JP2849283B2 - Method for producing conductive particles - Google Patents

Method for producing conductive particles

Info

Publication number
JP2849283B2
JP2849283B2 JP18112792A JP18112792A JP2849283B2 JP 2849283 B2 JP2849283 B2 JP 2849283B2 JP 18112792 A JP18112792 A JP 18112792A JP 18112792 A JP18112792 A JP 18112792A JP 2849283 B2 JP2849283 B2 JP 2849283B2
Authority
JP
Japan
Prior art keywords
substrate
conductive particles
conductive
producing
material film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18112792A
Other languages
Japanese (ja)
Other versions
JPH0628933A (en
Inventor
克也 三塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ARUPUSU DENKI KK
Original Assignee
ARUPUSU DENKI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ARUPUSU DENKI KK filed Critical ARUPUSU DENKI KK
Priority to JP18112792A priority Critical patent/JP2849283B2/en
Publication of JPH0628933A publication Critical patent/JPH0628933A/en
Application granted granted Critical
Publication of JP2849283B2 publication Critical patent/JP2849283B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Glanulating (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electric Cables (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、例えば液晶パネルやサ
ーマルプリンターヘッド等の基板の端子とこれを駆動す
る半導体素子の端子とを電気的に接続する際などに用い
られる導電性粒子の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing conductive particles used for electrically connecting terminals of a substrate such as a liquid crystal panel or a thermal printer head to terminals of a semiconductor element for driving the substrate. About.

【0002】[0002]

【従来の技術】図5は従来の端子接続構造を示すもの
で、図中符号1は一方の電子部品の基板、符号2は他方
の電子部品の基板である。基板1,2の表面には端子
4,5が設けられている。これらの基板1,2間には、
接着剤に導電性粒子3が分散されてなる接着剤層6が設
けられている。そして前記端子4,5は接着剤層6の導
電性粒子3を介して電気的に接続している。この端子接
続構造を形成するには、導電性粒子3を分散させた接着
剤を基板1に塗布し、ついで他方の基板2を押し付け
て、両基板1,2の端子4,5が導電性粒子3に接触す
るようにしていた。
2. Description of the Related Art FIG. 5 shows a conventional terminal connection structure, wherein reference numeral 1 denotes a substrate of one electronic component, and reference numeral 2 denotes a substrate of the other electronic component. Terminals 4 and 5 are provided on the surfaces of the substrates 1 and 2. Between these substrates 1 and 2,
An adhesive layer 6 in which conductive particles 3 are dispersed in an adhesive is provided. The terminals 4 and 5 are electrically connected via the conductive particles 3 of the adhesive layer 6. In order to form this terminal connection structure, an adhesive in which the conductive particles 3 are dispersed is applied to the substrate 1 and then the other substrate 2 is pressed so that the terminals 4 and 5 of the substrates 1 and 2 are electrically conductive particles. 3.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、前記の
ような接続構造では、図6に示すように、導電性粒子3
が凝集している場合があり、この凝集した導電性粒子3
を介して隣接する端子4,4および5,5間でショート
が発生するため、電極ピッチを狭めることが難しい問題
があった。
However, in the connection structure as described above, as shown in FIG.
May be agglomerated, and the agglomerated conductive particles 3
Therefore, there is a problem in that it is difficult to narrow the electrode pitch because a short circuit occurs between the adjacent terminals 4, 4 and 5, 5 via.

【0004】そこで、本出願人は特願平3−16725
8号において上記問題点を解決するための方法を先に提
案した。
Accordingly, the present applicant has filed Japanese Patent Application No. Hei 3-16725.
No. 8 has previously proposed a method for solving the above problem.

