JPH06309647A - Magnetic recording medium and its production - Google Patents

Magnetic recording medium and its production

Info

Publication number
JPH06309647A
JPH06309647A JP10318193A JP10318193A JPH06309647A JP H06309647 A JPH06309647 A JP H06309647A JP 10318193 A JP10318193 A JP 10318193A JP 10318193 A JP10318193 A JP 10318193A JP H06309647 A JPH06309647 A JP H06309647A
Authority
JP
Japan
Prior art keywords
film
magnetic
glass substrate
ray diffraction
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10318193A
Other languages
Japanese (ja)
Other versions
JP2850312B2 (en
Inventor
Makoto Mizukami
誠 水上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP5103181A priority Critical patent/JP2850312B2/en
Publication of JPH06309647A publication Critical patent/JPH06309647A/en
Application granted granted Critical
Publication of JP2850312B2 publication Critical patent/JP2850312B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To produce a magnetic recording medium having >=2,200Oe coercive force Hc. CONSTITUTION:A magnetic film 2 of a Co-Cr-Ta-Pt quaternary alloy is formed on a glass substrate 5 with an underlayer 3 of Cr and a precoat film 4 to obtain a magnetic disk 1. In this disk 1, the X-ray diffraction intensities of Cr (200) and Co (110) as lattice faces of Cr and Co crystals are lower than those of Cr (200) and Co (110) preferentially oriented parallel to the surface of the glass substrate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ガラス基板を使用した
磁気記録媒体に関し、特に、高い保磁力Hcを有する高
密度記録に好適な磁気記録媒体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic recording medium using a glass substrate, and more particularly to a magnetic recording medium suitable for high density recording having a high coercive force Hc.

【0002】[0002]

【従来の技術】近来、磁気記録媒体はますます高密度記
録の可能なものが希求されており、そのためにより高い
保磁力Hcをもつ磁気記録媒体の開発努力がなされてい
る。磁気ディスクの分野に関しては、従来塗布型ディス
クであったものが高密度記録に対応できるスパッタ型デ
ィスクが主流となってきている。
2. Description of the Related Art Recently, magnetic recording media capable of high-density recording have been sought, and therefore, efforts have been made to develop magnetic recording media having higher coercive force Hc. In the field of magnetic disks, sputter disks, which are conventionally coated disks but are compatible with high density recording, are becoming the mainstream.

【0003】上記スパッタ型による磁気ディスクは、当
初NiPをめっきしたAl基板上にCr下地膜、Co−Ni
あるいはCo−Ni−Cr磁性膜をこの順に設け、この磁
性膜の上にカーボン膜及び潤滑層を設けたものが開発さ
れた。そして、記録密度の向上により、ヘッドの浮上量
をより少なくできるガラス基板が登場し、磁性膜につい
ては低ノイズのCo−Cr−Ta、Co−Cr−Ptが開発さ
れた。
The magnetic disk of the above-mentioned sputter type has a Cr underlayer and a Co-Ni film on an Al substrate which is initially plated with NiP.
Alternatively, a Co-Ni-Cr magnetic film is provided in this order, and a carbon film and a lubricating layer are provided on this magnetic film. With the increase in recording density, a glass substrate that can reduce the flying height of the head has appeared, and low noise Co-Cr-Ta and Co-Cr-Pt have been developed for magnetic films.

【0004】上記保磁力Hcをより高くするために、例
えば特開平1−256017号公報にはCo−Cr−Ta
−Ptからなる磁性層を用いる技術が記載され、また、
特公平4−50653号公報には、負のバイアス電圧を
印加しながら成膜するバイアススパッタ技術が記載され
ている。
In order to further increase the coercive force Hc, for example, Japanese Patent Application Laid-Open No. 1-256017 discloses Co-Cr-Ta.
A technique using a magnetic layer of -Pt is described, and
Japanese Patent Publication No. 4-50653 discloses a bias sputtering technique for forming a film while applying a negative bias voltage.

【0005】[0005]

【発明が解決しようとする課題】しかし、上述のいずれ
の技術においても、前記低浮上量特性に優れたガラス基
板を用いた場合には、保磁力Hcが2200(Oe)を
超える高特性の磁気ディスクは得られていない。本発明
の目的は、上記2200(Oe)以上の保磁力Hcを有
する磁気記録媒体及びその製造方法を提供することにあ
る。
However, in any of the above-mentioned techniques, when the glass substrate excellent in the low flying height characteristic is used, the high magnetic property of the coercive force Hc exceeds 2200 (Oe). No discs have been obtained. An object of the present invention is to provide a magnetic recording medium having a coercive force Hc of 2200 (Oe) or more and a method for manufacturing the same.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するた
め、本発明の磁気記録媒体は、磁性膜中のCr結晶及び
Co結晶の格子面が、Cr結晶の格子面Cr(200)及
びCo結晶の格子面Co(110)が共にガラス基板面に
平行に優先配向した場合のX線回折強度と比較して、C
r(200)及びCo(110)のX線回折強度を低くし
てある。
In order to solve the above problems, in the magnetic recording medium of the present invention, the lattice planes of the Cr crystal and the Co crystal in the magnetic film are the lattice planes of the Cr crystal, Cr (200) and Co crystal. In comparison with the X-ray diffraction intensity in the case where the lattice planes Co (110) of the both are preferentially oriented parallel to the glass substrate surface,
The X-ray diffraction intensities of r (200) and Co (110) are low.

【0007】また本発明の製造方法は、プリコート膜を
少なくともV,Mo,NiPのうちの1種を含む材料によ
って成膜し、さらに下地膜及び磁性膜を、負のバイアス
電圧を印加しながらスパッタ法によって形成してある。
In the manufacturing method of the present invention, the precoat film is formed of a material containing at least one of V, Mo, and NiP, and the underlayer film and the magnetic film are sputtered while applying a negative bias voltage. It is formed by the method.

【0008】[0008]

【作用】本発明の磁気記録媒体は、プリコート膜、下地
膜及び磁性膜の成膜条件等を操作することにより、成長
するCr結晶及びCo結晶の格子面とガラス基板面との相
対位置を調整し、保磁力Hcの向上を図る。
In the magnetic recording medium of the present invention, the relative positions of the lattice planes of the growing Cr crystals and Co crystals and the glass substrate surface are adjusted by controlling the film forming conditions of the precoat film, the base film and the magnetic film. The coercive force Hc is improved.

