JP2850312B2 - Magnetic recording medium and method of manufacturing the same - Google Patents

Magnetic recording medium and method of manufacturing the same

Info

Publication number
JP2850312B2
JP2850312B2 JP5103181A JP10318193A JP2850312B2 JP 2850312 B2 JP2850312 B2 JP 2850312B2 JP 5103181 A JP5103181 A JP 5103181A JP 10318193 A JP10318193 A JP 10318193A JP 2850312 B2 JP2850312 B2 JP 2850312B2
Authority
JP
Japan
Prior art keywords
film
magnetic
glass substrate
magnetic disk
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5103181A
Other languages
Japanese (ja)
Other versions
JPH06309647A (en
Inventor
誠 水上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP5103181A priority Critical patent/JP2850312B2/en
Publication of JPH06309647A publication Critical patent/JPH06309647A/en
Application granted granted Critical
Publication of JP2850312B2 publication Critical patent/JP2850312B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、ガラス基板を使用した
磁気記録媒体に関し、特に、高い保磁力Hcを有する高
密度記録に好適な磁気記録媒体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic recording medium using a glass substrate, and more particularly to a magnetic recording medium suitable for high-density recording having a high coercive force Hc.

【0002】[0002]

【従来の技術】近来、磁気記録媒体はますます高密度記
録の可能なものが希求されており、そのためにより高い
保磁力Hcをもつ磁気記録媒体の開発努力がなされてい
る。磁気ディスクの分野に関しては、従来塗布型ディス
クであったものが高密度記録に対応できるスパッタ型デ
ィスクが主流となってきている。
2. Description of the Related Art In recent years, magnetic recording media capable of high-density recording have been demanded. For this reason, efforts have been made to develop magnetic recording media having a higher coercive force Hc. In the field of magnetic disks, sputter-type disks that can cope with high-density recording have become the mainstream, instead of conventional coating-type disks.

【0003】上記スパッタ型による磁気ディスクは、当
初NiPをめっきしたAl基板上にCr下地膜、Co−Ni
あるいはCo−Ni−Cr磁性膜をこの順に設け、この磁
性膜の上にカーボン膜及び潤滑層を設けたものが開発さ
れた。そして、記録密度の向上により、ヘッドの浮上量
をより少なくできるガラス基板が登場し、磁性膜につい
ては低ノイズのCo−Cr−Ta、Co−Cr−Ptが開発さ
れた。
[0003] The magnetic disk of the above-mentioned sputter type comprises an Al substrate plated with NiP and a Cr underlayer, a Co-Ni film.
Alternatively, a Co-Ni-Cr magnetic film is provided in this order, and a carbon film and a lubricating layer are provided on this magnetic film. With the improvement in recording density, a glass substrate capable of reducing the flying height of the head has appeared, and low noise Co-Cr-Ta and Co-Cr-Pt have been developed for magnetic films.

【0004】上記保磁力Hcをより高くするために、例
えば特開平1−256017号公報にはCo−Cr−Ta
−Ptからなる磁性層を用いる技術が記載され、また、
特公平4−50653号公報には、負のバイアス電圧を
印加しながら成膜するバイアススパッタ技術が記載され
ている。
In order to further increase the coercive force Hc, for example, Japanese Patent Application Laid-Open No. 1-256017 discloses a Co-Cr-Ta
A technique using a magnetic layer made of -Pt is described,
Japanese Patent Publication No. 4-50653 discloses a bias sputtering technique for forming a film while applying a negative bias voltage.

【0005】[0005]

【発明が解決しようとする課題】しかし、上述のいずれ
の技術においても、前記低浮上量特性に優れたガラス基
板を用いた場合には、保磁力Hcが2200(Oe)を
超える高特性の磁気ディスクは得られていない。本発明
の目的は、上記2200(Oe)以上の保磁力Hcを有
する磁気記録媒体及びその製造方法を提供することにあ
る。
However, in any of the above-mentioned technologies, when a glass substrate excellent in the low flying height characteristic is used, a high-performance magnetic material having a coercive force Hc exceeding 2200 (Oe) is used. No disc was obtained. An object of the present invention is to provide a magnetic recording medium having a coercive force Hc of 2200 (Oe) or more and a method of manufacturing the same.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に、ガラス基板上に、少なくともV,Moのうち1種類
を含むプリコート膜が形成され、このプリコート膜の上
にCrからなる下地膜及びCo−Cr−Ta−Ptの四
元合金からなる磁性膜がこの順に形成された磁気記録媒
体であって、下地膜のCr結晶の格子面Cr(200)
及び磁性膜中のCo結晶の格子面Co(110)を、共
に、ガラス基板面に平行に優先配向した場合のX線回折
強度と比較して低くしたことを特徴とする。
In order to solve the above problems , at least one of V and Mo is provided on a glass substrate.
Pre-coating film containing the is formed, a magnetic recording medium in which a magnetic film made of a quaternary alloy of underlayer and Co-Cr-Ta-Pt of Cr are formed in this order over the pre-coating film, the base film Lattice plane of Cr crystal of Cr (200)
Also, the lattice plane Co (110) of the Co crystal in the magnetic film is both lower than the X-ray diffraction intensity when preferentially oriented parallel to the glass substrate surface.