【0005】図7はこの本出願人の提案にかかる導電性
粒子の製造方法を説明する工程図である。まず、図7
(a)に示すように導電性粒子製造用基板(以下、粒子
製造用基板という)として用いるシリコン結晶基板7の
表面に異方性エッチングにより凹部8を形成する。異方
性エッチングは例えば(100)面のシリコン結晶や
(110)面のシリコン結晶の表面に所定のパターンの
開口を有するマスクを形成した後、KOH水溶液等を用
いるエッチング法であり、シリコン結晶の結晶方位によ
ってエッチングレートが異なる現象を利用した方法であ
る。この粒子製造用基板7の凹部8の形状は限定される
ものでないが、例えば四角錘のように深部に向かって徐
々に狭くなっていることが望ましい。各凹部の寸法はマ
スクの精度によって決まるので原理的には数μm程度の
寸法まで可能である。
FIG. 7 is a process chart for explaining a method for producing conductive particles proposed by the present applicant. First, FIG.
As shown in (a), a recess 8 is formed by anisotropic etching on the surface of a silicon crystal substrate 7 used as a substrate for producing conductive particles (hereinafter referred to as a substrate for producing particles). Anisotropic etching is, for example, an etching method using a KOH aqueous solution after forming a mask having a predetermined pattern of openings on the surface of a (100) silicon crystal or a (110) silicon crystal. This method utilizes a phenomenon that an etching rate varies depending on the crystal orientation. Although the shape of the concave portion 8 of the particle manufacturing substrate 7 is not limited, it is desirable that the concave portion 8 is gradually narrowed toward a deep portion like a quadrangular pyramid. Since the size of each recess is determined by the precision of the mask, it can be up to several μm in principle.

【0006】次に図7(b)に示すように異方性エッチ
ングした粒子製造用基板7の表面に後に述べる導電性材
料の溶融物との濡れ性を悪くする処理9を施す。
Next, as shown in FIG. 7B, the surface 9 of the particle-producing substrate 7 which has been anisotropically etched is subjected to a treatment 9 described later for deteriorating the wettability with a melt of a conductive material.

【0007】続いて図7(c)に示すように金,ニッケ
ル,はんだ合金,インジウム等の導電性材料となる金属
を蒸着,スパッタ,電解めっき,無電解めっき等の方法
により成膜する。この導電性材料の膜(以下、材料膜と
いう)10を加熱溶融すると表面張力により各凹部8ご
とに球状化する。これを冷却すると図7(d)に示すよ
うに各凹部8ごとに導電粒子11が得られる。ここでこ
の導電性粒子11の大きさは粒子製造用基板7の凹部8
の開口面積および深さと材料膜10の厚さで決まり粒子
製造用基板7の凹部8から数μm程突出するように定め
る。
Subsequently, as shown in FIG. 7C, a metal to be a conductive material such as gold, nickel, a solder alloy, and indium is deposited by a method such as vapor deposition, sputtering, electrolytic plating, and electroless plating. When the conductive material film (hereinafter, referred to as a material film) 10 is melted by heating, each of the concave portions 8 becomes spherical due to surface tension. When this is cooled, conductive particles 11 are obtained for each recess 8 as shown in FIG. Here, the size of the conductive particles 11 is determined by the size of the recess 8 of the substrate 7 for manufacturing particles.
Is determined by the opening area and depth of the substrate and the thickness of the material film 10 so as to protrude from the concave portion 8 of the particle manufacturing substrate 7 by about several μm.

【0008】しかる後に図7(e)に示すように粒子製
造用基板7の表面に第1の電子部品の基板1を対向位置
決めし重ね合わせる。この第1の電子部品の基板1の表
面にはあらかじめ接着剤15を塗布しておく。
[0008] Thereafter, as shown in FIG. 7 (e), the substrate 1 of the first electronic component is opposed to the surface of the particle production substrate 7 and is superposed. An adhesive 15 is applied to the surface of the substrate 1 of the first electronic component in advance.

【0009】このように粒子製造用基板7に第1の電子
部品の基板1を重ね合わせると導電性粒子11が第1の
電子部品の基板1に移る。
As described above, when the substrate 1 of the first electronic component is superimposed on the substrate 7 for producing particles, the conductive particles 11 move to the substrate 1 of the first electronic component.