【0009】[0009]

【実施例】以下に本発明の実施例を図に基づいて説明す
る。ここにおいて図1は本発明に基づく磁気ディスクの
一例を示す部分断面図である。この磁気ディスク1はC
o−Cr−Ta−Ptの四元合金からなる磁性膜2が、Cr
からなる下地膜3、及びプリコート膜4を設けたガラス
基板5の上に形成されている。磁気ディスク1として使
用するには、磁性膜2の上に図示しないカーボン潤滑層
をおき、さらにその上に潤滑剤を塗布する。
Embodiments of the present invention will be described below with reference to the drawings. Here, FIG. 1 is a partial sectional view showing an example of a magnetic disk according to the present invention. This magnetic disk 1 is C
The magnetic film 2 made of a quaternary alloy of o-Cr-Ta-Pt is
It is formed on the glass substrate 5 on which the base film 3 made of and the precoat film 4 are provided. To use it as the magnetic disk 1, a carbon lubricating layer (not shown) is placed on the magnetic film 2, and a lubricant is further applied thereon.

【0010】そして、磁性膜2においては、Cr結晶
(体心立方晶)及びCo結晶(六方晶)の格子面は、Cr
結晶の格子面Cr(200)及びCo結晶の格子面Co
(110)が共にガラス基板面に平行に優先配向した場
合のX線回折強度と比較して、Cr(200)及びCo
(110)のX線回折強度は低くなっている。また、同
様にCr(110)のX線回折強度は高くなっている。
このような格子面を有する本発明に基づく磁気ディスク
1は保磁力Hcが2200(Oe)以上となり、さらに
は3200(Oe)を超えることも可能である。
In the magnetic film 2, the lattice planes of the Cr crystal (body-centered cubic crystal) and the Co crystal (hexagonal crystal) are Cr.
Crystal lattice plane Cr (200) and Co crystal lattice plane Co
Compared with the X-ray diffraction intensity when both (110) are preferentially oriented parallel to the glass substrate surface, Cr (200) and Co
The X-ray diffraction intensity of (110) is low. Similarly, the X-ray diffraction intensity of Cr (110) is high.
The magnetic disk 1 according to the present invention having such a lattice plane has a coercive force Hc of 2200 (Oe) or more, and can even exceed 3200 (Oe).

【0011】上記内容を具体的に説明する。図9は、従
来のCr(200)及びCo(110)がガラス基板面に
平行に優先配向した磁性膜2に係るCr結晶及びCo結晶
の単位胞を示す概念図である。2θ/θ法によるX線回
折においては、ガラス基板5の面に対して平行となった
格子面のみからX線が回折されるため、図9においては
これらCr(200)及びCo(110)の回折強度が強
く出る。
The above contents will be specifically described. FIG. 9 is a conceptual diagram showing a unit cell of a Cr crystal and a Co crystal in the magnetic film 2 in which the conventional Cr (200) and Co (110) are preferentially oriented parallel to the glass substrate surface. In the X-ray diffraction by the 2θ / θ method, the X-rays are diffracted only from the lattice plane parallel to the surface of the glass substrate 5, so that in FIG. 9, these Cr (200) and Co (110) The diffraction intensity is strong.

【0012】しかし、上述のようにCr(200)及び
Co(110)がガラス基板5面に平行に優先配向した
場合には、図10に示すように、Cr(110)はガラ
ス基板5の面と平行でなくなる。従って、このCr(1
10)の回折強度は低下する。
However, as described above, when Cr (200) and Co (110) are preferentially oriented parallel to the surface of the glass substrate 5, as shown in FIG. Is no longer parallel to. Therefore, this Cr (1
The diffraction intensity of 10) decreases.

【0013】図2は、本発明に基づくCr(110)が
ガラス基板面に平行に優先配向した磁性膜2のCr結晶
の単位胞を示す概念図である。この図2及び上記図10
の比較から明らかなように、図2におけるCr(11
0)の回折強度は図10の場合よりも強くなる。一方、
図3には本発明に基づくCr(200)及びCo(11
0)の様子を示したが、図9との比較から明らかなよう
に図3におけるCr(200)及びCo(110)の回折
強度は図9の場合よりも弱くなる。
FIG. 2 is a conceptual diagram showing a unit cell of a Cr crystal of the magnetic film 2 in which Cr (110) according to the present invention is preferentially oriented parallel to the glass substrate surface. This FIG. 2 and the above FIG.
As is clear from the comparison of Cr (11
The diffraction intensity of 0) is stronger than in the case of FIG. on the other hand,
FIG. 3 shows Cr (200) and Co (11) according to the present invention.
0), the diffraction intensities of Cr (200) and Co (110) in FIG. 3 are weaker than in the case of FIG. 9, as is clear from comparison with FIG.

【0014】すなわち、本発明に基づく磁性膜2中のC
r(200)及びCo(110)のX線回折強度をそれぞ
れICr(200)及びICo(110)とし、前記図9におけるCr
(200)及びCo(110)のX線回折強度をそれぞ
れI0Cr(200)及びI0Co(110)としたとき、(ICr(200)
/I0Cr(200))<1となるが好ましくは(ICr(200)
0Cr(200))≦0.4である。また(ICo(110)/I
0Co(110))<1となるが好ましくは(ICo(110)/I
0Co(110))≦0.6である。
That is, C in the magnetic film 2 according to the present invention.
The X-ray diffraction intensities of r (200) and Co (110) are I Cr (200) and I Co (110) , respectively.
When the X-ray diffraction intensities of (200) and Co (110) are I 0Cr (200) and I 0Co (110) , respectively, (I Cr (200)
/ I 0Cr (200) ) <1, but preferably (I Cr (200) /
I 0Cr (200) ) ≦ 0.4. Also (I Co (110) / I
0Co (110) ) <1, but preferably (I Co (110) / I
0Co (110) ) ≦ 0.6.

【0015】また、本発明に基づく磁性膜2中のCr
(110)のX線回折強度をICr(110)とし、前記図1
0におけるCr(110)のX線回折強度をI0Cr(110)
としたとき、(ICr(110)/I0Cr(110))>1となるが
好ましくは(ICr(110)/I0Cr(11 0))≧1.35であ
る。
Further, Cr in the magnetic film 2 according to the present invention is
The X-ray diffraction intensity of (110) is I Cr (110), and
The X-ray diffraction intensity of Cr (110) at 0 is I 0Cr (110)
Then, (I Cr (110) / I 0Cr (110) )> 1 is satisfied, but (I Cr (110) / I 0Cr ( 110 ) ) ≧ 1.35 is preferable.

