD容積負荷は0.4であ
り、CODF/M比は0.13〜0.20kg/m3
日となる。
As can be seen from Table 4, the chemical oxygen demand (COD) of the wastewater is 350-450 (400 on average) / mg.
L, and when a facility for treating hard-to-degrade papermaking wastewater with a daily wastewater generation of 10,000 m 3 is installed, the activated sludge method should be treated for 24 to 30 hours to achieve a treatment rate of about 90%. And the capacity of the aeration tank at this time is 10
00m 3. Therefore, the COD volume load is 0.4 and the CODF / M ratio is between 0.13 and 0.20 kg / m 3 /
Day.

【0050】このような曝気槽を設置する敷地は250
0m2で、約785坪が所要される。しかし、本発明に
よる装置を用いて有効水深10mで設置する場合、F/
M比(food/Micro、有機汚染物対微生物の比)は0.
12〜0.16で、活性スラッジ法に類似した数値であ
るものにもかかわらず曝気槽の容積は1667m3で、
6分の1に減らすことができる。そして、COD容積負
荷は2.4kg/m3/日で、6倍高くすることができ
る。従って、曝気槽を設置するに必要な敷地面積は16
8m2で、約15分の1に減らすことができる。また、
有効水深15mで設置する場合は、他の運転指標は有効
水深10m設置の場合と同一であるが、設置に必要な敷
地が112m2に減ることになる。
The site where such an aeration tank is installed is 250
At 0 m 2 , about 785 tsubo is required. However, when the apparatus according to the present invention is installed at an effective water depth of 10 m, F /
The M ratio (food / Micro, ratio of organic pollutants to microorganisms) is 0.
The volume of the aeration tank is 1667 m 3 , despite being similar to that of the activated sludge method at 12 to 0.16,
It can be reduced by a factor of six. The COD volumetric load is 2.4 kg / m 3 / day, which can be increased six times. Therefore, the site area required to install the aeration tank is 16
At 8 m 2 , it can be reduced to about 15 times. Also,
When installed at an effective water depth of 15 m, other operation indices are the same as those at an effective water depth of 10 m, but the site required for installation is reduced to 112 m 2 .

【0051】また、酸素消費量を計算して見ると、標準
活性スラッジ法と本発明による装置の全てが2475k
gO2/日で、同一である。しかし、実際に供給すべき
空気量はその差が大きいことが分かる。即ち、標準活性
スラッジ法を用いる場合に供給すべき空気量は毎分当た
り178Nm3である。しかし、有効水深10mで設置
する場合、供給すべき空気量は毎分当たり89Nm
3で、標準活性スラッジ法に比べて約半分のみを供給し
ても処理し得る。そして、有効水深15mで設置した場
合、供給すべき空気量は78Nm3/分で、標準活性ス
ラッジ法の43.9%のみを供給しても可能である。
The calculated oxygen consumption shows that all of the standard activated sludge method and the apparatus according to the present invention are 2475 k.
gO 2 / day, identical. However, it can be seen that the difference in the amount of air to be actually supplied is large. That is, when using the standard activated sludge method, the amount of air to be supplied is 178 Nm 3 per minute. However, when installed at an effective water depth of 10 m, the amount of air to be supplied is 89 Nm per minute.
In 3 , it is possible to process by feeding only about half of the standard activated sludge method. When installed at an effective water depth of 15 m, the amount of air to be supplied is 78 Nm 3 / min, and it is possible to supply only 43.9% of the standard activated sludge method.