【0010】この後、図7(f)に示すように、第1の
電子部品の基板1と接着剤15を塗布した第2の電子部
品の基板2’とを位置合わせして接着すると、互いの端
子4,5と導電性粒子11を介して電気的に接続された
状態となる。
Thereafter, as shown in FIG. 7 (f), when the substrate 1 of the first electronic component and the substrate 2 'of the second electronic component to which the adhesive 15 has been applied are aligned and adhered to each other, Are electrically connected to the terminals 4 and 5 via the conductive particles 11.

【0011】しかし、この方法にも問題がない訳ではな
い。すなわち、金属を粒子製造用基板7上に成膜した
後、およびこの材料膜10を加熱溶融する際、図8に示
すように、空気中に存在する酸素によって材料膜10表
面に酸化膜13が形成されてしまい、材料膜10自体の
厚みが数μmと非常に薄いため、この酸化膜13に起因
して球11が形成されないという問題があった。なお、
空気中の酸素による酸化膜13の形成を防止する手段と
して、一般的には真空置換する方法が挙げられるが、か
かる真空置換装置は、気密性と耐圧性に優れた容器を必
要とするばかりでなく、真空ポンプ等の種々の部品を必
要とするため、高価なものとなってしまう。
However, this method is not without its problems. That is, after the metal is formed on the particle manufacturing substrate 7 and when the material film 10 is heated and melted, the oxide film 13 is formed on the surface of the material film 10 by the oxygen existing in the air, as shown in FIG. Since the material film 10 is formed and the thickness of the material film 10 itself is very thin, several micrometers, there is a problem that the sphere 11 is not formed due to the oxide film 13. In addition,
As a means for preventing the formation of the oxide film 13 due to oxygen in the air, a method of vacuum replacement is generally mentioned. However, such a vacuum replacement device only requires a container having excellent airtightness and pressure resistance. In addition, since various parts such as a vacuum pump are required, the apparatus becomes expensive.

【0012】本発明は、上記従来技術の実情に鑑みてな
されたもので、その目的は、所望の粒径の導電性粒子を
安価にかつバラツキなく製造することにある。
The present invention has been made in view of the above-mentioned circumstances of the prior art, and has as its object to produce conductive particles having a desired particle size at low cost and without variation.

【0013】[0013]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、表面に微細な凹部が形成された導電性粒
子製造用基板の表面に導電性材料の膜を形成し、ついで
その膜の表面にフラックスを塗布した後、この導電性材
料膜を加熱溶融し、この溶融した導電性材料が表面張力
により球状化した後冷却することにより、前記導電性粒
子製造用基板の各凹部に導電性粒子を生成せしめること
を特徴とする。導電性材料の加熱溶融は、不活性ガス雰
囲気下で行なうのが好ましく、窒素ガス,アルゴンガス
などが利用できる。
In order to achieve the above object, the present invention provides a method for forming a conductive material film on a surface of a substrate for producing conductive particles having fine concave portions formed on the surface thereof. After applying flux to the surface of the film, the conductive material film is heated and melted, and the melted conductive material is formed into a sphere by surface tension and then cooled, so that the conductive material film is formed in each concave portion of the conductive particle manufacturing substrate. It is characterized in that conductive particles are generated. The heating and melting of the conductive material is preferably performed in an inert gas atmosphere, and nitrogen gas, argon gas, or the like can be used.

【0014】[0014]

【作用】本発明の導電性粒子の製造方法は、表面に微細
な凹部が形成された粒子製造用基板の表面に導電性材料
の膜を形成し、ついでその表面にフラックスを塗布し、
その後この膜を加熱溶融して溶融物が表面張力により球
状化した後、冷却することにより、前記粒子製造用基板
の各凹部に導電性粒子を生成するものである。したがっ
て、導電性粒子は粒子製造用基板の凹部間の壁によって
離間されている状態で形成される。また、フラックスは
材料膜表面が空気に触れて酸化膜ができるのを防止する
とともに、不所望にできた酸化膜を除去する働きをする
ため、材料膜が酸化膜に覆われて粒子の生成が妨げられ
ることなく、安価な装置で導電性粒子を製造することが
できる。
According to the method for producing conductive particles of the present invention, a film of a conductive material is formed on the surface of a substrate for producing particles having fine recesses formed on the surface, and then a flux is applied to the surface.
Thereafter, the film is heated and melted, and the melt is sphericalized by surface tension, and then cooled to generate conductive particles in each concave portion of the particle manufacturing substrate. Therefore, the conductive particles are formed in a state where they are separated by the walls between the concave portions of the particle manufacturing substrate. The flux also prevents the surface of the material film from being exposed to air to form an oxide film, and also serves to remove the oxide film that has been formed undesirably. Without being hindered, the conductive particles can be manufactured with an inexpensive device.