【0007】また本発明の製造方法は、プリコート膜を
少なくともV,Moのうちの1種を含む材料によって成
膜し、さらに下地膜及び磁性膜を、負のバイアス電圧を
印加しながらスパッタ法によって形成してある。
Further, according to the manufacturing method of the present invention, a precoat film is formed of a material containing at least one of V and Mo , and a base film and a magnetic film are formed by sputtering while applying a negative bias voltage. It is formed.

【0008】[0008]

【作用】ガラス基板上に、少なくともV,Moのうち1
種類を含むプリコート膜を形成し、このプリコート膜の
上にCrからなる下地膜及びCo−Cr−Ta−Ptの
四元合金からなる磁性膜をこの順に形成し、下地膜のC
r結晶の格子面Cr(200)及び磁性膜中のCo結晶
の格子面Co(110)を、共に、ガラス基板面に平行
に優先配向した場合のX線回折強度と比較して低くする
ことにより、成長するCr結晶及びCo結晶の結晶性を
低下させ、保磁力Hcの向上を図る。
[Function] At least one of V and Mo on a glass substrate.
A pre-coat film including various types is formed, and a base film made of Cr and a magnetic film made of a quaternary alloy of Co-Cr-Ta-Pt are formed on the pre-coat film in this order.
By making the lattice plane Cr (200) of the r crystal and the lattice plane Co (110) of the Co crystal in the magnetic film both lower than the X-ray diffraction intensity when preferentially oriented parallel to the glass substrate plane. The crystallinity of the growing Cr crystal and Co crystal is reduced, and the coercive force Hc is improved.

【0009】[0009]

【実施例】以下に本発明の実施例を図に基づいて説明す
る。ここにおいて図1は本発明に基づく磁気ディスクの
一例を示す部分断面図である。この磁気ディスク1はC
o−Cr−Ta−Ptの四元合金からなる磁性膜2が、Cr
からなる下地膜3、及びプリコート膜4を設けたガラス
基板5の上に形成されている。磁気ディスク1として使
用するには、磁性膜2の上に図示しないカーボン潤滑層
をおき、さらにその上に潤滑剤を塗布する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a partial sectional view showing an example of a magnetic disk according to the present invention. This magnetic disk 1 is C
The magnetic film 2 composed of a quaternary alloy of o-Cr-Ta-Pt is
It is formed on a glass substrate 5 provided with a base film 3 made of and a precoat film 4. For use as the magnetic disk 1, a carbon lubricating layer (not shown) is provided on the magnetic film 2, and a lubricant is further applied thereon.

【0010】そして、下地膜3のCr結晶(体心立方
晶)及び磁性膜2のCo結晶(六方晶)の格子面は、C
r結晶の格子面Cr(200)及びCo結晶の格子面C
o(110)が共にガラス基板面に平行に優先配向した
場合のX線回折強度と比較して、Cr(200)及びC
o(110)のX線回折強度は低くなっている。また、
同様にCr(110)のX線回折強度は高くなってい
る。このような格子面を有する本発明に基づく磁気ディ
スク1は保磁力Hcが2200(Oe)以上となり、さ
らには3200(Oe)を超えることも可能である。
The lattice planes of the Cr crystal (body-centered cubic) of the underlayer 3 and the Co crystal (hexagonal) of the magnetic film 2 are C
Lattice lattice plane Cr (200) and Co crystal lattice plane C
Compared with the X-ray diffraction intensity when both o (110) are preferentially oriented parallel to the glass substrate surface, Cr (200) and C
The X-ray diffraction intensity of o (110) is low. Also,
Similarly, the X-ray diffraction intensity of Cr (110) is high. The magnetic disk 1 according to the present invention having such a lattice plane has a coercive force Hc of 2200 (Oe) or more, and can even exceed 3200 (Oe).

【0011】上記内容を具体的に説明する。図9は、従
来のCr(200)及びCo(110)がガラス基板面
に平行に優先配向したCr結晶及びCo結晶の単位胞を
示す概念図である。2θ/θ法によるX線回折において
は、ガラス基板5の面に対して平行となった格子面のみ
からX線が回折されるため、図9においてはこれらCr
(200)及びCo(110)の回折強度が強く出る。
The above contents will be specifically described. FIG. 9 is a conceptual diagram showing a unit cell of a Cr crystal and a Co crystal in which conventional Cr (200) and Co (110) are preferentially oriented parallel to the glass substrate surface. In X-ray diffraction by the 2θ / θ method, X-rays are diffracted only from the lattice plane parallel to the plane of the glass substrate 5.
The diffraction intensity of (200) and Co (110) is strong.

