JP2836686B2 - Gallium nitride based compound semiconductor light emitting device - Google Patents

Gallium nitride based compound semiconductor light emitting device

Info

Publication number
JP2836686B2
JP2836686B2 JP9862193A JP9862193A JP2836686B2 JP 2836686 B2 JP2836686 B2 JP 2836686B2 JP 9862193 A JP9862193 A JP 9862193A JP 9862193 A JP9862193 A JP 9862193A JP 2836686 B2 JP2836686 B2 JP 2836686B2
Authority
JP
Japan
Prior art keywords
gallium nitride
compound semiconductor
based compound
light
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP9862193A
Other languages
Japanese (ja)
Other versions
JPH06291366A (en
Inventor
修二 中村
元量 山田
政信 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=14224626&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2836686(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to JP9862193A priority Critical patent/JP2836686B2/en
Publication of JPH06291366A publication Critical patent/JPH06291366A/en
Application granted granted Critical
Publication of JP2836686B2 publication Critical patent/JP2836686B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49107Connecting at different heights on the semiconductor or solid-state body

Landscapes

  • Led Device Packages (AREA)
  • Led Devices (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はサファイア基板上に一般
式InXAlYGa1-X-YN(0≦X<1、0≦Y<1)で
表される窒化ガリウム系化合物半導体が積層されたチッ
プを、例えばエポキシ樹脂等の封止材料で封止してなる
窒化ガリウム系化合物半導体発光素子に関する。
The present invention relates to a general formula In X Al Y Ga 1-XY N (0 ≦ X <1,0 ≦ Y <1) a gallium nitride compound semiconductor represented by is laminated on a sapphire substrate The present invention relates to a gallium nitride-based compound semiconductor light emitting device in which a chip is sealed with a sealing material such as an epoxy resin.

【0002】[0002]

【従来の技術】GaN、GaAlN、InGaN、In
AlGaN等の窒化ガリウム系化合物半導体は直接遷移
を有し、バンドギャップが1.95eV〜6eVまで変
化し、その発光色は紫外から赤色にまで及ぶため、発光
ダイオード、レーザダイオード等、発光素子の材料とし
て有望視されている。その窒化ガリウム系化合物半導体
よりなる発光素子は、一般にMOCVD、MBE法等の
気相成長法を用いてサファイア基板上にn型及びp型、
あるいはn型及びi型に成長して積層し、それぞれの層
から電極を取り出した後、チップ状としてリードフレー
ムに固定し、最後にエポキシ等の樹脂で封止することに
よって得られる。
2. Description of the Related Art GaN, GaAlN, InGaN, In
Gallium nitride-based compound semiconductors such as AlGaN have direct transitions, change their band gaps from 1.95 eV to 6 eV, and their emission colors range from ultraviolet to red. Therefore, materials for light-emitting elements such as light-emitting diodes and laser diodes Promising as. The light emitting device made of the gallium nitride-based compound semiconductor is generally formed on a sapphire substrate using n-type and p-type by vapor phase growth methods such as MOCVD and MBE.
Alternatively, it is obtained by growing and stacking into n-type and i-type, taking out the electrodes from each layer, fixing them in a chip shape to a lead frame, and finally sealing them with a resin such as epoxy.