【0015】[0015]

【実施例】以下、図面を参照して本発明の実施例を説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0016】図1は、本発明の実施例に係る導電性粒子
の製造方法を示す工程図で、図7と同一構成部分には同
一符号を付する。
FIG. 1 is a process diagram showing a method for producing conductive particles according to an embodiment of the present invention, and the same components as those in FIG. 7 are denoted by the same reference numerals.

【0017】図1(a)に示す粒子製造用基板7は、
(110)面のシリコン結晶の表面を正方形の開口が所
定のパターンで設けられたマスクで覆い、KOH水溶液
等を用いて異方性エッチングすることによって作ること
ができる。この粒子製造用基板7の表面は、後に蒸着さ
れる導電性材料の溶融物との濡れ性が悪くなるように処
理9が施されている。
The substrate 7 for producing particles shown in FIG.
The (110) plane can be formed by covering the surface of the silicon crystal with a mask having a square opening provided in a predetermined pattern and performing anisotropic etching using a KOH aqueous solution or the like. The surface of the substrate 7 for particle production is subjected to a treatment 9 so that wettability with a melt of a conductive material to be deposited later is deteriorated.

【0018】このように粒子製造用基板7を準備した
後、粒子製造用基板7の表面にはんだ合金を蒸着して、
図1(b)に示すように、材料膜10を形成する。
After preparing the substrate 7 for producing particles as described above, a solder alloy is deposited on the surface of the substrate 7 for producing particles.
As shown in FIG. 1B, a material film 10 is formed.

【0019】このように材料膜10を形成した後、図1
(c)に示すように材料膜10の表面にフラックス14
を塗布し、ついで窒素雰囲気下で加熱溶融する。する
と、溶融した導電性材料10は各凹部8で表面張力によ
り球状化する。これを冷却すると、図1(d)に示すよ
うに、各凹部8ごとに導電性粒子11ができる。このと
き、塗布するフラックス14の量は、凹部に形成した導
電性粒子11の頂部がフラックス14の層から露出しな
い程度が好ましい。過剰に塗布するとフラックス層が厚
くなり、各凹部8の導電性材料がフラックス14の中で
凝集し、図2に示すように大きな粒子11が形成されて
しまう。
After forming the material film 10 as described above, FIG.
As shown in (c), the flux 14 is applied to the surface of the material film 10.
Is applied, and then heated and melted under a nitrogen atmosphere. Then, the molten conductive material 10 is sphericalized at each concave portion 8 by surface tension. When this is cooled, conductive particles 11 are formed for each recess 8 as shown in FIG. At this time, the amount of the flux 14 applied is preferably such that the tops of the conductive particles 11 formed in the concave portions are not exposed from the layer of the flux 14. If applied excessively, the flux layer becomes thicker, and the conductive material in each recess 8 aggregates in the flux 14 to form large particles 11 as shown in FIG.

【0020】導電性粒子11の大きさは、材料膜10の
厚さによって決まるので、適正な膜厚になるように材料
膜10を形成して、図1(d)に示すように導電性粒子
11を粒子製造用基板7の表面より数μm突出させる。
Since the size of the conductive particles 11 is determined by the thickness of the material film 10, the material film 10 is formed so as to have an appropriate thickness, and as shown in FIG. 11 is projected several μm from the surface of the substrate 7 for producing particles.