【0012】しかし、上述のようにCr(200)及び
Co(110)がガラス基板5面に平行に優先配向した
場合には、図10に示すように、Cr(110)はガラ
ス基板5の面と平行でなくなる。従って、このCr(1
10)の回折強度は低下する。
However, when Cr (200) and Co (110) are preferentially oriented parallel to the surface of the glass substrate 5 as described above, as shown in FIG. Is no longer parallel to Therefore, this Cr (1)
The diffraction intensity of 10) decreases.

【0013】図2は、本発明に基づくCr(110)が
ガラス基板面に平行に優先配向した下地膜3のCr結晶
の単位胞を示す概念図である。この図2及び上記図10
の比較から明らかなように、図2におけるCr(11
0)の回折強度は図10の場合よりも強くなる。一方、
図3には本発明に基づくCr(200)及びCo(11
0)の様子を示したが、図9との比較から明らかなよう
に図3におけるCr(200)及びCo(110)の回
折強度は図9の場合よりも弱くなる。
FIG. 2 is a conceptual diagram showing a unit cell of a Cr crystal of the base film 3 in which Cr (110) according to the present invention is preferentially oriented parallel to the glass substrate surface. FIG. 2 and FIG.
As is clear from the comparison of Cr (11
The diffraction intensity of 0) becomes stronger than that of FIG. on the other hand,
FIG. 3 shows Cr (200) and Co (11) according to the present invention.
9), the diffraction intensity of Cr (200) and Co (110) in FIG. 3 is lower than that in FIG. 9 as is clear from comparison with FIG.

【0014】すなわち、本発明に基づく下地膜3中のC
r(200)及び磁性膜2中のCo(110)のX線回
折強度をそれぞれICr(200) 及びICo(110) とし、前記
図9におけるCr(200)及びCo(110)のX線
回折強度をそれぞれIOCr(200)及びIOCo(110)としたと
き、(ICr(200) /IOCr(200))<1となるが、好まし
くは(ICr(200) /IOCr(200))≦0.4である。また
(ICo(110) /IOCo(110))<1となるが、好ましくは
(ICo(110) /IOCo(110))≦0.6である。
That is, C in the base film 3 according to the present invention is
The X-ray diffraction intensities of r (200) and Co (110) in the magnetic film 2 are represented by I Cr (200) and I Co (110) , respectively, and the X-ray diffraction of Cr (200) and Co (110) in FIG. Assuming that the diffraction intensities are I OCr (200) and I OCo (110) respectively, (I Cr (200) / I OCr (200) ) <1, but preferably (I Cr (200) / I OCr ( 200) ) ≦ 0.4. Also, (I Co (110) / I OCo (110) ) <1, but preferably (I Co (110) / I OCo (110) ) ≦ 0.6.

【0015】また、本発明に基づく下地膜3中のCr
(110)のX線回折強度をICr(110) とし、前記図1
0におけるCr(110)のX線回折強度をIOCr(110)
としたとき、(ICr(110) /IOCr(110))>1となる
が、好ましくは(ICr(110) /IOCr(110))≧1.35
である。
Further, the Cr in the underlayer 3 according to the present invention is
Assuming that the X-ray diffraction intensity of (110) is I Cr (110) , FIG.
The X-ray diffraction intensity of Cr (110) at 0 is calculated as I OCr (110)
(I Cr (110) / I OCr (110) )> 1, but preferably (I Cr (110) / I OCr (110) ) ≧ 1.35.
It is.

【0016】次に、本発明に基づく磁気ディスク1の製
造方法の一例を説明するが、上述のように、下地膜3中
のCr及び磁性膜2中のCo結晶の優先配向面が変化す
ることが最も大事であり、この配向面の変化を引き起こ
すことができる製造方法であればどのようなものでも制
限はない。
Next, an example of a method of manufacturing the magnetic disk 1 according to the present invention will be described. As described above, the preferred orientation planes of Cr in the underlayer 3 and Co crystals in the magnetic film 2 change. Is most important, and there is no limitation on any manufacturing method that can cause this change in the orientation plane.

【0017】図4は、本発明に係るスパッタ装置の一例
を示す概略図である。同図において、スパッタ装置6は
真空層7内にターゲット8及び磁気ディスクホルダ9を
備えており、また、Ar等の不活性ガスの導入口10及
び真空排気口11が設けられている。そして、ターゲッ
ト8にはスパッタ用直流電源12が接続されており、ま
た、磁気ディスクホルダ9にはバイアス用直流電源13
が接続されている。
FIG. 4 is a schematic view showing an example of a sputtering apparatus according to the present invention. In FIG. 1, a sputtering apparatus 6 includes a target 8 and a magnetic disk holder 9 in a vacuum layer 7, and an inlet 10 for an inert gas such as Ar and a vacuum exhaust port 11 are provided. The target 8 is connected to a DC power supply 12 for sputtering, and the magnetic disk holder 9 is connected to a DC power supply 13 for bias.
Is connected.

【0018】スパッタ装置6を用いて本発明に基づく磁
気ディスク1を製造するには、先ず、既にスパッタ法等
によってV,Moのうちの1種以上を含む材料によって
成膜してあるプリコート膜4付きのガラス基板5を磁気
ディスクホルダ9に取り付ける。そして、真空排気口1
1から真空引きした後に導入口10から例えばArガス
を導入し、スパッタ用直流電源12及びバイアス用直流
電源13によってそれぞれDC電圧を印加する。
In order to manufacture the magnetic disk 1 according to the present invention using the sputtering apparatus 6, first, the precoat film 4 which has been formed from a material containing at least one of V and Mo by a sputtering method or the like. The attached glass substrate 5 is attached to the magnetic disk holder 9. And the vacuum exhaust port 1
After evacuation from 1, for example, Ar gas is introduced from the inlet 10, and a DC voltage is applied by the DC power supply 12 for sputtering and the DC power supply 13 for bias.

【0019】上述のようにプリコート膜4付きのガラス
基板5に負のバイアス電圧を印加しながらCrの下地膜
3あるいはCo−Cr−Ta−Ptの四元合金の磁性膜2を
形成する場合、ターゲット8から飛来してガラス基板5
に付着したCr等の原子の一部は、負のバイアス電圧の
影響でスパッタされて優先配向面の変化を生じ、前記本
発明に基づく格子面を有するようになり、保磁力Hc2
200(Oe)以上の磁気ディスク1とすることができ
る。
As described above, when a Cr underlayer 3 or a Co—Cr—Ta—Pt quaternary alloy magnetic film 2 is formed while applying a negative bias voltage to the glass substrate 5 with the precoat film 4, Glass substrate 5 flying from target 8
Some of the atoms such as Cr adhered to the surface are sputtered under the influence of the negative bias voltage, causing a change in the preferential orientation plane, and having the lattice plane according to the present invention, and the coercive force Hc2.
The magnetic disk 1 of 200 (Oe) or more can be obtained.

【0020】次に、本発明に基づく実施例をさらに詳細
に説明する。実施例1 3.5インチのガラス基板5上に、直流マグネトロン法
によりVからなるプリコート膜4を60Å成膜した。こ
のときの成膜条件は、到達真空度を2×10-6Tor
r、Arスパッタガス圧を2mTorr、ガラス基板5
の加熱温度を200℃とした。上記プリコート膜4の成
膜後、ガラス基板5を冷却して真空装置から取り外し
た。
Next, embodiments according to the present invention will be described in more detail. Example 1 A precoat film 4 made of V was formed on a 3.5-inch glass substrate 5 by DC magnetron at a thickness of 60 °. The film formation conditions at this time were as follows: the ultimate vacuum was 2 × 10 −6 Torr.
r, Ar sputtering gas pressure 2 mTorr, glass substrate 5
Was heated to 200 ° C. After the formation of the precoat film 4, the glass substrate 5 was cooled and removed from the vacuum device.

【0021】次に、上記プリコート膜4付きのガラス基
板5をスパッタ装置6の磁気ディスクホルダ9に取り付
け、ガラス基板5に−200Vのバイアス電圧を印加し
ながらCrからなる下地膜3を4000Å、さらにこの
上にCo75.2Cr9.4Ta5.7Pt9 .7(各原子に添えた数値
はat%である)の組成からなる四元合金の磁性膜2を2
50Å成膜して磁気ディスク1とした。このときの成膜
条件は、到達真空度を2×10-6Torr、Arスパッ
タガス圧を2mTorr、ガラス基板5の加熱温度を2
50℃とした。
Next, the glass substrate 5 with the pre-coated film 4 is mounted on the magnetic disk holder 9 of the sputtering device 6, and the glass substrate 5 is applied with a bias voltage of -200 V to make the base film 3 made of Cr 4000 °. Co 75.2 Cr 9.4 Ta on the 5.7 Pt 9 .7 magnetic film 2 quaternary alloy having the composition (each numerical value accompanying the atoms are at%) 2
The magnetic disk 1 was formed by forming a film of 50 °. At this time, the deposition conditions are as follows: ultimate vacuum degree is 2 × 10 −6 Torr, Ar sputtering gas pressure is 2 mTorr, and heating temperature of the glass substrate 5 is 2 mm.
50 ° C.

【0022】また、本実施例の比較用として、バイアス
電圧を印加しない以外は上記製造方法と全く同様にして
磁気ディスク1(R−1)を作成した。そして、実施例
1及びR−1の磁性膜2の結晶配向性をX線回折装置に
よって、また、磁気特性(保磁力Hc)を振動試料型磁
力計(VSM)によって測定した。
For comparison with the present embodiment, a magnetic disk 1 (R-1) was prepared in exactly the same manner as in the above manufacturing method except that no bias voltage was applied. The crystal orientation of the magnetic films 2 of Examples 1 and R-1 was measured by an X-ray diffractometer, and the magnetic properties (coercive force Hc) were measured by a vibrating sample magnetometer (VSM).

【0023】得られた磁気ディスク1に関する結果を図
5、図7及び図8に示した。図5はX線回折強度の測定
チャートであり、R−1に比較して本実施例の磁気ディ
スク1は下地膜3のCr(200)及び磁性膜2のCo
(110)の強度が低くなり、Cr(110)の強度が
高くなっていた。また、図7はバイアス電圧−保磁力H
c線図であり、R−1の磁気ディスク1の保磁力Hcは
2100(Oe)であるのに対して本実施例のものは3
060(Oe)と高かった。
The results for the obtained magnetic disk 1 are shown in FIGS. Figure 5 is a measurement chart of the X-ray diffraction intensity, as compared to R-1 magnetic disk 1 of this embodiment of the base film 3 Cr (200) and the magnetic film 2 Co
The strength of (110) was low and the strength of Cr (110) was high. FIG. 7 shows bias voltage-coercive force H
FIG. 13 is a c-line diagram, in which the coercive force Hc of the magnetic disk 1 of R-1 is 2100 (Oe), whereas the coercive force Hc of the present embodiment is 3100.
060 (Oe).

【0024】さらに、図8はX線回折強度比−保磁力H
c線図であり、図中のA〜Cは下記内容を表す。なお、
下記中のIは各実施例の磁気ディスク1のX線回折強
度、IO は比較用の磁気ディスク1のX線回折強度で
ある。 A……Cr(200)のX線回折強度比;A=ICr(200) /IOCr(200) B……Co(110)のX線回折強度比;B=ICo(110) /IOCo(110) C……Cr(110)のX線回折強度比;C=ICr(110) /IOCr(110) 図8に示したように本実施例による磁気ディスク1の上
記Aは0.08、Bは0.16、Cは2.77であった
(なお、R−1の磁気ディスク1はA,B,Cとも1で
ある)。
FIG. 8 shows an X-ray diffraction intensity ratio-coercive force H.
It is a c-line diagram, and A-C in a figure represents the following contents. In addition,
I in the following is the X-ray diffraction intensity of the magnetic disk 1 of each embodiment, and IO is the X-ray diffraction intensity of the magnetic disk 1 for comparison. A: X-ray diffraction intensity ratio of Cr (200) ; A = I Cr (200) / I OCr (200) B: X-ray diffraction intensity ratio of Co (110) ; B = I Co (110) / I OCo (110) C... X-ray diffraction intensity ratio of Cr (110) ; C = I Cr (110) / I OCr (110) As shown in FIG. 0.08, B was 0.16, and C was 2.77 (the R-1, magnetic disk 1 is 1 for all A, B, and C).

【0025】実施例2〜4 実施例1のガラス基板5に印加するバイアス電圧を−1
00V(実施例2)、−300V(実施例3)、−40
0V(実施例4)と代えた以外は実施例1と同様にして
それぞれ磁気ディスク1を製造した。
Embodiments 2 to 4 The bias voltage applied to the glass substrate 5 of Embodiment 1 is -1.
00V (Example 2), -300V (Example 3), -40
Each of the magnetic disks 1 was manufactured in the same manner as in Example 1 except that the voltage was changed to 0 V (Example 4).

【0026】これらの結果も図5、図7及び図8に示し
た。図5において、本実施例の磁気ディスク1はいずれ
もR−1に比較してCr(200)及びCo(110)
の強度が低くなり、Cr(110)の強度が高くなって
いる。また、図7に示すように、本実施例2〜4のもの
の保磁力Hcはそれぞれ2450(Oe),3100
(Oe),2800(Oe)と高かった。
These results are also shown in FIGS. 5, 7 and 8. In FIG. 5, the magnetic disk 1 according to the present embodiment has Cr (200) and Co (110) compared to R-1.
Is low, and the strength of Cr (110) is high. Further, as shown in FIG. 7, the coercive force Hc of each of Examples 2 to 4 is 2450 (Oe) and 3100 (Oe), respectively.
(Oe) and 2800 (Oe).

【0027】さらに、図8において本実施例2〜4によ
る磁気ディスク1の上記Aはそれぞれ0.15,0.0
3,0.07、Bは0.26,0.13,0.26、C
は2.81,2.93,1.38であった。
Further, in FIG. 8, A of the magnetic disk 1 according to Examples 2 to 4 is 0.15, 0.0, respectively.
3,0.07, B is 0.26, 0.13, 0.26, C
Were 2.81, 2.93, and 1.38.

【0028】実施例5 実施例1の下地膜3の厚さを1000Åに代えた以外は
実施例1と同様にして磁気ディスク1を製造した。この
磁気ディスク1の保磁力Hcは2300(Oe)であっ
た。また、バイアス電圧を印加しない比較用の磁気ディ
スク1(R−2)も作成したが、この保磁力Hcは14
00(Oe)と低かった。
Example 5 A magnetic disk 1 was manufactured in the same manner as in Example 1 except that the thickness of the underlayer 3 was changed to 1000 °. The coercive force Hc of this magnetic disk 1 was 2300 (Oe). Further, a comparative magnetic disk 1 (R-2) to which no bias voltage was applied was also prepared.
It was as low as 00 (Oe).