【0003】しかしながら、その窒化ガリウム系化合物
半導体発光素子は、前記のようにサファイア基板の上
に、窒化ガリウム系化合物半導体という全く異なる材料
を積層するいわゆるヘテロエピタキシャル構造であるた
め、他のGaAs、GaP等、同一材料の上に積層され
る発光素子に比して、基板とエピタキシャル膜との屈折
率の違いにより外部量子効率が悪くなるいう欠点を有し
ている。具体的にはサファイア基板と窒化ガリウム系化
合物半導体、あるいは窒化ガリウム系化合物半導体と発
光素子を封止する樹脂モールドとの屈折率の違いによ
り、窒化ガリウム系化合物半導体の発光がそれらの界面
で多重反射され、反射光は窒化ガリウム系化合物半導体
内部で吸収されてしまい、発光を効率よく外部に取り出
せないという問題がある。
However, the gallium nitride-based compound semiconductor light-emitting device has a so-called heteroepitaxial structure in which a completely different material of a gallium nitride-based compound semiconductor is stacked on a sapphire substrate as described above. As compared with a light emitting element stacked on the same material, there is a disadvantage that external quantum efficiency is deteriorated due to a difference in refractive index between the substrate and the epitaxial film. Specifically, due to the difference in the refractive index between the sapphire substrate and the gallium nitride-based compound semiconductor, or between the gallium nitride-based compound semiconductor and the resin mold that seals the light-emitting element, the emission of the gallium nitride-based compound semiconductor is reflected multiple times at the interface between them. As a result, the reflected light is absorbed inside the gallium nitride-based compound semiconductor, and there is a problem that light emission cannot be efficiently extracted to the outside.

【0004】[0004]

【発明が解決しようとする課題】窒化ガリウム系化合物
半導体と基板、封止材料、または大気との多重反射を抑
制し、干渉を少なくすることができれば、外部量子効率
を向上させて、発光効率を向上させることができる。従
って、本発明はこのような事情を鑑み成されたものであ
り、その目的とするところは、窒化ガリウム系化合物半
導体内部の光の多重反射により起こる干渉を抑えること
により、窒化ガリウム系化合物半導体発光素子の外部量
子効率を向上させることにある。
SUMMARY OF THE INVENTION If multiple reflection between a gallium nitride-based compound semiconductor and a substrate, a sealing material, or the atmosphere can be suppressed and interference can be reduced, external quantum efficiency can be improved and light emission efficiency can be improved. Can be improved. Accordingly, the present invention has been made in view of such circumstances, and an object of the present invention is to suppress interference caused by multiple reflections of light inside a gallium nitride-based compound semiconductor, thereby achieving gallium nitride-based compound semiconductor light emission. It is to improve the external quantum efficiency of the device.

【0005】[0005]

【課題を解決するための手段】我々は窒化ガリウム系化
合物半導体内部の多重反射を抑制し、外部量子効率を上
げるため数々の実験を行ったところ、封止材料の屈折率
と、窒化ガリウム系化合物半導体の屈折率との間に屈折
率を有する透明な光学薄膜を、予め窒化ガリウム系化合
物半導体表面に形成することにより上記問題が解決でき
ることを新たに見いだした。即ち、本発明の窒化ガリウ
ム系化合物半導体発光素子は、サファイア基板上に窒化
ガリウム系化合物半導体が積層されて、その窒化ガリウ
ム系化合物半導体層側を発光観測面側とした発光チップ
を封止材料で封止してなる発光素子において、前記窒化
ガリウム系化合物半導体層の上には、その発光チップの
発光波長における屈折率が窒化ガリウム系化合物半導体
の屈折率と、封止材料の屈折率との間にある透明薄膜
が、封止材料で封止される前から形成されていることを
特徴とする。さらに透明薄膜は、透明薄膜の膜厚をt、
窒化ガリウム系化合物半導体の発光波長をλ、λにおけ
る透明薄膜の屈折率をnとすると、t=Aλ/(4n)
(但し、Aは自然数)の関係で形成されていることが望
ましい。
Means for Solving the Problems We have carried out a number of experiments to suppress the multiple reflection inside the gallium nitride based compound semiconductor and to increase the external quantum efficiency. It has been newly found that the above problem can be solved by forming a transparent optical thin film having a refractive index between the refractive index of the semiconductor and the surface of the gallium nitride-based compound semiconductor in advance. That is, the gallium nitride-based compound semiconductor light-emitting device of the present invention is such that a gallium nitride-based compound semiconductor is stacked on a sapphire substrate, and a light-emitting chip having the gallium nitride-based compound semiconductor layer side as a light emission observation surface side is used as a sealing material. In the sealed light emitting element, the refractive index at the emission wavelength of the light emitting chip is between the refractive index of the gallium nitride based compound semiconductor and the refractive index of the sealing material on the gallium nitride based compound semiconductor layer. Wherein the transparent thin film is formed before being sealed with a sealing material. Further, the transparent thin film has a thickness t,
Assuming that the emission wavelength of the gallium nitride-based compound semiconductor is λ and the refractive index of the transparent thin film at λ is n, t = Aλ / (4n)
(Where A is a natural number).