【0021】このように導電性粒子11を各凹部8に生
成した後、フラックス14を除去し、図1(e)に示す
ように、粒子製造用基板7の表面に第1の電子部品の基
板1を重ね合わせる。この第1の電子部品の基板1の表
面には、予め接着剤15を塗布しておく。このように粒
子製造用基板7に第1の電子部品の基板1を重ね合わせ
ると、図1(f)に示すように、導電性粒子11が第1
の電子部品の基板1に移る。
After the conductive particles 11 have been formed in each recess 8 in this manner, the flux 14 is removed, and as shown in FIG. 1E, the substrate of the first electronic component is placed on the surface of the substrate 7 for particle production. Overlap one. An adhesive 15 is applied to the surface of the substrate 1 of the first electronic component in advance. When the substrate 1 of the first electronic component is superimposed on the substrate 7 for particle production in this way, as shown in FIG.
To the substrate 1 of the electronic component.

【0022】この後、図1(g)に示すように、前記第
1の電子部品の基板1とあらかじめ接着剤15を塗布し
た第2の電子部品の基板2とを位置合わせして接着する
と、互いの端子4,5が導電性粒子11を介して電気的
に接続された状態となる。このようにして形成された端
子接続構造は、互いに離間した状態で配置された導電性
粒子11によって、第1の電子部品の端子4と第2の電
子部品の端子5とが接続された状態となる。
Thereafter, as shown in FIG. 1 (g), when the substrate 1 of the first electronic component and the substrate 2 of the second electronic component to which the adhesive 15 has been applied in advance are aligned and bonded, The terminals 4 and 5 are electrically connected via the conductive particles 11. The terminal connection structure thus formed has a state in which the terminals 4 of the first electronic component and the terminals 5 of the second electronic component are connected by the conductive particles 11 that are arranged apart from each other. Become.

【0023】次に、前述の粒子製造用基板7の凹部8の
大きさと、材料膜10の厚さと、導電性粒子11の突出
寸法の関係について、図3と図4を用いて説明する。
Next, the relationship between the size of the concave portion 8 of the substrate 7 for manufacturing particles, the thickness of the material film 10, and the protrusion size of the conductive particles 11 will be described with reference to FIGS.

【0024】(100)面のウェハに正方形の開口が設
けられたマスクを形成して、異方性エッチングすること
によって製作された粒子製造用基板7の凹部8は、図3
に示すように、底面と斜面とがなす角度θが54.7°
の四角錘である。この凹部8に半径Rの真球状の導電性
粒子11が形成されると仮定すると、形成される導電性
粒子11の突出高さHは、凹部8の開口部の一辺の長さ
をLとした場合、下記(1)式で与えられる。
The recess 8 of the particle manufacturing substrate 7 manufactured by forming a mask having a square opening on the (100) wafer and performing anisotropic etching is shown in FIG.
, The angle θ formed between the bottom surface and the slope is 54.7 °.
Square pyramid. Assuming that true spherical conductive particles 11 having a radius R are formed in the concave portions 8, the protruding height H of the formed conductive particles 11 is defined as L, the length of one side of the opening of the concave portion 8. In this case, it is given by the following equation (1).

【0025】[0025]

【数1】 (Equation 1)