【0029】図6は本実施例に係るX線回折強度の測定
チャートであり、R−2に比較してCr(200)及び
Co(110)の強度が低くなっている。
FIG. 6 is a measurement chart of the X-ray diffraction intensity according to the present embodiment. The intensity of Cr (200) and Co (110) is lower than that of R-2.

【0030】実施例6 実施例1のVからなるプリコート膜4に代えて、Cr膜
500Å、カーボン膜500Å及びMo膜60Åをこの
順に形成してプリコート膜4とした以外は実施例1と同
様にして磁気ディスク1を製造した。この磁気ディスク
1の保磁力Hcは3230(Oe)であった。また、バ
イアス電圧を印加しない比較用の磁気ディスク1(R−
3)も作成したが、この保磁力Hcは2150(Oe)
と低かった。
Embodiment 6 In the same manner as in Embodiment 1 except that a Cr film 500 #, a carbon film 500 #, and a Mo film 60 # are formed in this order in place of the V pre-coat film 4 of Example 1 to obtain a pre-coat film 4. Thus, the magnetic disk 1 was manufactured. The coercive force Hc of this magnetic disk 1 was 3230 (Oe). Further, a comparison magnetic disk 1 (R-
3), but this coercive force Hc is 2150 (Oe).
Was low.

【0031】比較例1 実施例1のVからなるプリコート膜4に代えて、Cr膜
60Åを成膜し、真空装置から取り出さずに、続けて−
200Vのバイアス電圧を印加しながらCrからなる下
地膜3を2000Å成膜した以外は実施例1と同様にし
て磁気ディスク1を製造したが、この保磁力Hcは20
50(Oe)と低かった。
COMPARATIVE EXAMPLE 1 Instead of the precoat film 4 made of V in Example 1, a Cr film 60Å was formed, and was not taken out from the vacuum apparatus.
The magnetic disk 1 was manufactured in the same manner as in Example 1 except that the base film 3 made of Cr was formed at 2000 ° while applying a bias voltage of 200 V, but the coercive force Hc was 20.
It was as low as 50 (Oe).

【0032】以上の結果から明らかなように、負のバイ
アス電圧を印加して形成した本発明に基づく磁気ディス
ク1は、いずれも負のバイアス電圧を印加せずに形成し
たR−1〜R−3の磁気ディスク1よりも高い保磁力H
cを有している。また、バイアス電圧が−300V近辺
に保磁力Hcのピークがあり、約3100(Oe)の磁
気ディスク1を得ることができる。また、実施例6に示
すようにプリコート膜4の種類を代えることで保磁力H
c3230(Oe)と非常に高性能の磁気ディスク1も
得ている。
As is apparent from the above results, the magnetic disk 1 according to the present invention formed by applying a negative bias voltage has the R-1 to R- formed without applying the negative bias voltage. 3 has a higher coercive force H than that of the magnetic disk 1
c. Further, the peak of the coercive force Hc has a bias voltage near -300 V, and the magnetic disk 1 of about 3100 (Oe) can be obtained. Further, as shown in Example 6, the coercive force H
A very high performance magnetic disk 1 with c3230 (Oe) was also obtained.

【0033】そして、図5及び図6から明らかなよう
に、負のバイアスを印加せずに形成したR−1及びR−
2の磁気ディスク1は、下地膜3のCr(200)及び
磁性膜2中のCo(110)がガラス基板5に平行に優
先配向しているが、負のバイアスを印加した各実施例の
磁気ディスク1は、下地膜3のCr(200),磁性膜
2中のCo(110)のガラス基板面に対する結晶配向
性が低下し、下地膜3のCr(110)がガラス基板5
に平行に優先配向される傾向がある。
As is apparent from FIGS. 5 and 6, R-1 and R- formed without applying a negative bias.
The magnetic disk 1 of No. 2 has Cr (200) of the underlayer 3 and
Although Co in the magnetic layer 2 (110) is parallel to preferentially oriented in the glass substrate 5, the magnetic disk 1 of the embodiment of applying a negative bias, Cr (200) underlayer 3, a magnetic film
Crystal orientation is lowered with respect to the glass substrate surface of in 2 Co (110), Cr underlayer 3 (110) is a glass substrate 5
Tend to be preferentially oriented parallel to

【0034】[0034]

【発明の効果】以上に説明したように本発明は、ガラス
基板上に、少なくともV,Moのうち1種類を含むプリ
コート膜を形成し、このプリコート膜の上にCrからな
る下地膜及びCo−Cr−Ta−Ptの四元合金からな
る磁性膜をこの順に形成し、下地膜のCr結晶の格子面
Cr(200)及び磁性膜中のCo結晶の格子面Co
(110)を、共に、ガラス基板面に平行に優先配向し
た場合のX線回折強度と比較して低くし、成長するCr
結晶及びCo結晶の結晶性を低下させたので、保磁力H
cの非常に高い高密度記録の可能な磁気記録媒体を得る
ことができる。
As described above, according to the present invention, a precoat film containing at least one of V and Mo is formed on a glass substrate, and Cr is formed on the precoat film. An underlayer and a magnetic film composed of a quaternary alloy of Co—Cr—Ta—Pt are formed in this order, and the lattice plane Cr (200) of the Cr crystal of the underlayer and the lattice plane Co of the Co crystal in the magnetic film are formed.
(110) is lower than the X-ray diffraction intensity when both are preferentially oriented parallel to the glass substrate surface, and the growing Cr
Since the crystallinity of the crystal and the Co crystal was reduced, the coercive force H
A magnetic recording medium capable of high-density recording with a very high c can be obtained.

【0035】また、本発明の製造方法は、プリコート膜
を少なくともV,Moのうちの1種を含む材料によって
成膜し、さらに下地膜及び磁性膜を、負のバイアス電圧
を印加しながらスパッタ法によって形成するため、Cr
(110)の格子面をガラス基板面に平行に優先配向さ
せ、高密度記録の可能な磁気記録媒体とすることができ
る。
Further, according to the manufacturing method of the present invention, the precoat film is formed of a material containing at least one of V and Mo , and the undercoat film and the magnetic film are formed by a sputtering method while applying a negative bias voltage. To form Cr
By preferentially orienting the (110) lattice plane parallel to the glass substrate surface, a magnetic recording medium capable of high-density recording can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に基づく磁気ディスクの一例を示す部分
断面図
FIG. 1 is a partial sectional view showing an example of a magnetic disk according to the present invention.

【図2】本発明に基づくCr(110)がガラス基板面
に平行に優先配向した下地膜のCr結晶の単位胞を示す
概念図
FIG. 2 is a conceptual diagram showing a unit cell of a Cr crystal of a base film in which Cr (110) is preferentially oriented parallel to a glass substrate surface according to the present invention.

【図3】本発明に基づくCr(200)及びCo(11
0)の配向を示す概念図
FIG. 3 shows Cr (200) and Co (11) according to the present invention.
Conceptual diagram showing orientation of 0)

【図4】本発明に係るスパッタ装置の一例を示す概略図FIG. 4 is a schematic view showing an example of a sputtering apparatus according to the present invention.

【図5】実施例1〜4のX線回折強度の測定チャートFIG. 5 is a measurement chart of X-ray diffraction intensity of Examples 1 to 4.

【図6】実施例5のX線回折強度の測定チャートFIG. 6 is a measurement chart of X-ray diffraction intensity of Example 5.

【図7】実施例1〜4のバイアス電圧−保磁力Hc線図FIG. 7 is a diagram showing bias voltage-coercive force Hc diagrams of Examples 1 to 4.

【図8】実施例1〜4のX線回折強度比−保磁力Hc線
FIG. 8 is an X-ray diffraction intensity ratio-coercive force Hc diagram of Examples 1 to 4.

【図9】従来のCr(200)及びCo(110)がガ
ラス基板面に平行に優先配向したCr結晶及びCo結晶
の単位胞を示す概念図
FIG. 9 is a conceptual diagram showing a unit cell of a conventional Cr crystal and Co crystal in which Cr (200) and Co (110) are preferentially oriented parallel to the glass substrate surface.

【図10】従来のCr(110)の配向を示す概念図FIG. 10 is a conceptual diagram showing the orientation of conventional Cr (110).

【符号の説明】[Explanation of symbols]

1…磁気記録媒体(磁気ディスク)、2…磁性膜、3…
下地膜、4…プリコート膜、5…ガラス基板、6…スパ
ッタ装置、7…真空層、8…ターゲット、9…磁気ディ
スクホルダ、12…スパッタ用直流電源、13…バイア
ス用直流電源。
DESCRIPTION OF SYMBOLS 1 ... Magnetic recording medium (magnetic disk), 2 ... Magnetic film, 3 ...
Base film, 4 precoat film, 5 glass substrate, 6 sputtering device, 7 vacuum layer, 8 target, 9 magnetic disk holder, 12 DC power source for sputtering, 13 DC power source for bias.