【0016】次に、本発明に基づく磁気ディスク1の製
造方法の一例を説明するが、上述のように、磁性膜2中
のCr及びCo結晶の優先配向面が変化することが最も大
事であり、この配向面の変化を引き起こすことができる
製造方法であればどのようなものでも制限はない。
Next, an example of a method of manufacturing the magnetic disk 1 according to the present invention will be described. Most importantly, as described above, the preferentially oriented planes of the Cr and Co crystals in the magnetic film 2 change. There is no limitation on any manufacturing method as long as it can cause the change of the orientation plane.

【0017】図4は、本発明に係るスパッタ装置の一例
を示す概略図である。同図において、スパッタ装置6は
真空層7内にターゲット8及び磁気ディスクホルダ9を
備えており、また、Ar等の不活性ガスの導入口10及
び真空排気口11が設けられている。そして、ターゲッ
ト8にはスパッタ用直流電源12が接続されており、ま
た、磁気ディスクホルダ9にはバイアス用直流電源13
が接続されている。
FIG. 4 is a schematic view showing an example of the sputtering apparatus according to the present invention. In the figure, the sputtering apparatus 6 is provided with a target 8 and a magnetic disk holder 9 in a vacuum layer 7, and is provided with an inlet 10 for an inert gas such as Ar and a vacuum exhaust port 11. A DC power supply 12 for sputtering is connected to the target 8, and a DC power supply 13 for bias is connected to the magnetic disk holder 9.
Are connected.

【0018】スパッタ装置6を用いて本発明に基づく磁
気ディスク1を製造するには、先ず、既にスパッタ法等
によってV,Mo,NiPのうちの1種以上を含む材料に
よって成膜してあるプリコート膜4付きのガラス基板5
を磁気ディスクホルダ9に取り付ける。そして、真空排
気口11から真空引きした後に導入口10から例えばA
rガスを導入し、スパッタ用直流電源12及びバイアス
用直流電源13によってそれぞれDC電圧を印加する。
In order to manufacture the magnetic disk 1 according to the present invention by using the sputtering apparatus 6, first, a precoat film which has already been formed by a sputtering method or the like with a material containing at least one of V, Mo and NiP. Glass substrate 5 with membrane 4
Is attached to the magnetic disk holder 9. Then, after evacuating from the vacuum exhaust port 11, from the inlet port 10 to, for example, A
An r gas is introduced, and a DC voltage is applied by the DC power supply 12 for sputtering and a DC power supply 13 for bias.

【0019】上述のようにプリコート膜4付きのガラス
基板5に負のバイアス電圧を印加しながらCrの下地膜
3あるいはCo−Cr−Ta−Ptの四元合金の磁性膜2を
形成する場合、ターゲット8から飛来してガラス基板5
に付着したCr等の原子の一部は、負のバイアス電圧の
影響でスパッタされて優先配向面の変化を生じ、前記本
発明に基づく格子面を有するようになり、保磁力Hc2
200(Oe)以上の磁気ディスク1とすることができ
る。
As described above, when the Cr base film 3 or the Co-Cr-Ta-Pt quaternary alloy magnetic film 2 is formed on the glass substrate 5 with the precoat film 4 while applying a negative bias voltage, Glass substrate 5 flying from the target 8
Some of the atoms such as Cr adhering to are sputtered under the influence of a negative bias voltage to cause the change of the preferential orientation plane, and have the lattice plane according to the present invention, and the coercive force Hc2.
The magnetic disk 1 of 200 (Oe) or more can be used.

【0020】次に、本発明に基づく実施例をさらに詳細
に説明する。実施例1 3.5インチのガラス基板5上に、直流マグネトロン法
によりVからなるプリコート膜4を60Å成膜した。こ
のときの成膜条件は、到達真空度を2×10-6Tor
r、Arスパッタガス圧を2mTorr、ガラス基板5
の加熱温度を200℃とした。上記プリコート膜4の成
膜後、ガラス基板5を冷却して真空装置から取り外し
た。
Next, examples according to the present invention will be described in more detail. Example 1 On a 3.5-inch glass substrate 5, a precoat film 4 of V was formed by 60 Å by a DC magnetron method. The film-forming conditions at this time are that the ultimate vacuum is 2 × 10 −6 Tor.
r, Ar sputter gas pressure is 2 mTorr, glass substrate 5
The heating temperature was 200 ° C. After the precoat film 4 was formed, the glass substrate 5 was cooled and removed from the vacuum device.

【0021】次に、上記プリコート膜4付きのガラス基
板5をスパッタ装置6の磁気ディスクホルダ9に取り付
け、ガラス基板5に−200Vのバイアス電圧を印加し
ながらCrからなる下地膜3を4000Å、さらにこの
上にCo75.2Cr9.4Ta5.7Pt9 .7(各原子に添えた数値
はat%である)の組成からなる四元合金の磁性膜2を2
50Å成膜して磁気ディスク1とした。このときの成膜
条件は、到達真空度を2×10-6Torr、Arスパッ
タガス圧を2mTorr、ガラス基板5の加熱温度を2
50℃とした。
Next, the glass substrate 5 with the precoat film 4 was attached to the magnetic disk holder 9 of the sputtering apparatus 6, and the base film 3 made of Cr was applied to the glass substrate 5 while applying a bias voltage of -200 V to 4000 liters. Co 75.2 Cr 9.4 Ta on the 5.7 Pt 9 .7 magnetic film 2 quaternary alloy having the composition (each numerical value accompanying the atoms are at%) 2
A 50 Å film was formed to obtain a magnetic disk 1. The film forming conditions at this time are as follows: ultimate vacuum of 2 × 10 −6 Torr, Ar sputtering gas pressure of 2 mTorr, and glass substrate 5 heating temperature of 2
It was set to 50 ° C.

【0022】また、本実施例の比較用として、バイアス
電圧を印加しない以外は上記製造方法と全く同様にして
磁気ディスク1(R−1)を作成した。そして、実施例
1及びR−1の磁性膜2の結晶配向性をX線回折装置に
よって、また、磁気特性(保磁力Hc)を振動試料型磁
力計(VSM)によって測定した。
For comparison with this example, a magnetic disk 1 (R-1) was prepared in the same manner as in the above manufacturing method except that a bias voltage was not applied. Then, the crystal orientation of the magnetic film 2 of Examples 1 and R-1 was measured by an X-ray diffractometer, and the magnetic characteristics (coercive force Hc) were measured by a vibrating sample magnetometer (VSM).