【0052】[0052]

【発明の効果】以上のように、本発明による顆粒担体
は、機械的耐磨耗性及び耐薬品性が強く、顆粒担体の強
度及び無機質粉末の被着強度が向上されるので、生物処
理装置での曝気時、被覆無機質粉末の脱離が防止され、
特定産業廃水の適用時、廃水温度及び機械的衝撃によっ
ても形態が易しく磨耗されないことは勿論、顆粒担体の
比表面積を十分に活用することができる。特に、担体の
比表面積を大きくすることにより担体表面に多くの微生
物を固定化させ得るため、汚廃水の高速処理を可能にす
るものである。そして、顆粒担体を製造する時、原料の
配合調節が容易であり、担体の大きさ及び比重の調節が
容易であって、製品の用途別要求事項の調節が簡便であ
り、生産収率が大幅向上される効果がある。
As described above, the granular carrier according to the present invention has high mechanical abrasion resistance and chemical resistance, and the strength of the granular carrier and the adhesion strength of the inorganic powder are improved. At the time of aeration at the surface, desorption of the coated inorganic powder is prevented,
When the specific industrial wastewater is applied, the specific surface area of the granular carrier can be fully utilized, as well as the form is not easily worn due to the wastewater temperature and mechanical impact. In particular, by increasing the specific surface area of the carrier, many microorganisms can be immobilized on the surface of the carrier, thereby enabling high-speed treatment of wastewater. And, when manufacturing granule carrier, it is easy to adjust the blending of raw materials, it is easy to adjust the size and specific gravity of the carrier, it is easy to adjust the requirements for each application of the product, and the production yield is large There is an effect to be improved.

【0053】また、本発明は顆粒担体を投入した汚廃水
処理装置により迅速な汚廃水の処理が可能であり、処理
効率が向上される効果があるものである。
In the present invention, the wastewater treatment apparatus into which the granular carrier is charged enables rapid treatment of the wastewater, thereby improving the treatment efficiency.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の汚廃水処理装置の実施形態の一例を示
す断面図である。
FIG. 1 is a sectional view showing an example of an embodiment of a wastewater treatment apparatus of the present invention.

【図2】図1の汚廃水処理装置の作動状態を示す断面図
である。
FIG. 2 is a sectional view showing an operation state of the wastewater treatment apparatus of FIG. 1;

【図3】図3(a)は図1の汚廃水処理装置の内筒散気
管部分の横断面図であり、図3(b)は図1の汚廃水処
理装置の外筒散気管部分の横断面図である。
3 (a) is a cross-sectional view of an inner pipe diffuser portion of the wastewater treatment apparatus of FIG. 1, and FIG. 3 (b) is a sectional view of an outer pipe diffuser section of the wastewater treatment apparatus of FIG. FIG.

【符号の説明】[Explanation of symbols]

B・・・気泡 C・・・顆粒担体 10・・・外筒 11・・・ガイド部材 20・・・内筒 21・・・空間部 30・・・供給部 31・・・流入管 40・・・担体分離部 50・・・排出管 60・・・内筒散気管 61、71・・・外筒敵気管 62、72・・・排気孔 70・・・外筒散気管 80・・・噴射管 90・・・オーバーフロー管 91・・・排出孔 100・・・誘導管 110・・・傾斜管 120・・・砂利層 B: Bubble C: Granule carrier 10: Outer cylinder 11: Guide member 20: Inner cylinder 21: Space section 30: Supply section 31: Inflow pipe 40 ...・ Carrier separation part 50 ・ ・ ・ Discharge pipe 60 ・ ・ ・ Inner cylinder diffuser pipe 61,71 ・ ・ ・ Outer cylinder enemy pipe 62,72 ・ ・ ・ Exhaust hole 70 ・ ・ ・ Outer cylinder diffuser pipe 80 ・ ・ ・ Injection pipe 90 ... overflow pipe 91 ... discharge hole 100 ... guide pipe 110 ... inclined pipe 120 ... gravel layer

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭52−109762(JP,A) 特開 平8−266189(JP,A) 特開 昭63−42795(JP,A) 特開 平4−354597(JP,A) 実開 平1−128899(JP,U) (58)調査した分野(Int.Cl.6,DB名) C02F 3/10 C02F 3/08 C12N 11/00──────────────────────────────────────────────────続 き Continuation of front page (56) References JP-A-52-109762 (JP, A) JP-A-8-266189 (JP, A) JP-A-63-42795 (JP, A) JP-A-4- 354597 (JP, A) Japanese Utility Model Hei 1-128899 (JP, U) (58) Fields investigated (Int. Cl. 6 , DB name) C02F 3/10 C02F 3/08 C12N 11/00