【0006】屈折率は波長によって多少異なるが、窒化
ガリウム系化合物半導体表面に形成する透明薄膜の材料
としては、その屈折率が窒化ガリウム系化合物半導体の
屈折率と封止材料との間にあり、透明な材料であればど
のようなものでもよい。具体的には、発光素子に用いら
れる窒化ガリウム系化合物半導体の屈折率がおよそ2、
封止材料として一般的に用いられているエポキシ樹脂の
屈折率がおよそ1.5であることから、2と1.5の間
にある材料として、例えばAl23(屈折率1.6
2)、MgO(1.75)、SnO2(1.9)、La
3(1.59)、CeF3(1.63)等を好ましい材
料として挙げることができ、それらの材料を例えば、蒸
着、スパッタリング、プラズマCVD等の装置を用いて
窒化ガリウム系化合物半導体の表面に形成することがで
きる。
Although the refractive index slightly varies depending on the wavelength, the material of the transparent thin film formed on the surface of the gallium nitride compound semiconductor has a refractive index between the refractive index of the gallium nitride compound semiconductor and the sealing material. Any transparent material may be used. Specifically, the gallium nitride compound semiconductor used for the light emitting element has a refractive index of about 2,
Since the refractive index of an epoxy resin generally used as a sealing material is approximately 1.5, as a material between 2 and 1.5, for example, Al 2 O 3 (refractive index 1.6)
2), MgO (1.75), SnO 2 (1.9), La
F 3 (1.59), CeF 3 (1.63) and the like can be cited as preferable materials, and these materials can be used, for example, by using a device such as vapor deposition, sputtering, or plasma CVD to obtain a surface of a gallium nitride-based compound semiconductor. Can be formed.

【0007】さらに透明薄膜の膜厚は透明薄膜の膜厚を
t、窒化ガリウム系化合物半導体の発光波長をλ、λに
おける透明薄膜の屈折率をnとすると、t=Aλ/(4
n)(但し、Aは自然数)の関係で形成することが好ま
しい。この膜厚で透明薄膜を形成することにより、透明
薄膜は発光波長λの光に対し無反射コートの条件を満た
し、界面で反射すること無く、光を封止樹脂に透過させ
ることができる。A値は特に限定するものではないが、
5以下の自然数を選択する方が膜厚を薄く形成でき、発
光が吸収される量が少なくなるため、さらに好ましい。
Further, assuming that the thickness of the transparent thin film is t, the emission wavelength of the gallium nitride-based compound semiconductor is λ, and the refractive index of the transparent thin film at λ is n, t = Aλ / (4
n) (where A is a natural number). By forming the transparent thin film with this thickness, the transparent thin film satisfies the condition of the anti-reflection coating for the light having the emission wavelength λ, and can transmit the light to the sealing resin without being reflected at the interface. The A value is not particularly limited,
It is more preferable to select a natural number of 5 or less because the film thickness can be reduced and the amount of absorbed light is reduced.