【0023】得られた磁気ディスク1に関する結果を図
5、図7及び図8に示した。図5はX線回折強度の測定
チャートであり、R−1に比較して本実施例の磁性膜2
はCr(200)及びCo(110)の強度が低くなり、
Cr(110)の強度が高くなっていた。また、図7は
バイアス電圧−保磁力Hc線図であり、R−1の磁気デ
ィスク1の保磁力Hcは2100(Oe)であるのに対
して本実施例のものは3060(Oe)と高かった。
The results for the obtained magnetic disk 1 are shown in FIGS. 5, 7 and 8. FIG. 5 is a measurement chart of the X-ray diffraction intensity, showing the magnetic film 2 of the present embodiment in comparison with R-1.
The strength of Cr (200) and Co (110) becomes low,
The strength of Cr (110) was high. FIG. 7 is a bias voltage-coercive force Hc diagram. The coercive force Hc of the magnetic disk 1 of R-1 is 2100 (Oe), whereas that of this embodiment is as high as 3060 (Oe). It was

【0024】さらに、図8はX線回折強度比−保磁力H
c線図であり、図中のA〜Cは下記内容を表す。なお、
下記中のIは各実施例の磁性膜2のX線回折強度、I0
は比較用の磁性膜2のX線回折強度である。 A……Cr(200)のX線回折強度比;A=ICr(200)
/I0Cr(200) B……Co(110)のX線回折強度比;B=ICo(110)
/I0Co(110) C……Cr(110)のX線回折強度比;C=ICr(110)
/I0Cr(110) 図8に示したように本実施例による磁性膜2の上記Aは
0.08、Bは0.16、Cは2.77であった(な
お、R−1の磁性膜2はA,B,Cとも1である)。
Further, FIG. 8 shows X-ray diffraction intensity ratio-coercive force H.
It is a c diagram, and A to C in the figure represent the following contents. In addition,
I in the following is the X-ray diffraction intensity of the magnetic film 2 of each example, I0
Is the X-ray diffraction intensity of the magnetic film 2 for comparison. A: X-ray diffraction intensity ratio of Cr (200) ; A = ICr (200)
/ I 0Cr (200) B ... X-ray diffraction intensity ratio of Co (110) ; B = I Co (110)
/ I 0 Co (110) C ... X-ray diffraction intensity ratio of Cr (110) ; C = I Cr (110)
/ I 0Cr (110) As shown in FIG. 8, the above-mentioned A of the magnetic film 2 according to the present example was 0.08, B was 0.16, and C was 2.77 (note that the magnetic property of R-1 is R-1). Membrane 2 is 1 for both A, B, and C).

【0025】実施例2〜4 実施例1のガラス基板5に印加するバイアス電圧を−1
00V(実施例2)、−300V(実施例3)、−40
0V(実施例4)と代えた以外は実施例1と同様にして
それぞれ磁気ディスク1を製造した。
Examples 2 to 4 The bias voltage applied to the glass substrate 5 of Example 1 is -1.
00V (Example 2), -300V (Example 3), -40
Magnetic disks 1 were manufactured in the same manner as in Example 1 except that 0 V (Example 4) was used instead.

【0026】これらの結果も図5、図7及び図8に示し
た。図5において、本実施例の磁性膜2はいずれもR−
1に比較してCr(200)及びCo(110)の強度が
低くなり、Cr(110)の強度が高くなっている。ま
た、図7に示すように、本実施例2〜4のものの保磁力
Hcはそれぞれ2450(Oe),3100(Oe),
2800(Oe)と高かった。
These results are also shown in FIGS. 5, 7 and 8. In FIG. 5, each of the magnetic films 2 of this embodiment is R-.
As compared with 1, the strengths of Cr (200) and Co (110) are lower and the strength of Cr (110) is higher. Further, as shown in FIG. 7, the coercive force Hc of each of Examples 2 to 4 is 2450 (Oe), 3100 (Oe),
It was as high as 2800 (Oe).

【0027】さらに、図8において本実施例2〜4によ
る磁性膜2の上記Aはそれぞれ0.15,0.03,
0.07、Bは0.26,0.13,0.26、Cは
2.81,2.93,1.38であった。
Further, in FIG. 8, the above-mentioned A of the magnetic film 2 according to Examples 2 to 4 is 0.15, 0.03, respectively.
0.07, B was 0.26, 0.13, 0.26, and C was 2.81, 2.93, 1.38.

【0028】実施例5 実施例1の下地膜3の厚さを1000Åに代えた以外は
実施例1と同様にして磁気ディスク1を製造した。この
磁気ディスク1の保磁力Hcは2300(Oe)であっ
た。また、バイアス電圧を印加しない比較用の磁気ディ
スク1(R−2)も作成したが、この保磁力Hcは14
00(Oe)と低かった。
Example 5 A magnetic disk 1 was manufactured in the same manner as in Example 1 except that the thickness of the underlayer film 3 in Example 1 was changed to 1000Å. The coercive force Hc of this magnetic disk 1 was 2300 (Oe). A magnetic disk 1 (R-2) for comparison was also prepared without applying a bias voltage, but the coercive force Hc was 14
It was as low as 00 (Oe).

【0029】図6は本実施例に係るX線回折強度の測定
チャートであり、R−2に比較してCr(200)及び
Co(110)の強度が低くなっている。
FIG. 6 is a measurement chart of the X-ray diffraction intensity according to this example, in which the intensity of Cr (200) and Co (110) is lower than that of R-2.

【0030】実施例6 実施例1のVからなるプリコート膜4に代えて、Cr膜
500Å、カーボン膜500Å及びMo膜60Åをこの
順に形成してプリコート膜4とした以外は実施例1と同
様にして磁気ディスク1を製造した。この磁気ディスク
1の保磁力Hcは3230(Oe)であった。また、バ
イアス電圧を印加しない比較用の磁気ディスク1(R−
3)も作成したが、この保磁力Hcは2150(Oe)
と低かった。
Example 6 The same as Example 1 except that a Cr film 500Å, a carbon film 500Å, and a Mo film 60Å were formed in this order in place of the V precoat film 4 of Example 1 to form the precoat film 4. Magnetic disk 1 was manufactured. The coercive force Hc of this magnetic disk 1 was 3230 (Oe). Further, the magnetic disk for comparison 1 (R-
3) was also created, but this coercive force Hc is 2150 (Oe)
Was low.

【0031】比較例1 実施例1のVからなるプリコート膜4に代えて、Cr膜
60Åを成膜し、真空装置から取り出さずに、続けて−
200Vのバイアス電圧を印加しながらCrからなる下
地膜3を2000Å成膜した以外は実施例1と同様にし
て磁気ディスク1を製造したが、この保磁力Hcは20
50(Oe)と低かった。
Comparative Example 1 A Cr film 60Å was formed in place of the V precoat film 4 of Example 1, and was continuously taken out without removing it from the vacuum apparatus.
A magnetic disk 1 was manufactured in the same manner as in Example 1 except that the underlayer film 3 made of Cr was deposited to 2000 Å while applying a bias voltage of 200 V. The coercive force Hc was 20.
It was as low as 50 (Oe).