Claims (13)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 タイヤ粉末100重量部と、 これに対する結合体で、親水性があり結合力及び化学的
に安定し高温に耐えるEVA又はその誘導体30〜50
重量部と、活性炭又はこれに準ずる無機質微粉末5〜1
5重量部とからなる汚廃水処理用顆粒担体。
1. EVA or a derivative thereof, which is 100 parts by weight of tire powder and a binder to the tire powder, which is hydrophilic, has bonding strength and is chemically stable, and can withstand high temperatures.
Parts by weight, activated carbon or an equivalent inorganic fine powder 5-1
A granular carrier for treating wastewater comprising 5 parts by weight.
【請求項2】 タイヤ粉末と、EVA又はこの誘導体と
を100重量部対30〜50重量部の比率で混合、攪拌
した後、温度を100〜250℃にした状態で、混合体
中のEVA又はその誘導体を溶解させて粉末タイヤと活
性炭又はこれに準ずる無機質微粉末とを結合させた後、
圧出機で圧出し、切断し、担体の表面に粘着された状態
で残留するEVA又はその誘導体に粉末を被覆させるこ
とよりなるタイヤを用いた汚廃水処理用顆粒担体の製造
方法。
2. After mixing and stirring tire powder and EVA or a derivative thereof in a ratio of 100 parts by weight to 30 to 50 parts by weight, at a temperature of 100 to 250 ° C., EVA or After dissolving the derivative and binding the powdered tire with activated carbon or an equivalent inorganic fine powder,
A method for producing a granular carrier for wastewater treatment using a tire, comprising extruding with an extruder, cutting, and coating powder on EVA or a derivative thereof remaining in a state of being adhered to the surface of the carrier.
【請求項3】 タイヤ粉末100重量部に対してEVA
又はその誘導体30〜50重量部を混合、攪拌して均質
状態に維持した後、100〜250℃の状態で、混合体
中のEVA又はその誘導体を溶融させて粉末タイヤを結
合した後、圧出機で圧出し、圧出時、自体保有熱により
表面で溶融されていたEVA又はその誘導体を用いて表
面に活性炭又はこれに準ずる無機質微粉末を付着させ、
冷却後、一定大きさに切断することよりなるタイヤを用
いた汚廃水処理用顆粒担体の製造方法。
3. EVA to 100 parts by weight of tire powder
Alternatively, 30 to 50 parts by weight of a derivative thereof are mixed and stirred to maintain a homogeneous state, and then melted at a temperature of 100 to 250 ° C. to melt the EVA or a derivative thereof to bind the powdered tire and then extrude. At the time of extrusion, at the time of extrusion, an activated carbon or an inorganic fine powder equivalent thereto is adhered to the surface by using EVA or a derivative thereof melted on the surface due to its own heat,
A method for producing a granular carrier for treating wastewater using a tire, which is cut into a certain size after cooling.
【請求項4】 外筒と、この外筒の内部に備えられた
筒と、外筒の上部に設置されて汚廃水を供給する供給部
と、前記内筒の上部に設置され、顆粒担体に付着された
気泡を分離して下向誘導する担体分離部と、この担体分
離部の上部一側に備えられ、処理された汚廃水を排出さ
せる排出管と、内筒の外側に一定間隔を置きそれぞれ設
置される内筒散気管及び外筒散気管と、前記内筒の下部
に設置され、圧縮された空気が投入されるようにする噴
射管と、担体分離部の上部に位置し、一定水位を越える
とオーバーフローされるようにするオーバーフロー管
と、このオーバーフロー管から溢れる汚廃水を受けて一