【0008】[0008]

【作用】図1に、本発明の一実施例に係る窒化ガリウム
系化合物半導体発光素子の構造を示す。1はサファイア
基板、2はn型GaN層、3はZnドープInGaN
層、4はMgドープp型GaN層、5はSnO2よりな
る透明薄膜、6は全体を封止したエポキシ樹脂よりなる
封止材料であり、この構造の発光素子において、発光層
はZnドープInGaN層3にあたる。サファイアの屈
折率がおよそ1.6、窒化ガリウム系化合物半導体の屈
折率がおよそ2、エポキシ樹脂の屈折率がおよそ1.5
である場合、図2に示すように従来の発光素子は、サフ
ァイア基板1、窒化ガリウム系化合物半導体2、3、
4、エポキシ樹脂6、それぞれの材料において屈折率が
異なるため、InGaN層3の発光の一部がp型GaN
層4とエポキシ樹脂との界面で反射され、さらに反射光
はサファイア基板1とn型GaN層2との界面で反射さ
れることにより多重反射となり、次第に窒化ガリウム系
化合物半導体層2、3、4中で吸収されて減衰する。窒
化ガリウム系化合物半導体2、3、4に関してはそれら
の屈折率はほとんど同一と見なしてもよいため、互いの
半導体層界面での多重反射は零(0)と見なしてよい。
一方、本発明のように(図1、図3)Mgドープp型G
aN層の上に、屈折率が窒化ガリウム系化合物半導体と
エポキシ樹脂との間にあるSnO2膜5(屈折率1.
9)を形成した場合、図3に示すように、SnO2膜5
が緩衝層となり、界面での光の反射を少なくすることが
できる。特にそのSnO2膜5の膜厚tをt=λ/(4
n)の厚さに設定することにより、SnO2膜5は無反
射コートとして作用し、反射をほとんど無くすることが
できる。さらに好都合なことには、SnO2のような導
電性を有する透明薄膜を形成すると、オーミックコンタ
クトされた電極と電気的に接続することができ、p型G
aN層4の全面電極として作用させることができる。
FIG. 1 shows the structure of a gallium nitride based compound semiconductor light emitting device according to one embodiment of the present invention. 1 is a sapphire substrate, 2 is an n-type GaN layer, 3 is Zn-doped InGaN
Layer 4, 4 is a Mg-doped p-type GaN layer, 5 is a transparent thin film made of SnO 2 , 6 is a sealing material made of an epoxy resin that has been entirely sealed. In the light emitting device having this structure, the light emitting layer is made of Zn-doped InGaN. It corresponds to layer 3. The refractive index of sapphire is about 1.6, the refractive index of gallium nitride-based compound semiconductor is about 2, and the refractive index of epoxy resin is about 1.5.
In FIG. 2, the conventional light emitting device includes a sapphire substrate 1, gallium nitride-based compound semiconductors 2, 3,
4, the epoxy resin 6, and the respective materials have different refractive indices.
The light is reflected at the interface between the layer 4 and the epoxy resin, and the reflected light is reflected at the interface between the sapphire substrate 1 and the n-type GaN layer 2 to form multiple reflections, and gradually the gallium nitride-based compound semiconductor layers 2, 3, and 4 It is absorbed in and attenuated. Since the refractive indices of the gallium nitride-based compound semiconductors 2, 3, and 4 may be regarded as almost the same, the multiple reflection at the interface between the semiconductor layers may be regarded as zero (0).
On the other hand, as in the present invention (FIGS. 1 and 3), Mg-doped p-type G
On the aN layer, a SnO 2 film 5 having a refractive index between the gallium nitride-based compound semiconductor and the epoxy resin (refractive index 1.
9), the SnO 2 film 5 is formed as shown in FIG.
Serves as a buffer layer and can reduce reflection of light at the interface. In particular, when the thickness t of the SnO 2 film 5 is t = λ / (4
By setting the thickness to n), the SnO 2 film 5 acts as a non-reflective coat, and can almost eliminate reflection. More advantageously, the formation of a conductive thin film, such as SnO 2 , allows electrical connection with the ohmic contacted electrode, and the p-type G
It can function as an entire surface electrode of the aN layer 4.