【0032】以上の結果から明らかなように、負のバイ
アス電圧を印加して形成した本発明に基づく磁気ディス
ク1は、いずれも負のバイアス電圧を印加せずに形成し
たR−1〜R−3の磁気ディスク1よりも高い保磁力H
cを有している。また、バイアス電圧が−300V近辺
に保磁力Hcのピークがあり、約3100(Oe)の磁
性膜2を得ることができる。また、表1の実施例7に示
すようにプリコート膜4の種類を代えることで保磁力H
c3230(Oe)と非常に高性能の磁性膜2も得てい
る。
As is clear from the above results, in the magnetic disk 1 according to the present invention formed by applying a negative bias voltage, all of R-1 to R- formed without applying a negative bias voltage. Coercive force H higher than that of magnetic disk 1 of 3
have c. Further, there is a peak of the coercive force Hc in the vicinity of the bias voltage of -300 V, and the magnetic film 2 of about 3100 (Oe) can be obtained. Further, as shown in Example 7 of Table 1, the coercive force H can be changed by changing the type of the precoat film 4.
The magnetic film 2 having a very high performance of c3230 (Oe) was also obtained.

【0033】そして、図5及び図6から明らかなよう
に、負のバイアスを印加せずに形成したR−1及びR−
2の磁性膜2は、Cr(200)及びCo(110)がガ
ラス基板5に平行に優先配向しているが、負のバイアス
を印加した各実施例の磁性膜2はCr(200),Co
(110)のガラス基板面に対する結晶配向性が低下
し、Cr(110)がガラス基板5に平行に優先配向さ
れる傾向がある。
As is apparent from FIGS. 5 and 6, R-1 and R- formed without applying a negative bias.
In the magnetic film 2 of No. 2, Cr (200) and Co (110) are preferentially oriented parallel to the glass substrate 5, but the magnetic films 2 of the respective examples to which a negative bias is applied are Cr (200) and Co (110).
The crystal orientation of (110) with respect to the glass substrate surface is lowered, and Cr (110) tends to be preferentially oriented parallel to the glass substrate 5.

【0034】[0034]

【発明の効果】以上に説明したように本発明は、ガラス
基板面に対するCr(200),Co(110)の結晶配
向性を低下させCr(110)の格子面をガラス基板面
に平行に優先配向してあるため、保磁力Hcの非常に高
い高密度記録の可能な磁気記録媒体である。
As described above, according to the present invention, the crystal orientation of Cr (200) and Co (110) with respect to the glass substrate surface is reduced and the lattice plane of Cr (110) is preferentially parallel to the glass substrate surface. Since it is oriented, it is a magnetic recording medium capable of high-density recording with a very high coercive force Hc.

【0035】また、本発明の製造方法は、プリコート膜
を少なくともV,Mo,NiPのうちの1種を含む材料に
よって成膜し、さらに下地膜及び磁性膜を、負のバイア
ス電圧を印加しながらスパッタ法によって形成するた
め、Cr(110)の格子面をガラス基板面に平行に優
先配向させ、高密度記録の可能な磁気記録媒体とするこ
とができる。
Further, in the manufacturing method of the present invention, the precoat film is formed of a material containing at least one of V, Mo and NiP, and the base film and the magnetic film are further applied with a negative bias voltage. Since it is formed by the sputtering method, the lattice plane of Cr (110) can be preferentially oriented parallel to the glass substrate surface, and a magnetic recording medium capable of high density recording can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に基づく磁気ディスクの一例を示す部分
断面図
FIG. 1 is a partial sectional view showing an example of a magnetic disk according to the present invention.

【図2】本発明に基づくCr(110)がガラス基板面
に平行に優先配向した磁性膜のCr結晶の単位胞を示す
概念図
FIG. 2 is a conceptual diagram showing a unit cell of a Cr crystal of a magnetic film in which Cr (110) according to the present invention is preferentially oriented parallel to a glass substrate surface.

【図3】本発明に基づくCr(200)及びCo(11
0)の配向を示す概念図
FIG. 3 shows Cr (200) and Co (11) according to the present invention.
0) Conceptual diagram showing orientation

【図4】本発明に係るスパッタ装置の一例を示す概略図FIG. 4 is a schematic view showing an example of a sputtering apparatus according to the present invention.

【図5】実施例1〜4のX線回折強度の測定チャートFIG. 5 is a measurement chart of X-ray diffraction intensities of Examples 1 to 4.

【図6】実施例5のX線回折強度の測定チャートFIG. 6 is a measurement chart of X-ray diffraction intensity of Example 5.

【図7】実施例1〜4のバイアス電圧−保磁力Hc線図7 is a bias voltage-coercive force Hc diagram of Examples 1 to 4. FIG.

【図8】実施例1〜4のX線回折強度比−保磁力Hc線
8 is an X-ray diffraction intensity ratio-coercive force Hc diagram of Examples 1 to 4. FIG.

【図9】従来のCr(200)及びCo(110)がガラ
ス基板面に平行に優先配向した磁性膜に係るCr結晶及
びCo結晶の単位胞を示す概念図
FIG. 9 is a conceptual diagram showing a unit cell of a Cr crystal and a Co crystal related to a magnetic film in which conventional Cr (200) and Co (110) are preferentially oriented parallel to the glass substrate surface.

【図10】従来のCr(110)の配向を示す概念図FIG. 10 is a conceptual diagram showing the orientation of conventional Cr (110).