側方向に誘導する誘導管と、前記噴射管の内側に汚廃水
と顆粒担体の誘導方向を誘導し得るようにする傾斜管と
から構成されている、顆粒担体を用いる汚廃水処理装
置。
4. An outer cylinder, an inner cylinder provided inside the outer cylinder, a supply unit installed at an upper part of the outer cylinder to supply waste water, and a granular carrier installed at an upper part of the inner cylinder. A carrier separation unit that separates and guides bubbles attached to the container downward, a discharge pipe provided at one upper side of the carrier separation unit to discharge treated wastewater, and a fixed interval outside the inner cylinder. An inner pipe diffuser pipe and an outer pipe diffuser pipe which are respectively installed, an injection pipe which is installed at a lower part of the inner cylinder and through which compressed air is injected, and which is located at an upper part of the carrier separating part and is fixed. An overflow pipe that overflows when the water level is exceeded, a guide pipe that receives the wastewater overflowing from the overflow pipe and guides the wastewater in one direction, and guides a guide direction of the wastewater and the granular carrier inside the injection pipe. And an inclined tube to be able to Wastewater treatment equipment using granular carriers.
【請求項5】 前記外筒は円筒形をなし、上昇する汚廃
水と顆粒担体が再度循環されるよう、外筒の上部壁の所
定位置にガイド部材が突出形成されいる請求項4に記載
の顆粒担体を用いる汚廃水処理装置。
5. The outer cylinder according to claim 4, wherein the outer cylinder has a cylindrical shape, and a guide member is formed at a predetermined position on an upper wall of the outer cylinder so as to recirculate the rising wastewater and the granular carrier. Wastewater treatment equipment using granular carriers.
【請求項6】 前記内筒は外筒から一定空間部を置き設
置されている請求項4又は5に記載の顆粒担体を用いる
汚廃水処理装置。
6. The wastewater treatment apparatus using a granular carrier according to claim 4, wherein the inner cylinder is provided at a certain space from the outer cylinder.
【請求項7】 前記供給部は外筒の最上端に設置され、
この供給部から外筒の内部に汚廃水が供給されるよう
に、所定長さを有する流入管が担体分離部を通過して内
筒の内部まで延長設置されている請求項4から6のいず
れかに記載の顆粒担体を用いる汚廃水処理装置。
7. The supply unit is provided at an uppermost end of an outer cylinder,
7. An inflow pipe having a predetermined length extending through the carrier separation section and extending to the inside of the inner cylinder so that the waste water is supplied from the supply section into the outer cylinder. A wastewater treatment apparatus using the granular carrier according to any of the claims.
【請求項8】 前記担体分離部は漏斗形をなし、傾斜面
が形成されている請求項4から7のいずれかに記載の顆