【0026】他方、図4(a)に示す平坦な基板と図4
(b)に示す凹部8の形成された基板に蒸着法で同一条
件で材料膜10を成膜した場合、凹部8に成膜された金
属の量、即ち開口部面積がL×Lの正方形の凹部8に成
膜された金属の量(Vm)は、図4(a)に示す平坦な
基板の一辺の長さLの正方形の範囲に成膜された金属の
量(厚さ×面積=tL2)と等しいと考えられる。これ
は、同一条件では面積L×Lの開口部を通過する金属量
は等しいからである。したがって、凹部8の内面に形成
された材料膜10がすべて導電性粒子11になつたと仮
定すると、導電性粒子11の体積Vb(=4πR3
3)は、凹部8の内面に成膜された材料膜10の金属量
Vm(=tL2)と等しい。したがって、下記(2)式
が成立する。
On the other hand, the flat substrate shown in FIG.
When the material film 10 is formed on the substrate having the concave portions 8 shown in (b) by the vapor deposition method under the same conditions, the amount of the metal formed in the concave portions 8, that is, the square of the opening area L × L is formed. The amount (Vm) of the metal deposited in the recess 8 is determined by the amount (thickness × area = tL) of the metal deposited in the range of a square having a length L of one side of the flat substrate shown in FIG. 2 ) is considered to be equal to This is because the amount of metal passing through the opening having the area L × L is equal under the same conditions. Therefore, assuming that all of the material film 10 formed on the inner surface of the concave portion 8 has become the conductive particles 11, the volume Vb of the conductive particles 11 (= 4πR 3 /
3) is equal to the metal amount Vm (= tL 2 ) of the material film 10 formed on the inner surface of the recess 8. Therefore, the following equation (2) holds.

【0027】[0027]

【数2】 (Equation 2)

【0028】この(2)式を用いて前記(1)式は下記
(3)式のように書き換えることができる。
Using the equation (2), the equation (1) can be rewritten as the following equation (3).

【0029】[0029]

【数3】 (Equation 3)

【0030】この(3)式から、導電性粒子11の突出
高さHは、形成した材料膜10の厚さtと凹部8の開口
部の一辺の長さLによって定まることが判る。例えば、
粒子製造用基板7に形成された凹部8の一辺の長さがL
=10μmである場合、材料膜10を1.1μmの厚さ
に形成することにより、導電性粒子11を粒子製造用基
板7の表面から+1μm突出させることができると予測
できる。このことから材料膜10を適正な厚さに形成す
れば、導電性粒子11が粒子製造用基板7から突出した
状態となり、この状態で粒子製造用基板7に電子部品を
重ねることにより導電性粒子11を電子部品に転写でき
る。
From equation (3), it can be seen that the protrusion height H of the conductive particles 11 is determined by the thickness t of the formed material film 10 and the length L of one side of the opening of the recess 8. For example,
The length of one side of the concave portion 8 formed in the substrate 7 for particle production is L
In the case of = 10 μm, it can be predicted that forming the material film 10 to have a thickness of 1.1 μm allows the conductive particles 11 to protrude +1 μm from the surface of the particle manufacturing substrate 7. From this, if the material film 10 is formed to have an appropriate thickness, the conductive particles 11 project from the particle manufacturing substrate 7, and in this state, the conductive particles are superposed on the particle manufacturing substrate 7, and 11 can be transferred to the electronic component.

【0031】上述した本発明の導電性粒子の製造方法に
よれば、導電性粒子11がすべて互いに離間した状態で
配置されているので、導電性粒子11を介して隣接する
端子がショートすることはない。したがって、端子を狭
いピッチで配置することが可能となり高密度実装が可能
となる。また、碁盤目状に同一形状の凹部8を設けるこ
とにより、均一密度で配置された状態で導電性粒子11
を得ることができる。
According to the above-described method for producing conductive particles of the present invention, since all of the conductive particles 11 are arranged apart from each other, short-circuiting between adjacent terminals via the conductive particles 11 can be prevented. Absent. Therefore, the terminals can be arranged at a narrow pitch, and high-density mounting is possible. Further, by providing the recesses 8 having the same shape in a grid pattern, the conductive particles 11 can be arranged in a uniform density.
Can be obtained.

【0032】また、材料膜10を形成した後、その表面
にフラックス14を塗布することにより、材料膜10の
表面の酸化を防止できるとともに、不所望にできた酸化
膜13を除去できるので、酸素を排除するための複雑・
高価な真空置換装置を必要とせず、トータルコストを下
げることができる。
After the material film 10 is formed, the surface of the material film 10 is coated with a flux 14 to prevent oxidation of the surface of the material film 10 and to remove the undesired oxide film 13. Complexity to eliminate
An expensive vacuum replacement device is not required, and the total cost can be reduced.

【0033】さらには、異方性エッチングに用いるマス
クを適宜調整することによって、粒子製造用基板7に開
口部の大きさや形状および深さの異なる凹部を設けるこ
とも可能である。このため、異なる形状の凹部には異な
る粒径の導電性粒子11を製造でき、導電性粒子11の
基板7からの突出高さに差を設けることができる。した
がって、第1の電子部品1の所望の位置にのみ導電性粒
子11を配置することができる。
Furthermore, by appropriately adjusting the mask used for the anisotropic etching, it is possible to provide recesses having different sizes, shapes and depths of the openings in the substrate 7 for producing particles. Therefore, the conductive particles 11 having different particle diameters can be manufactured in the concave portions having different shapes, and the height of the conductive particles 11 protruding from the substrate 7 can be made different. Therefore, conductive particles 11 can be arranged only at desired positions of first electronic component 1.

【0034】他に、本発明では、導電体あるいは絶縁体
からなる基板の表面に、後に蒸着する導電性材料の溶融
物と濡れ性の悪い導体層例えば、インジウムすず酸化物
からなる導体層などを形成し、その上に導電性材料の溶
融物との濡れ性の悪い絶縁膜を形成し、この絶縁膜をエ
ッチングすることによって凹部を形成した粒子製造用基
板を用いて導電性粒子を製造することも可能である。
In addition, in the present invention, a conductor layer made of a melt of a conductive material to be deposited later and having poor wettability, for example, a conductor layer made of indium tin oxide, is provided on the surface of a substrate made of a conductor or an insulator. Forming an insulating film having poor wettability with a melt of a conductive material thereon, and manufacturing the conductive particles using a particle manufacturing substrate having a recess formed by etching the insulating film. Is also possible.

【0035】[0035]

【発明の効果】以上説明したように、本発明によれば、
凹部の開口面積と導電性材料の厚さを適宜設定すること
により、所望の粒径の導電性粒子をバラツキなく製造で
き、しかも、フラックスによって材料膜の表面に酸化膜
が形成するのが防止されるため、高価な真空置換装置が
不要となり、導電性粒子を安価に製造することができ
る。
As described above, according to the present invention,
By appropriately setting the opening area of the concave portion and the thickness of the conductive material, conductive particles having a desired particle size can be manufactured without variation, and an oxide film is prevented from being formed on the surface of the material film by the flux. Therefore, an expensive vacuum replacement device is not required, and the conductive particles can be manufactured at low cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例に係る導電性粒子の製造方法を
示す工程図である。
FIG. 1 is a process chart showing a method for producing conductive particles according to an example of the present invention.

【図2】フラックスの動作説明図である。FIG. 2 is an explanatory diagram of a flux operation.

【図3】粒子製造用基板の凹部を示す説明図である。FIG. 3 is an explanatory view showing a concave portion of the substrate for producing particles.

【図4】粒子製造用基板の凹部表面に成膜される導電性
材料の量を計算する際の条件を説明するための断面図で
ある。
FIG. 4 is a cross-sectional view for explaining conditions for calculating the amount of a conductive material formed on the surface of a concave portion of a particle manufacturing substrate.

【図5】従来例に係る端子接続構造を示す断面図であ
る。
FIG. 5 is a sectional view showing a terminal connection structure according to a conventional example.

【図6】図5の端子接続構造の問題点を説明するための
断面図である。
FIG. 6 is a cross-sectional view for explaining a problem of the terminal connection structure of FIG. 5;

【図7】本出願人が先に提案した導電性粒子の製造方法
を示す工程図である。
FIG. 7 is a process chart showing a method for producing conductive particles previously proposed by the present applicant.