フロントページの続き (58)調査した分野(Int.Cl.6,DB名) G11B 5/66 G11B 5/85Continuation of the front page (58) Field surveyed (Int.Cl. 6 , DB name) G11B 5/66 G11B 5/85

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ガラス基板上に、少なくともV,Moの
うち1種類を含むプリコート膜が形成され、このプリコ
ート膜の上にCrからなる下地膜及びCo−Cr−Ta
−Ptの四元合金からなる磁性膜がこの順に形成された
磁気記録媒体であって、前記下地膜のCr結晶の格子面
Cr(200)及び前記磁性膜中のCo結晶の格子面C
o(110)のX線回折強度を、共に、ガラス基板面に
平行に優先配向した場合のX線回折強度と比較して低く
したことを特徴とする磁気記録媒体。
1. At least V, Mo on a glass substrate
Among them, a precoat film containing one type is formed, and a base film made of Cr and Co—Cr—Ta are formed on the precoat film.
A magnetic recording medium in which a magnetic film made of a quaternary alloy of -Pt is formed in this order, wherein a lattice plane Cr (200) of a Cr crystal of the base film and a lattice plane C of a Co crystal in the magnetic film are formed.
A magnetic recording medium characterized in that the X-ray diffraction intensity of o (110) is both lower than the X-ray diffraction intensity when preferentially oriented parallel to the glass substrate surface.
【請求項2】 ガラス基板上にプリコート膜を形成し、
このプリコート膜の上にCrからなる下地膜及びCo−C
r−Ta−Ptの四元合金からなる磁性膜をこの順に形成
する磁気記録媒体の製造方法において、前記プリコート
膜を少なくともV,Moのうちの1種を含む材料によっ
て成膜し、さらに前記下地膜及び磁性膜を、負のバイア
ス電圧を印加しながらスパッタ法によって形成すること
を特徴とする磁気記録媒体の製造方法。
2. A precoat film is formed on a glass substrate,
On this pre-coat film, a base film made of Cr and Co-C
In a method for manufacturing a magnetic recording medium in which a magnetic film made of a quaternary alloy of r-Ta-Pt is formed in this order, the pre-coat film is formed of a material containing at least one of V and Mo. A method for manufacturing a magnetic recording medium, wherein a ground film and a magnetic film are formed by a sputtering method while applying a negative bias voltage.
JP5103181A 1993-04-28 1993-04-28 Magnetic recording medium and method of manufacturing the same Expired - Lifetime JP2850312B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5103181A JP2850312B2 (en) 1993-04-28 1993-04-28 Magnetic recording medium and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5103181A JP2850312B2 (en) 1993-04-28 1993-04-28 Magnetic recording medium and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH06309647A JPH06309647A (en) 1994-11-04
JP2850312B2 true JP2850312B2 (en) 1999-01-27

Family

ID=14347345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5103181A Expired - Lifetime JP2850312B2 (en) 1993-04-28 1993-04-28 Magnetic recording medium and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2850312B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3805018B2 (en) * 1996-04-26 2006-08-02 富士通株式会社 Magnetic recording medium and magnetic disk device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2555683B2 (en) * 1988-04-04 1996-11-20 日本ビクター株式会社 Magnetic recording media
JPH0450653A (en) * 1990-06-12 1992-02-19 Takara Shuzo Co Ltd Cancer detecting method and kit

Also Published As

Publication number Publication date
JPH06309647A (en) 1994-11-04

Similar Documents

Publication Publication Date Title
US5523173A (en) Magnetic recording medium with a CoPtCrB alloy thin film with a 1120 crystallographic orientation deposited on an underlayer with 100 orientation
US5736262A (en) Magnetic recording medium
JPH10188278A (en) Production of high-performance low-noise isotropic magnetic medium having chromium lower layer
KR100264484B1 (en) Thin film magnetic disk with chromium-titanium seed layer
US5084152A (en) Method for preparing high density magnetic recording medium
JPH09293227A (en) Magnetic recording medium and magnetic disk device
US5851628A (en) Magnetic recording medium and method for manufacturing the same
US4743348A (en) Magnetic medium for horizontal magnetization recording and method for making same
JP2833190B2 (en) Magnetic recording media
US5118564A (en) Longitudinal magnetic recording media with fine grain crystal magnetic layer
US4663193A (en) Process for manufacturing magnetic recording medium
US20020164506A1 (en) Magnetic thin film media with a pre-seed layer of CrTi
JP2850312B2 (en) Magnetic recording medium and method of manufacturing the same
US6872478B2 (en) Magnetic thin film media with a pre-seed layer of CrTiAl
JP3370720B2 (en) Magnetic recording medium and magnetic recording device
JP3018551B2 (en) In-plane magnetic recording media
JPH0814889B2 (en) Perpendicular magnetic recording media
JPH11219511A (en) Magnetic recording medium and magnetic recording device
JPH08180360A (en) Perpendicular magnetic recording medium and magnetic recorder
JP3041273B2 (en) Perpendicular magnetic recording medium and magnetic recording / reproducing apparatus using the same
JPH09265619A (en) Magnetic recording medium, its production and magnetic storage device
EP0241155B1 (en) Depositing vanadium underlayer for magnetic films
JP3052406B2 (en) Magnetic recording medium and magnetic storage device
JPH02154323A (en) Production of magnetic recording medium
US20020095767A1 (en) Magnetic recording medium and manufacturing method therefore

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071113

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081113

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091113

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101113

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111113

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 14

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 14

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131113

Year of fee payment: 15

EXPY Cancellation because of completion of term