粒担体を用いる汚廃水処理装置。
8. The wastewater treatment apparatus using the granular carrier according to claim 4, wherein the carrier separating section has a funnel shape and has an inclined surface.
【請求項9】 前記オーバーフロー管の周囲に備えられ
た誘導管は前記排出管に連通されるように設置されてい
る請求項4から8のいずれかに記載の顆粒担体を用いる
汚廃水処理装置。
9. The wastewater treatment apparatus according to claim 4, wherein a guide pipe provided around the overflow pipe is installed so as to communicate with the discharge pipe.
【請求項10】 前記オーバーフロー管の一側面には、
前記オーバーフロー管に処理された汚廃水が流されて排
出できるようにする排出孔が形成されている請求項9に
記載の顆粒担体を用いる汚廃水処理装置。
10. One side of said overflow pipe,
The wastewater treatment apparatus using the granular carrier according to claim 9, wherein a discharge hole is formed to allow the treated wastewater to flow and be discharged to the overflow pipe.
【請求項11】 前記内筒散気管と外筒散気管は外筒を
貫通して設置され、内筒の内外周面に一定間隔を置きそ
れぞれ内筒用環状管及び外筒用環状管が環設されている
請求項10に記載の顆粒担体を用いる汚廃水処理装置。
11. The inner cylinder air diffusion pipe and the outer cylinder air diffusion pipe are installed so as to penetrate the outer cylinder, and the inner cylinder annular pipe and the outer cylinder annular pipe are arranged at regular intervals on the inner and outer peripheral surfaces of the inner cylinder. Is established
A wastewater treatment apparatus using the granular carrier according to claim 10 .
【請求項12】 前記内筒用環状管及び外筒用環状管に
は、流入される空気が噴射されるように排気孔が複数形
成されていることを特徴とする請求項11に記載の顆粒
担体を用いる汚廃水処理装置。
12. The granule according to claim 11, wherein a plurality of exhaust holes are formed in the annular pipe for the inner cylinder and the annular pipe for the outer cylinder so that the inflow air is injected. Wastewater treatment equipment using a carrier.
【請求項13】 前記噴射管の上部には、スラッジと顆
粒担体が外筒の底面に沈澱されて噴射管に内部に流入さ
れることを防止し、気泡が細かく破れるようにする砂利
層が備えられたことを特徴とする請求項4から12のい
ずれかに記載の顆立担体を用いる汚廃水処理装置。
13. A gravel layer is provided at an upper portion of the injection pipe to prevent sludge and granule carriers from settling on the bottom surface of the outer cylinder and flowing into the injection pipe and to break air bubbles finely. 13. A wastewater treatment apparatus using the condylar carrier according to any one of claims 4 to 12.
JP28447296A 1995-10-27 1996-10-25 Granular carrier for treating wastewater using tires, method for producing the same, and wastewater treatment apparatus using the granular carrier Expired - Fee Related JP2850976B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR95-37619 1995-10-27
KR19950037619 1995-10-27
KR96-7486 1996-03-20
KR19960007486 1996-03-20