【図8】図7の導電性粒子の製造方法の問題点を説明す
るための断面図である。
FIG. 8 is a cross-sectional view for explaining a problem of the method for producing the conductive particles of FIG. 7;

【符号の説明】[Explanation of symbols]

7 粒子製造用基板 8 凹部 10 材料膜 11 導電性粒子 14 フラックス 7 Substrate for particle production 8 Depression 10 Material film 11 Conductive particles 14 Flux

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) H01B 13/00 B01J 2/00 H01B 5/00 H05K 1/02 - 1/14 H05K 3/32──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 6 , DB name) H01B 13/00 B01J 2/00 H01B 5/00 H05K 1/02-1/14 H05K 3/32

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 表面に微細な凹部が形成された導電性粒
子製造用基板の表面に導電性材料の膜を形成し、ついで
その膜の表面にフラックスを塗布した後、この導電性材
料膜を加熱溶融し、この溶融した導電性材料が表面張力
により球状化した後冷却することにより、前記導電性粒
子製造用基板の各凹部に導電性粒子を生成せしめること
を特徴とする導電性粒子の製造方法。
1. A film of a conductive material is formed on the surface of a substrate for producing conductive particles having fine concave portions formed on the surface, and then a flux is applied to the surface of the film. Producing the conductive particles by heating and melting, and then cooling the melted conductive material into a spherical shape due to surface tension, thereby forming conductive particles in each concave portion of the conductive particle manufacturing substrate. Method.
JP18112792A 1992-07-08 1992-07-08 Method for producing conductive particles Expired - Fee Related JP2849283B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18112792A JP2849283B2 (en) 1992-07-08 1992-07-08 Method for producing conductive particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18112792A JP2849283B2 (en) 1992-07-08 1992-07-08 Method for producing conductive particles

Publications (2)

Publication Number Publication Date
JPH0628933A JPH0628933A (en) 1994-02-04
JP2849283B2 true JP2849283B2 (en) 1999-01-20

Family

ID=16095343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18112792A Expired - Fee Related JP2849283B2 (en) 1992-07-08 1992-07-08 Method for producing conductive particles

Country Status (1)

Country Link
JP (1) JP2849283B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4843067A (en) * 1986-11-19 1989-06-27 Yaguang Liu Polysaccharide containing pharmaceutical composition for increasing the immune function
JP5261218B2 (en) * 2009-02-04 2013-08-14 富士フイルム株式会社 Fine particles and method for producing the same

Also Published As

Publication number Publication date
JPH0628933A (en) 1994-02-04

Similar Documents

Publication Publication Date Title
US4842662A (en) Process for bonding integrated circuit components
US8794498B2 (en) Electronic component device and method for producing the same
US7717718B2 (en) Electric component having microtips and ductile conducting bumps
US6867471B2 (en) Universal package for an electronic component with a semiconductor chip and method for producing the universal package
JP2008516424A (en) Device with a plurality of embedded soft conductive bumps, and electrical connection method between such a device and a device with a plurality of hard conductive points
JP2010147308A (en) Method of manufacturing wiring board, and method of manufacturing board for ink-jet recording head
JPH0810716B2 (en) Electronic package
JPH08288637A (en) Electronic component and method for soldering electronic component
JPH04263433A (en) Formation of electric connection contact and manufacture of mounted substrate
JP2849283B2 (en) Method for producing conductive particles
JPH04277639A (en) Mounting structure of electronic component
JP2000228006A (en) Joined body using bonding pad and bump and magnetic head device
JPH04263434A (en) Formation of electric connection contact and manufacture of mounting board
JP2815113B2 (en) Method for manufacturing film carrier and semiconductor device
JP2740699B2 (en) Terminal connection structure, terminal connection method, and conductive particle manufacturing method
JP2870456B2 (en) How to join electronic components
JP3072361B2 (en) Manufacturing method of electronic components for protection of ultra-small thin film circuits
JP2002368044A (en) Method for assembling electronic component with solder ball and electronic component
JP2003059959A (en) Semiconductor device and packaging method therefor
JPH1140716A (en) Semiconductor device and manufacture thereof
JP2001144128A (en) Printing method of conductor
JP2785832B2 (en) Semiconductor device mounting structure
JPS6116345B2 (en)
JP3303678B2 (en) Chip mounting method
JPH09135073A (en) Method of forming solder bump

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19981020

LAPS Cancellation because of no payment of annual fees