【符号の説明】[Explanation of symbols]

1…磁気記録媒体(磁気ディスク)、2…磁性膜、3…
下地膜、4…プリコート膜、5…ガラス基板、6…スパ
ッタ装置、7…真空層、8…ターゲット、9…磁気ディ
スクホルダ、12…スパッタ用直流電源、13…バイア
ス用直流電源。
1 ... Magnetic recording medium (magnetic disk), 2 ... Magnetic film, 3 ...
Base film, 4 ... Precoat film, 5 ... Glass substrate, 6 ... Sputtering device, 7 ... Vacuum layer, 8 ... Target, 9 ... Magnetic disk holder, 12 ... Sputtering DC power supply, 13 ... Biasing DC power supply.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成6年7月25日[Submission date] July 25, 1994

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】請求項1[Name of item to be corrected] Claim 1

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0006[Correction target item name] 0006

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0006】[0006]

【課題を解決するための手段】上記課題を解決するた
め、本発明の磁気記録媒体は、Cr結晶の格子面Cr
(200)及びCo結晶の格子面Co(110)が共に
ガラス基板面に平行に優先配向した場合のX線回折強度
と比較して、Cr(200)及びCo(110)のX線
回折強度を低くしてある。
In order to solve the above problems, the magnetic recording medium of the present invention has a Cr crystal lattice plane Cr.
The X-ray diffraction intensities of Cr (200) and Co (110) are compared with the X-ray diffraction intensities when both the lattice plane Co (110) of (200) and the Co crystal are preferentially oriented parallel to the glass substrate surface. It's low.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0010[Correction target item name] 0010

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0010】そして、Cr結晶(体心立方晶)及びCo
結晶(六方晶)の格子面は、Cr結晶の格子面Cr(2
00)及びCo結晶の格子面Co(110)が共にガラ
ス基板面に平行に優先配向した場合のX線回折強度と比
較して、Cr(200)及びCo(110)のX線回折
強度は低くなっている。また、同様にCr(110)の
X線回折強度は高くなっている。このような格子面を有
する本発明に基づく磁気ディスク1は保磁力Hcが22
00(Oe)以上となり、さらには3200(Oe)を
超えることも可能である。
Then, Cr crystal (body centered cubic crystal) and Co
The lattice plane of the crystal (hexagonal) is the lattice plane of the Cr crystal Cr (2
00) and the lattice plane Co (110) of the Co crystal are preferentially oriented parallel to the glass substrate surface, the X-ray diffraction intensity of Cr (200) and Co (110) is low. Has become. Similarly, the X-ray diffraction intensity of Cr (110) is high. The magnetic disk 1 according to the present invention having such a lattice plane has a coercive force Hc of 22.
It is possible to be more than 00 (Oe) and even more than 3200 (Oe).

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0011[Correction target item name] 0011

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0011】上記内容を具体的に説明する。図9は、従
来のCr(200)及びCo(110)がガラス基板面
に平行に優先配向したCr結晶及びCo結晶の単位胞を
示す概念図である。2θ/θ法によるX線回折において
は、ガラス基板5の面に対して平行となった格子面のみ
からX線が回折されるため、図9においてはこれらCr
(200)及びCo(110)の回折強度が強く出る。
The above contents will be specifically described. FIG. 9 is a conceptual diagram showing a unit cell of a Cr crystal and a Co crystal in which conventional Cr (200) and Co (110) are preferentially oriented parallel to the glass substrate surface. In the X-ray diffraction by the 2θ / θ method, since the X-rays are diffracted only from the lattice plane parallel to the surface of the glass substrate 5, in FIG.
The diffraction intensity of (200) and Co (110) is strong.

【手続補正5】[Procedure Amendment 5]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0013[Correction target item name] 0013

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0013】図2は、本発明に基づくCr(110)が
ガラス基板面に平行に優先配向した下地膜3のCr結晶
の単位胞を示す概念図である。この図2及び上記図10
の比較から明らかなように、図2におけるCr(11
0)の回折強度は図10の場合よりも強くなる。一方、
図3には本発明に基づくCr(200)及びCo(11
0)の様子を示したが、図9との比較から明らかなよう
に図3におけるCr(200)及びCo(110)の回
折強度は図9の場合よりも弱くなる。
FIG. 2 is a conceptual diagram showing a unit cell of Cr crystals of the underlayer 3 in which Cr (110) according to the present invention is preferentially oriented parallel to the glass substrate surface. This FIG. 2 and the above FIG.
As is clear from the comparison of Cr (11)
The diffraction intensity of 0) is stronger than in the case of FIG. on the other hand,
FIG. 3 shows Cr (200) and Co (11) according to the present invention.
0), the diffraction intensities of Cr (200) and Co (110) in FIG. 3 are weaker than those in FIG. 9 as is clear from comparison with FIG.

【手続補正6】[Procedure correction 6]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0014[Correction target item name] 0014

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0014】すなわち、本発明に基づく下地膜3中のC
r(200)及び磁性膜2中のCo(110)のX線回
折強度をそれぞれICr(200) 及びICo(110) とし、前記
図9におけるCr(200)及びCo(110)のX線
回折強度をそれぞれIOCr(20 0)及びIOCo(110)としたと
き、(ICr(200) /IOCr(200))<1となるが、好まし
くは(ICr(200) /IOCr(200))≦0.4である。また
(ICo(110) /IOCo( 110))<1となるが、好ましくは
(ICo(110) /IOCo(110))≦0.6である。
That is, C in the base film 3 according to the present invention
The X-ray diffraction intensities of r (200) and Co (110) in the magnetic film 2 are I Cr (200) and I Co (110) , respectively, and the X-rays of Cr (200) and Co (110) in FIG. When the diffraction intensities are I OCr ( 200 ) and I OCo (110) , respectively, (I Cr (200) / I OCr (200) ) <1, but preferably (I Cr (200) / I OCr (200) ) ≦ 0.4. Further, (I Co (110) / I OCo ( 110) ) <1, but (I Co (110) / I OCo (110) ) ≦ 0.6 is preferable.

【手続補正7】[Procedure Amendment 7]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0015[Name of item to be corrected] 0015

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0015】また、本発明に基づく下地膜3中のCr
(110)のX線回折強度をICr(110 ) とし、前記図1
0におけるCr(110)のX線回折強度をIOCr(110)
としたとき、(ICr(110) /IOCr(110))>1となる
が、好ましくは(ICr(110) /IOCr(110))≧1.35
である。
Further, Cr in the underlayer film 3 according to the present invention is
The X-ray diffraction intensity of (110 ) is I Cr (110 )
The X-ray diffraction intensity of Cr (110) at 0 is I OCr (110)
Then, (I Cr (110) / I OCr (110) )> 1, and preferably (I Cr (110) / I OCr (110) ) ≧ 1.35.
Is.

【手続補正8】[Procedure Amendment 8]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0016[Correction target item name] 0016

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0016】次に、本発明に基づく磁気ディスク1の製
造方法の一例を説明するが、上述のように、下地膜3中
のCr及び磁性膜2中のCo結晶の優先配向面が変化す
ることが最も大事であり、この配向面の変化を引き起こ
すことができる製造方法であればどのようなものでも制
限はない。
Next, an example of a method of manufacturing the magnetic disk 1 according to the present invention will be described. As described above, the preferentially oriented planes of Cr in the underlayer 3 and Co crystals in the magnetic layer 2 are changed. Is the most important, and there is no limitation on any manufacturing method as long as it can cause the change of the orientation plane.

【手続補正9】[Procedure Amendment 9]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0023[Name of item to be corrected] 0023

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0023】得られた磁気ディスク1に関する結果を図
5、図7及び図8に示した。図5はX線回折強度の測定
チャートであり、R−1に比較して本実施例の磁気ディ
スク1はCr(200)及びCo(110)の強度が低
くなり、Cr(110)の強度が高くなっていた。ま
た、図7はバイアス電圧−保磁力Hc線図であり、R−
1の磁気ディスク1の保磁力Hcは2100(Oe)で
あるのに対して本実施例のものは3060(Oe)と高
かった。
The results for the obtained magnetic disk 1 are shown in FIGS. 5, 7 and 8. FIG. 5 is a measurement chart of the X-ray diffraction intensity. In the magnetic disk 1 of this example, the intensity of Cr (200) and Co (110) was lower than that of R-1, and the intensity of Cr (110) was lower. It was getting higher. FIG. 7 is a bias voltage-coercive force Hc diagram, where R-
The coercive force Hc of the magnetic disk 1 of No. 1 was 2100 (Oe), while that of this example was as high as 3060 (Oe).

【手続補正10】[Procedure Amendment 10]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0024[Name of item to be corrected] 0024

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0024】さらに、図8はX線回折強度比−保磁力H
c線図であり、図中のA〜Cは下記内容を表す。なお、
下記中のIは各実施例の磁気ディスク1のX線回折強
度、IO は比較用の磁気ディスク1のX線回折強度で
ある。 A……Cr(200)のX線回折強度比;A=I
Cr(200) /IOCr(200) B……Co(110)のX線回折強度比;B=I
Co(110) /IOCo(110) C……Cr(110)のX線回折強度比;C=I
Cr(110) /IOCr(110) 図8に示したように本実施例による磁気ディスク1の上
記Aは0.08、Bは0.16、Cは2.77であった
(なお、R−1の磁気ディスク1はA,B,Cとも1で
ある)。
Further, FIG. 8 shows X-ray diffraction intensity ratio-coercive force H.
It is a c-line diagram, and AC in the figure represents the following contents. In addition,
In the following, I is the X-ray diffraction intensity of the magnetic disk 1 of each example, and IO is the X-ray diffraction intensity of the comparative magnetic disk 1. A: X-ray diffraction intensity ratio of Cr (200); A = I
Cr (200) / I OCr (200) B ... X-ray diffraction intensity ratio of Co (110); B = I
Co (110) / I OCo (110) C ... X-ray diffraction intensity ratio of Cr (110); C = I
Cr (110) / I OCr (110) As shown in FIG. 8, the above-mentioned A of the magnetic disk 1 according to this example was 0.08, B was 0.16, and C was 2.77 (note that R is R). The magnetic disk 1 of -1 has A, B, and C of 1).

【手続補正11】[Procedure Amendment 11]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0026[Correction target item name] 0026

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0026】これらの結果も図5、図7及び図8に示し
た。図5において、本実施例の磁気ディスク1はいずれ
もR−1に比較してCr(200)及びCo(110)
の強度が低くなり、Cr(110)の強度が高くなって
いる。また、図7に示すように、本実施例2〜4のもの
の保磁力Hcはそれぞれ2450(Oe),3100
(Oe),2800(Oe)と高かった。
These results are also shown in FIGS. 5, 7 and 8. In FIG. 5, in the magnetic disk 1 of this example, Cr (200) and Co (110) are both compared with R-1.
The strength of Cr is low and that of Cr (110) is high. Further, as shown in FIG. 7, the coercive force Hc of each of Examples 2 to 4 is 2450 (Oe) and 3100, respectively.
(Oe) and 2800 (Oe) were high.

【手続補正12】[Procedure Amendment 12]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0027[Name of item to be corrected] 0027

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0027】さらに、図8において本実施例2〜4によ
る磁気ディスク1の上記Aはそれぞれ0.15,0.0
3,0.07、Bは0.26,0.13,0.26、C
は2.81,2.93,1.38であった。
Further, in FIG. 8, the above-mentioned A of the magnetic disk 1 according to Examples 2 to 4 is 0.15 and 0.0, respectively.
3, 0.07, B is 0.26, 0.13, 0.26, C
Was 2.81, 2.93, 1.38.

【手続補正13】[Procedure Amendment 13]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0032[Name of item to be corrected] 0032

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0032】以上の結果から明らかなように、負のバイ
アス電圧を印加して形成した本発明に基づく磁気ディス
ク1は、いずれも負のバイアス電圧を印加せずに形成し
たR−1〜R−3の磁気ディスク1よりも高い保磁力H
cを有している。また、バイアス電圧が−300V近辺
に保磁力Hcのピークがあり、約3100(Oe)の磁
気ディスク1を得ることができる。また、実施例6に示
すようにプリコート膜4の種類を代えることで保磁力H
c3230(Oe)と非常に高性能の磁気ディスク1も
得ている。
As is clear from the above results, in the magnetic disk 1 according to the present invention formed by applying a negative bias voltage, all of R-1 to R- formed without applying a negative bias voltage. Coercive force H higher than that of magnetic disk 1 of 3
have c. Further, there is a peak of the coercive force Hc in the vicinity of the bias voltage of -300V, and the magnetic disk 1 of about 3100 (Oe) can be obtained. Further, as shown in Example 6, the coercive force H is changed by changing the type of the precoat film 4.
The magnetic disk 1 having a very high performance of c3230 (Oe) is also obtained.

【手続補正14】[Procedure Amendment 14]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0033[Correction target item name] 0033

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0033】そして、図5及び図6から明らかなよう
に、負のバイアスを印加せずに形成したR−1及びR−
2の磁気ディスク1は、Cr(200)及びCo(11
0)がガラス基板5に平行に優先配向しているが、負の
バイアスを印加した各実施例の磁気ディスク1はCr
(200),Co(110)のガラス基板面に対する結
晶配向性が低下し、Cr(110)がガラス基板5に平
行に優先配向される傾向がある。
As is apparent from FIGS. 5 and 6, R-1 and R- formed without applying a negative bias.
The magnetic disk 1 of No. 2 has Cr (200) and Co (11
0) is preferentially oriented in parallel to the glass substrate 5, but the magnetic disk 1 of each embodiment to which a negative bias is applied is made of Cr.
The crystal orientation of (200), Co (110) with respect to the glass substrate surface is lowered, and Cr (110) tends to be preferentially oriented parallel to the glass substrate 5.