Publications (2)

Publication Number Publication Date
JPH09164392A JPH09164392A (en) 1997-06-24
JP2850976B2 true JP2850976B2 (en) 1999-01-27

Family

ID=26631349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28447296A Expired - Fee Related JP2850976B2 (en) 1995-10-27 1996-10-25 Granular carrier for treating wastewater using tires, method for producing the same, and wastewater treatment apparatus using the granular carrier

Country Status (8)

Country Link
US (2) US6287468B1 (en)
JP (1) JP2850976B2 (en)
KR (1) KR100188878B1 (en)
CN (2) CN1144761C (en)
AU (1) AU720619B2 (en)
DE (1) DE19644457A1 (en)
GB (1) GB2306466B (en)
TW (1) TW474899B (en)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2334029A (en) * 1998-02-04 1999-08-11 John James Todd Media for waste water treatment
KR100326749B1 (en) * 1999-07-23 2002-03-13 이태진 A removal method of the odor caused by waste gas using crushed waste tires
CN1157344C (en) * 2001-04-18 2004-07-14 中国石油化工股份有限公司 Biochemical procss for treating waste water with nano material
US6726838B2 (en) 2002-01-07 2004-04-27 Agwise Wise Water Technologies Ltd. Biofilm carrier, method of manufacture thereof and waste water treatment system employing biofilm carrier
EP1409419A4 (en) * 2001-05-31 2009-06-24 Biothane Corp Anaerobic digestion apparatus, methods for anaerobic digestion a nd for minimizing the use of inhibitory polymers in digestion
US6531058B1 (en) * 2002-05-13 2003-03-11 Juan Carlos Josse Biological fluidized bed apparatus
US7147781B2 (en) * 2005-04-08 2006-12-12 Mijodrag Gordic Backwash system and method for waste water treatment system
US20070051675A1 (en) * 2005-06-14 2007-03-08 Paul Lindh Filter device and method for filtering
KR100702425B1 (en) * 2005-06-20 2007-04-06 (주)우진 The agitator of vertical style to attach microorganism to waste tire and causes denitration and dephosphorization reaction hormoniously, and the constitution method
CN100339317C (en) * 2005-07-30 2007-09-26 大连理工大学 Aerating biological filter pool filler and production thereof
CN101148289B (en) * 2006-09-19 2010-07-28 宜兴市裕隆环保有限公司 Suspending porous biological carrier and preparation
US7452468B2 (en) * 2006-09-25 2008-11-18 Smith William G Method and apparatus for treatment of wastewater
US8753511B2 (en) 2008-09-03 2014-06-17 AQ-WISE—Wise Water Technologies Ltd. Integrated biological wastewater treatment and clarification
CN101462791B (en) * 2009-01-16 2011-08-17 北京中电加美环境工程技术有限责任公司 Suspending stuffing for processing fluid bed biological film
CN101492550B (en) * 2009-03-03 2011-04-06 孙国华 Micropore aeration pipe
TWI408014B (en) * 2009-09-28 2013-09-11 Hsu Hsien Sun Trickling-filter biological treatment method utilizing waste tires and a biological treatment tank thereof
US8758613B2 (en) 2009-10-16 2014-06-24 Aqwise-Wise Water Technologies Ltd Dynamic anaerobic aerobic (DANA) reactor
US8152998B2 (en) * 2010-05-28 2012-04-10 Ashbrook Simon-Hartley, LP Screenless granular media filters and methods of use
JP5752612B2 (en) * 2012-01-18 2015-07-22 株式会社日立製作所 Wastewater treatment equipment
MY193196A (en) * 2012-09-04 2022-09-26 Council Scient Ind Res A fluidized bed reactor for treatment of waste water
JP2014171931A (en) * 2013-03-06 2014-09-22 Hitachi Ltd Deep tank-type separation unit
CN103495419B (en) * 2013-10-23 2016-01-06 林天安 Three-diemsnional electrode active carbon and preparation method thereof and the application on refractory organic waste water treatment
US8968480B1 (en) 2014-08-26 2015-03-03 Oil Spill Solutions, LLC Method of sequestering hydrocarbons or vegetable derived oil contaminants from a surface
CN105169997B (en) * 2015-10-16 2017-06-13 成都明天高新产业有限责任公司 For solid-liquid mixture blender
CN105645697A (en) * 2016-03-21 2016-06-08 浙江埃克钛环境科技有限公司 Denitrified padding for sewage and sewage treatment method thereof
KR101742123B1 (en) * 2016-07-20 2017-06-15 (주)단엔지니어링 Apparatus for embodying wastewater treating method having automatic wastewater treatment system
CN106746387B (en) * 2017-03-31 2020-05-12 河南工程学院 Distributed sewage treatment method
CN108298625B (en) * 2018-03-21 2023-07-14 张建东 Waste water concentrate fluidization crystallization drying system and method for directly discharging flue gas
KR102163264B1 (en) * 2019-11-06 2020-10-08 주식회사 케이디 A method of manufacturing media for advanced biological sewage and wastewater treatment using waste tires and the media thereof
CN112408700A (en) * 2020-11-03 2021-02-26 江苏通用环保集团有限公司 Aerobic precipitation process and special device thereof
KR102519404B1 (en) * 2021-04-13 2023-04-11 주식회사 디오솔루션 Odor reduction device of drainage system