【0009】[0009]

【実施例】[実施例1]MOCVD法により、サファイ
ア基板上にGaNバッファ層と、Siドープn型GaN
層と、ZnドープInGaN層と、MgドープGaN層
とを順に成長させて積層した窒化ガリウム系化合物半導
体ウエハーを用意する。次に、このウエハーの最上層で
あるp型GaN層にフォトリソグラフィー技術により所
定のパターンを形成して、p型GaN層を一部エッチン
グして、電極を形成させるだけのn型GaN層を露出さ
せた後、p型GaN層、およびn型GaN層にオーミッ
ク電極を付ける。両電極に通電して、この窒化ガリウム
系化合物半導体の発光波長を測定したところ、470n
mにピークを有していた。
[Example 1] A GaN buffer layer and a Si-doped n-type GaN were formed on a sapphire substrate by MOCVD.
A gallium nitride-based compound semiconductor wafer is prepared by sequentially growing layers, a Zn-doped InGaN layer, and a Mg-doped GaN layer. Next, a predetermined pattern is formed on the p-type GaN layer, which is the uppermost layer of the wafer, by a photolithography technique, and the p-type GaN layer is partially etched to expose an n-type GaN layer only for forming an electrode. After that, ohmic electrodes are attached to the p-type GaN layer and the n-type GaN layer. When current was applied to both electrodes and the emission wavelength of this gallium nitride-based compound semiconductor was measured, it was 470 n
m had a peak.

【0010】次に、電極の一部にマスクをした後、蒸着
によりp型GaN層の表面にSnO2よりなる透明薄膜
を形成する。なお膜厚は、470nmにおける窒化ガリ
ウム系化合物半導体の屈折率をおよそ2、SnO2の屈
折率を1.9とし、t=470/(4×1.9)より、
約620オングストロームとした。
Next, after masking a part of the electrode, a transparent thin film made of SnO 2 is formed on the surface of the p-type GaN layer by vapor deposition. The thickness of the gallium nitride-based compound semiconductor at 470 nm is about 2, the refractive index of SnO 2 is about 1.9, and t = 470 / (4 × 1.9).
It was about 620 angstroms.

【0011】次に電極のマスクを剥離し、ウエハーを
0.5mm角のチップに切断する。最後に常法に従いチ
ップをリードフレーム上に載置してワイヤーボンディン
グした後、エポキシ樹脂で封止して本発明の発光素子
(青色発光ダイオード)を得る。この発光ダイオードの
発光スペクトルを図4(a)に示す。一方比較のため、
透明薄膜を形成せず同様にして得た従来の発光ダイオー
ドのスペクトルを同じく図4(b)に示す。
Next, the mask of the electrode is peeled off, and the wafer is cut into 0.5 mm square chips. Finally, the chip is mounted on a lead frame according to a conventional method and wire-bonded, and then sealed with an epoxy resin to obtain a light emitting device (blue light emitting diode) of the present invention. FIG. 4A shows an emission spectrum of the light emitting diode. Meanwhile, for comparison,
FIG. 4B shows a spectrum of a conventional light-emitting diode obtained in the same manner without forming a transparent thin film.

【0012】この図に示すように、従来の発光ダイオー
ドのスペクトルは主発光ピーク以外に、多重反射の干渉
効果による複数のピークが現れている。一方、本発明の
発光ダイオードのスペクトルには多重反射による干渉効
果のピークが現れておらず、また発光強度が従来のもの
に比して10%以上向上したことがわかる。
As shown in FIG. 1, in the spectrum of the conventional light emitting diode, a plurality of peaks due to the interference effect of multiple reflection appear in addition to the main light emission peak. On the other hand, no peak of the interference effect due to multiple reflection appears in the spectrum of the light emitting diode of the present invention, and it can be seen that the light emission intensity is improved by 10% or more as compared with the conventional one.

【0013】[実施例2]サファイア基板上にGaNバ
ッファ層と、Siドープn型GaN層と、MgドープG
aN層とを順に成長させて積層し、その主発光波長を4
30nmとする窒化ガリウム系化合物半導体ウエハーを
準備する。
[Example 2] A GaN buffer layer, a Si-doped n-type GaN layer, and a Mg-doped G
aN layers are sequentially grown and laminated, and the main emission wavelength is 4
A gallium nitride-based compound semiconductor wafer having a thickness of 30 nm is prepared.

【0014】実施例1と同様にしてp型GaN層をエッ
チングした後、そのp型GaN層の表面に同じく蒸着に
て、Al23よりなる透明薄膜を形成する。なお透明薄
膜の厚さはAl23の屈折率が1.6であることから、
t=430/(4×1.6)で670オングストローム
とする。
After the p-type GaN layer is etched in the same manner as in Example 1, a transparent thin film made of Al 2 O 3 is formed on the surface of the p-type GaN layer by the same vapor deposition. In addition, since the refractive index of Al 2 O 3 is 1.6, the thickness of the transparent thin film is
At t = 430 / (4 × 1.6), it is 670 Å.

【0015】後は実施例1と同様にして、青色発光ダイ
オードを作製し、そのスペクトルを測定した。その結果
を図5(c)に示す。また比較のため透明薄膜を形成し
ない青色発光ダイオードを同様にして作製し、そのスペ
クトルを図5(d)に示す。
Thereafter, a blue light emitting diode was manufactured in the same manner as in Example 1, and the spectrum was measured. The result is shown in FIG. For comparison, a blue light emitting diode without a transparent thin film was prepared in the same manner, and its spectrum is shown in FIG.

【0016】この図も図4と同様に透明薄膜を形成しな
い従来の発光ダイオードの発光スペクトルには、多重反
射の干渉による複数のピークが出現している。これに対
し、本発明の発光ダイオードのスペクトルからは、複数
のピークが消え、しかも発光強度が10%以上向上して
いる。
In this figure, as in FIG. 4, a plurality of peaks due to interference of multiple reflections appear in the emission spectrum of a conventional light emitting diode in which a transparent thin film is not formed. On the other hand, a plurality of peaks disappear from the spectrum of the light emitting diode of the present invention, and the emission intensity is improved by 10% or more.

【0017】[0017]

【発明の効果】以上説明したように、本発明の窒化ガリ
ウム系化合物半導体発光素子は、窒化ガリウム系化合物
半導体表面に、半導体内部で発生する多重反射の干渉を
抑える作用のある透明薄膜を形成しているため、窒化ガ
リウム系化合物半導体の発光を有効に外部に取り出すこ
とができ、発光素子の外部量子効率が向上する。また、
窒化ガリウム系化合物半導体以外の他の材料よりなる発
光素子はヘテロエピタキシャル構造ではないためそのよ
うな薄膜を設けても効果が少ないが、ヘテロエピタキシ
ャル構造である窒化ガリウム系化合物半導体発光素子は
透明薄膜の効果が顕著に現れる。
As described above, the gallium nitride-based compound semiconductor light emitting device of the present invention has a transparent thin film formed on the surface of the gallium nitride-based compound semiconductor, which has the function of suppressing interference of multiple reflections generated inside the semiconductor. Therefore, light emission of the gallium nitride-based compound semiconductor can be effectively extracted to the outside, and the external quantum efficiency of the light-emitting element is improved. Also,
Light emitting devices made of materials other than gallium nitride based compound semiconductors do not have a heteroepitaxial structure, so providing such a thin film has little effect.However, a gallium nitride based compound semiconductor light emitting device having a heteroepitaxial structure is a transparent thin film The effect appears remarkably.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の一実施例に係る窒化ガリウム系化合
物半導体発光素子の構造の一部を示す模式断面図。
FIG. 1 is a schematic sectional view showing a part of the structure of a gallium nitride based compound semiconductor light emitting device according to one embodiment of the present invention.

【図2】 従来の発光素子の光路を説明する模式断面
図。
FIG. 2 is a schematic cross-sectional view illustrating an optical path of a conventional light-emitting element.

【図3】 本発明の発光素子の光路を説明する模式断面
図。
FIG. 3 is a schematic cross-sectional view illustrating an optical path of a light emitting element of the present invention.

【図4】 本発明の一実施例に係る発光素子のスペクト
ルと、従来の発光素子のスペクトルとを比較して示す
図。
FIG. 4 is a diagram showing a spectrum of a light-emitting element according to one example of the present invention in comparison with a spectrum of a conventional light-emitting element.

【図5】 本発明の一実施例に係る発光素子のスペクト
ルと、従来の発光素子のスペクトルとを比較して示す
図。
FIG. 5 is a diagram showing a spectrum of a light-emitting element according to one embodiment of the present invention in comparison with a spectrum of a conventional light-emitting element.

【符号の説明】[Explanation of symbols]

1・・・・サファイア基板 2・・・・n型
GaN層 3・・・・ZnドープInGaN層 4・・・・p型
GaN層 5・・・・透明薄膜 6・・・・封止
樹脂
1 sapphire substrate 2 n-type GaN layer 3 Zn-doped InGaN layer 4 p-type GaN layer 5 transparent thin film 6 sealing resin

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) H01L 33/00──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 6 , DB name) H01L 33/00

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 サファイア基板上に窒化ガリウム系化合
物半導体が積層されて、その窒化ガリウム系化合物半導
体層側を発光観測面側とした発光チップを封止材料で封
止してなる発光素子において、前記窒化ガリウム系化合
物半導体層の上には、その発光チップの発光波長におけ
る屈折率が窒化ガリウム系化合物半導体の屈折率と、封
止材料の屈折率との間にある透明薄膜が、封止材料で封
止される前から形成されていることを特徴とする窒化ガ
リウム系化合物半導体発光素子。
1. A light-emitting element comprising: a gallium nitride-based compound semiconductor laminated on a sapphire substrate; and a light-emitting chip having the gallium nitride-based compound semiconductor layer side having a light-emitting observation surface side sealed with a sealing material. On the gallium nitride-based compound semiconductor layer, a transparent thin film having a refractive index at the emission wavelength of the light-emitting chip between the refractive index of the gallium nitride-based compound semiconductor and the refractive index of the sealing material, A gallium nitride-based compound semiconductor light-emitting device, which is formed before being sealed with GaN.
【請求項2】 前記透明薄膜は、透明薄膜の膜厚をt、
窒化ガリウム系化合物半導体の発光波長をλ、λにおけ
る透明薄膜の屈折率をnとすると、t=Aλ/(4n)
(但し、Aは自然数)の関係で形成されていることを特
徴とする請求項1に記載の窒化ガリウム系化合物半導体
発光素子。
2. The transparent thin film, wherein the thickness of the transparent thin film is t,
Assuming that the emission wavelength of the gallium nitride-based compound semiconductor is λ and the refractive index of the transparent thin film at λ is n, t = Aλ / (4n)
The gallium nitride-based compound semiconductor light-emitting device according to claim 1, wherein the gallium nitride-based compound semiconductor light-emitting device is formed in a relationship (where A is a natural number).
【請求項3】 前記透明薄膜は導電性を有していること
を特徴とする請求項1に記載の窒化ガリウム系化合物半
導体発光素子。
3. The gallium nitride-based compound semiconductor light emitting device according to claim 1, wherein the transparent thin film has conductivity.
JP9862193A 1993-03-31 1993-03-31 Gallium nitride based compound semiconductor light emitting device Expired - Lifetime JP2836686B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9862193A JP2836686B2 (en) 1993-03-31 1993-03-31 Gallium nitride based compound semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9862193A JP2836686B2 (en) 1993-03-31 1993-03-31 Gallium nitride based compound semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JPH06291366A JPH06291366A (en) 1994-10-18
JP2836686B2 true JP2836686B2 (en) 1998-12-14

Family

ID=14224626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9862193A Expired - Lifetime JP2836686B2 (en) 1993-03-31 1993-03-31 Gallium nitride based compound semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP2836686B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6996150B1 (en) 1994-09-14 2006-02-07 Rohm Co., Ltd. Semiconductor light emitting device and manufacturing method therefor
JP3285341B2 (en) 2000-06-01 2002-05-27 士郎 酒井 Method of manufacturing gallium nitride based compound semiconductor
JP3466144B2 (en) 2000-09-22 2003-11-10 士郎 酒井 How to roughen the surface of a semiconductor
JP3548735B2 (en) 2001-06-29 2004-07-28 士郎 酒井 Method of manufacturing gallium nitride based compound semiconductor
US7005685B2 (en) 2002-02-28 2006-02-28 Shiro Sakai Gallium-nitride-based compound semiconductor device
JP4590905B2 (en) 2003-10-31 2010-12-01 豊田合成株式会社 Light emitting element and light emitting device
US7615798B2 (en) 2004-03-29 2009-11-10 Nichia Corporation Semiconductor light emitting device having an electrode made of a conductive oxide
US7560294B2 (en) 2004-06-07 2009-07-14 Toyoda Gosei Co., Ltd. Light emitting element and method of making same
TW200837982A (en) * 2007-03-07 2008-09-16 Everlight Electronics Co Ltd Semiconductor light emitting apparatus and the manufacturing method thereof

Also Published As

Publication number Publication date
JPH06291366A (en) 1994-10-18

Similar Documents

Publication Publication Date Title
JP2836687B2 (en) Gallium nitride based compound semiconductor light emitting device
JP5857786B2 (en) Manufacturing method of semiconductor light emitting device
US10658546B2 (en) High efficiency LEDs and methods of manufacturing
US8507935B2 (en) Light emitting element and light emitting device
TWI420698B (en) Method for manufacturing semiconductor light emitting device
JP2005183911A (en) Nitride semiconductor light-emitting element and method of manufacturing the same
JP2000277804A (en) Nitride semiconductor device and manufacture thereof, and light emitting element
WO2006126516A1 (en) Nitride semiconductor light emitting element
JP2010123742A (en) Light emitting diode and method of manufacturing the same, and lamp
KR100691497B1 (en) Light-emitting device and Method of manufacturing the same
JP2004006662A (en) Gallium nitride compound semiconductor device
CN112272872A (en) Semiconductor light-emitting element
JP2836686B2 (en) Gallium nitride based compound semiconductor light emitting device
TWI399871B (en) Optical device and the forming method thereof
EP2985793A1 (en) Semiconductor light emitting element and method for manufacturing same
JP4140007B2 (en) Light emitting device and method for manufacturing light emitting device
KR101154511B1 (en) High efficiency light emitting diode and method of fabricating the same
KR20130009719A (en) High efficiency light emitting diode and method of fabricating the same
KR20050042715A (en) Electrode structure, semiconductor light-emitting device provided with the same and method for manufacturing the same
US20230395760A1 (en) Passivation structures for light-emitting diode chips
US20230317765A1 (en) Light-emitting device
KR101363432B1 (en) Nitride semiconductor light emitting device and method for manufacturing thereof
US20090121245A1 (en) Optoelectronic Semiconductor Chip
US20230317879A1 (en) Ultraviolet light-emitting device
JP5682427B2 (en) Light emitting element

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071009

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081009

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091009

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091009

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091009

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101009

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101009

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111009

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111009

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131009

Year of fee payment: 15

EXPY Cancellation because of completion of term