【手続補正15】[Procedure Amendment 15]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図2[Name of item to be corrected] Figure 2

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図2】本発明に基づくCr(110)がガラス基板面
に平行に優先配向した下地膜のCr結晶の単位胞を示す
概念図
FIG. 2 is a conceptual diagram showing a unit cell of Cr crystal of a base film in which Cr (110) according to the present invention is preferentially oriented parallel to the glass substrate surface.

【手続補正16】[Procedure Amendment 16]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図9[Correction target item name] Figure 9

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図9】従来のCr(200)及びCo(110)がガ
ラス基板面に平行に優先配向したCr結晶及びCo結晶
の単位胞を示す概念図
FIG. 9 is a conceptual diagram showing a unit cell of Cr crystal and Co crystal in which conventional Cr (200) and Co (110) are preferentially oriented parallel to the glass substrate surface.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ガラス基板上にプリコート膜が形成さ
れ、このプリコート膜の上にCrからなる下地膜及びCo
−Cr−Ta−Ptの四元合金からなる磁性膜がこの順に
形成された磁気記録媒体において、この磁気記録媒体
は、前記磁性膜中のCr結晶及びCo結晶の格子面が、C
r結晶の格子面Cr(200)及びCo結晶の格子面Co
(110)が共にガラス基板面に平行に優先配向した場
合のX線回折強度と比較して、Cr(200)及びCo
(110)のX線回折強度が低いことを特徴とする磁気
記録媒体。
1. A precoat film is formed on a glass substrate, and a base film made of Cr and a Co film are formed on the precoat film.
In a magnetic recording medium in which a magnetic film made of a quaternary alloy of -Cr-Ta-Pt is formed in this order, in this magnetic recording medium, the lattice planes of the Cr crystal and the Co crystal in the magnetic film are C
L-crystal lattice plane Cr (200) and Co-crystal lattice plane Co
Compared with the X-ray diffraction intensity when both (110) are preferentially oriented parallel to the glass substrate surface, Cr (200) and Co
A magnetic recording medium having a low (110) X-ray diffraction intensity.
【請求項2】 ガラス基板上にプリコート膜を形成し、
このプリコート膜の上にCrからなる下地膜及びCo−C
r−Ta−Ptの四元合金からなる磁性膜をこの順に形成
する磁気記録媒体の製造方法において、この製造方法
は、前記プリコート膜を少なくともV,Mo,NiPのう
ちの1種を含む材料によって成膜し、さらに前記下地膜
及び磁性膜を、負のバイアス電圧を印加しながらスパッ
タ法によって形成することを特徴とする磁気記録媒体の
製造方法。
2. A precoat film is formed on a glass substrate,
An underlayer of Cr and Co-C are formed on the precoat film.
In a method of manufacturing a magnetic recording medium in which a magnetic film made of a quaternary alloy of r-Ta-Pt is formed in this order, the precoat film is formed of a material containing at least one of V, Mo and NiP. A method of manufacturing a magnetic recording medium, comprising forming a film, and further forming the base film and the magnetic film by a sputtering method while applying a negative bias voltage.
JP5103181A 1993-04-28 1993-04-28 Magnetic recording medium and method of manufacturing the same Expired - Lifetime JP2850312B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5103181A JP2850312B2 (en) 1993-04-28 1993-04-28 Magnetic recording medium and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5103181A JP2850312B2 (en) 1993-04-28 1993-04-28 Magnetic recording medium and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH06309647A true JPH06309647A (en) 1994-11-04
JP2850312B2 JP2850312B2 (en) 1999-01-27

Family

ID=14347345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5103181A Expired - Lifetime JP2850312B2 (en) 1993-04-28 1993-04-28 Magnetic recording medium and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2850312B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6071607A (en) * 1996-04-26 2000-06-06 Fujitsu Limited Magnetic recording medium and magnetic disk device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01256017A (en) * 1988-04-04 1989-10-12 Victor Co Of Japan Ltd Magnetic recording medium
JPH0450653A (en) * 1990-06-12 1992-02-19 Takara Shuzo Co Ltd Cancer detecting method and kit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01256017A (en) * 1988-04-04 1989-10-12 Victor Co Of Japan Ltd Magnetic recording medium
JPH0450653A (en) * 1990-06-12 1992-02-19 Takara Shuzo Co Ltd Cancer detecting method and kit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6071607A (en) * 1996-04-26 2000-06-06 Fujitsu Limited Magnetic recording medium and magnetic disk device

Also Published As

Publication number Publication date
JP2850312B2 (en) 1999-01-27

Similar Documents

Publication Publication Date Title
US5523173A (en) Magnetic recording medium with a CoPtCrB alloy thin film with a 1120 crystallographic orientation deposited on an underlayer with 100 orientation
JP2000187836A (en) Ultrathin nucleus forming layer for magnetic thin film medium and its production
KR100264484B1 (en) Thin film magnetic disk with chromium-titanium seed layer
US4636448A (en) Magnetic recording medium
US5147734A (en) Magnetic recording media manufactured by a process in which a negative bias voltage is applied to the substrate during sputtering
US5084152A (en) Method for preparing high density magnetic recording medium
US4663193A (en) Process for manufacturing magnetic recording medium
JP2833190B2 (en) Magnetic recording media
US4645690A (en) Method of manufacturing a magnetic media
JP3018551B2 (en) In-plane magnetic recording media
JP3370720B2 (en) Magnetic recording medium and magnetic recording device
JPH06309647A (en) Magnetic recording medium and its production
EP0187169B1 (en) Process of manufacturing magnetic recording media and the media
JPH0814889B2 (en) Perpendicular magnetic recording media
JPH08180360A (en) Perpendicular magnetic recording medium and magnetic recorder
US6826825B2 (en) Method for manufacturing a magnetic recording medium
JPH02154323A (en) Production of magnetic recording medium
JPH0721543A (en) Magnetic recording medium
JPH03235218A (en) Production of magnetic recording medium
JP2619384B2 (en) Perpendicular magnetic recording media
JPH11339244A (en) Magnetic recording medium and production thereof
JPH02162526A (en) Production of magnetic recording medium
Kirino et al. Influence of seedlayer on film microstructure of Co-Cr-Pt longitudinal recording media fabricated on plastic substrates
JPH04134718A (en) Magnetic recording medium
JPS63124213A (en) Perpendicular magnetic recording medium

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071113

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081113

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20091113

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20101113

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111113

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20121113

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20121113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131113

Year of fee payment: 15

EXPY Cancellation because of completion of term