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3536615A (en) * 1969-08-06 1970-10-27 Col Mont Corp Method of and apparatus for treating oil leakage
US3567660A (en) * 1970-02-02 1971-03-02 Joseph Winkler Method of conversion of oil-spills into improved,rubberized carbon-black and fiber fortified asphaltic materials
US3739913A (en) * 1970-07-16 1973-06-19 Johns Manville Device for fencing and absorbing contaminating oil spills on water
GB1384217A (en) * 1972-07-29 1975-02-19 Nittan Co Ltd Method of collecting oil on water surface
US4077923A (en) * 1974-07-24 1978-03-07 Nittan Company, Limited Method of manufacturing cation exchanger
JPS603116B2 (en) * 1977-02-17 1985-01-25 三菱レイヨン株式会社 Method for producing oil-containing wastewater treatment agent
US4802985A (en) * 1981-06-19 1989-02-07 Mitsubishi Rayon Company Ltd. Porous water-treating material
FR2533548B1 (en) * 1982-09-28 1985-07-26 Degremont METHOD AND APPARATUS FOR ANAEROBIC TREATMENT OF WASTE WATER IN A GRANULAR MATERIAL FILLED FILTER
DE3665056D1 (en) * 1985-08-09 1989-09-21 Degremont Fluidized-bed reactor for the biological treatment of water
DE3643931A1 (en) * 1986-12-22 1988-07-07 Kernforschungsanlage Juelich FUMING / FLOTATION REACTOR
DE3738295A1 (en) * 1987-09-03 1989-03-16 Tecon Gmbh REACTOR AND METHOD FOR THE BIOLOGICAL PURIFICATION OF POLLUTANT-BASED WATER
US4931183A (en) * 1988-06-24 1990-06-05 Klein Hans U Process and apparatus for the biological purification of water
US5441634A (en) * 1993-07-06 1995-08-15 Edwards Laboratories, Inc. Apparatus and method of circulating a body of fluid containing a mixture of solid waste and water and separating them

Also Published As

Publication number Publication date
GB2306466B (en) 1999-07-07
AU720619B2 (en) 2000-06-08
GB9622381D0 (en) 1997-01-08
DE19644457A1 (en) 1997-04-30
TW474899B (en) 2002-02-01
AU7041796A (en) 1997-05-22
KR970033092A (en) 1997-07-22
US5993650A (en) 1999-11-30
CN1078873C (en) 2002-02-06
CN1155520A (en) 1997-07-30
JPH09164392A (en) 1997-06-24
KR100188878B1 (en) 1999-06-01
GB2306466A (en) 1997-05-07
CN1336337A (en) 2002-02-20
CN1144761C (en) 2004-04-07
US6287468B1 (en) 2001-09-11

Similar Documents

Publication Publication Date Title
JP2850976B2 (en) Granular carrier for treating wastewater using tires, method for producing the same, and wastewater treatment apparatus using the granular carrier
CN1098815C (en) Method of aerobically treating waste water and treatment tank
CN1094471C (en) Device for treatment of high-concentration dirt water
CN104150707B (en) The apparatus and method that a kind of blodisc is disposed of sewage
JP2007136365A (en) Method for producing granular microbe sludge
CN107344794A (en) Phenol wastewater qualified discharge processing system
CN105800751B (en) Gravity settling device for separation of solid and liquid
CN1277942A (en) System for treatment of water or wastewater, and method using such system
US4282102A (en) Activated sludge wastewater treatment having suspended inert media for biota growth
CN1061949C (en) Comprehensive effluent disposal technology for wet spinning acrylic fibers industry
CN207468417U (en) AAOAO+MBBR oligodynamic sewage treatment devices
CN1302279A (en) Waste liquid treatment process and plant
CN109293079A (en) A kind of low energy consumption aeration cycle clarifying basin
JP3136900B2 (en) Wastewater treatment method
CN208087301U (en) It is suitble to the aeration type integrated oxidation ditch of compact apparatus
JP3776763B2 (en) Waste water treatment equipment
CN207313243U (en) A kind of micro- oxygen-short-cut denitrification oxidation ditch
CN205710085U (en) A kind of water is processed with oxygen dense media activated sludge reactor of holding concurrently
JPH0338298A (en) Fluidized-bed type waste water treatment apparatus
JPS62136295A (en) Method and apparatus for treating waste water
JP2564228B2 (en) Biological sewage treatment equipment
JPS62262794A (en) Treatment of waste water
JPH02111497A (en) Waste water treating equipment
CN117865408A (en) Sewage treatment equipment applied to cold areas
CN107673542A (en) The processing method of gas generator water containing phenol

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees