JP2836687B2 - Gallium nitride based compound semiconductor light emitting device - Google Patents
Gallium nitride based compound semiconductor light emitting deviceInfo
- Publication number
- JP2836687B2 JP2836687B2 JP10021593A JP10021593A JP2836687B2 JP 2836687 B2 JP2836687 B2 JP 2836687B2 JP 10021593 A JP10021593 A JP 10021593A JP 10021593 A JP10021593 A JP 10021593A JP 2836687 B2 JP2836687 B2 JP 2836687B2
- Authority
- JP
- Japan
- Prior art keywords
- compound semiconductor
- gallium nitride
- based compound
- emitting device
- light emitting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Led Devices (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明はサファイア基板上に一般
式InXAlYGa1-X-YN(0≦X<1、0≦Y<1)で
表される窒化ガリウム系化合物半導体が積層されてなる
窒化ガリウム系化合物半導体発光素子及びその製造方法
に関する。The present invention relates to a general formula In X Al Y Ga 1-XY N (0 ≦ X <1,0 ≦ Y <1) a gallium nitride compound semiconductor represented by is laminated on a sapphire substrate The present invention relates to a gallium nitride-based compound semiconductor light emitting device and a method for manufacturing the same.
【0002】[0002]
【従来の技術】GaN、GaAlN、InGaN、In
AlGaN等の窒化ガリウム系化合物半導体は直接遷移
を有し、バンドギャップが1.95eV〜6eVまで変
化し、その発光色は紫外から赤色にまで及ぶため、発光
ダイオード、レーザダイオード等、発光素子の材料とし
て有望視されている。その窒化ガリウム系化合物半導体
よりなる発光素子は、一般にMOCVD、MBE法等の
気相成長法を用いてサファイア基板上にn型及びp型、
あるいはn型及びi型に成長して積層し、それぞれの層
から電極を取り出した後、チップ状としてリードフレー
ムに固定し、最後にエポキシ等の樹脂で封止することに
よって得られる。2. Description of the Related Art GaN, GaAlN, InGaN, In
Gallium nitride-based compound semiconductors such as AlGaN have direct transitions, change their band gaps from 1.95 eV to 6 eV, and their emission colors range from ultraviolet to red. Therefore, materials for light-emitting elements such as light-emitting diodes and laser diodes Promising as. The light emitting device made of the gallium nitride-based compound semiconductor is generally formed on a sapphire substrate using n-type and p-type by vapor phase growth methods such as MOCVD and MBE.
Alternatively, it is obtained by growing and stacking into n-type and i-type, taking out the electrodes from each layer, fixing them in a chip shape to a lead frame, and finally sealing them with a resin such as epoxy.
【0003】しかしながら、その窒化ガリウム系化合物
半導体発光素子は、前記のようにサファイア基板の上
に、窒化ガリウム系化合物半導体という全く異なる材料
を積層するいわゆるヘテロエピタキシャル構造であるた
め、他のGaAs、GaP等、同一材料の上に積層され
る発光素子に比して、基板とエピタキシャル膜との屈折
率の違いにより外部量子効率が悪くなるいう欠点を有し
ている。具体的にはサファイア基板と窒化ガリウム系化
合物半導体との屈折率の違い、および窒化ガリウム系化
合物半導体素子とそれを封止する樹脂との屈折率の違い
により、窒化ガリウム系化合物半導体の発光がそれらの
界面で多重反射されて干渉し、反射光は窒化ガリウム系
化合物半導体内部で吸収されてしまい、発光を効率よく
外部に取り出せないという問題がある。However, the gallium nitride-based compound semiconductor light-emitting device has a so-called heteroepitaxial structure in which a completely different material of a gallium nitride-based compound semiconductor is stacked on a sapphire substrate as described above. As compared with a light emitting element stacked on the same material, there is a disadvantage that external quantum efficiency is deteriorated due to a difference in refractive index between the substrate and the epitaxial film. Specifically, due to the difference in the refractive index between the sapphire substrate and the gallium nitride-based compound semiconductor, and the difference in the refractive index between the gallium nitride-based compound semiconductor element and the resin that seals it, light emission of the gallium nitride-based compound semiconductor is There is a problem that the reflected light is absorbed inside the gallium nitride-based compound semiconductor and the emitted light cannot be efficiently extracted to the outside.
【0004】[0004]
【発明が解決しようとする課題】窒化ガリウム系化合物
半導体と基板、および封止樹脂との多重反射を抑制し、
干渉を少なくすることができれば、外部量子効率を向上
させて、発光効率を向上させることができる。従って、
本発明はこのような事情を鑑み成されたものであり、そ
の目的とするところは、窒化ガリウム系化合物半導体内
部の光の多重反射により起こる干渉を抑えることによ
り、窒化ガリウム系化合物半導体発光素子の外部量子効
率を向上させることにある。SUMMARY OF THE INVENTION The multiple reflection between a gallium nitride compound semiconductor, a substrate, and a sealing resin is suppressed,
If the interference can be reduced, the external quantum efficiency can be improved and the luminous efficiency can be improved. Therefore,
The present invention has been made in view of such circumstances, and an object of the present invention is to suppress interference caused by multiple reflection of light inside a gallium nitride-based compound semiconductor, thereby achieving a gallium nitride-based compound semiconductor light-emitting device. It is to improve external quantum efficiency.
【0005】[0005]
【課題を解決するための手段】我々は窒化ガリウム系化
合物半導体内部の多重反射を抑制し、外部量子効率を上
げるため数々の実験を行ったところ、内部で反射する光
を最上層の窒化ガリウム系化合物半導体の界面で乱反射
させることにより、上記問題が解決できることを新たに
見いだした。即ち、本発明の窒化ガリウム系化合物半導
体発光素子は、サファイア基板C面(0001)のオフ
基板の上に発光素子となる窒化ガリウム系化合物半導体
層が成長され、その窒化ガリウム系化合物半導体の最上
層の表面が非鏡面とされていることを特徴とする。前記
オフ基板の角度はサファイアC面に対し、0.2゜以
上、15゜以下であることが望ましい。In order to suppress the multiple reflection inside the gallium nitride-based compound semiconductor and to increase the external quantum efficiency, we conducted various experiments. It has been newly found that the above problem can be solved by irregular reflection at the interface of the compound semiconductor. That is, in the gallium nitride-based compound semiconductor light-emitting device of the present invention, a gallium nitride-based compound semiconductor layer serving as a light-emitting device is grown on an off-substrate of the sapphire substrate C plane (0001), and the uppermost layer of the gallium nitride-based compound semiconductor is formed. Is characterized in that the surface is non-mirror. It is preferable that the angle of the off-substrate is 0.2 ° or more and 15 ° or less with respect to the sapphire C plane.
【0006】本発明の一実施例に係る窒化ガリウム系化
合物半導体発光素子の模式断面図を図1に示す。この発
光素子はサファイア基板1の上に、n型GaN層2と、
p型あるいは高抵抗なi型GaN層3(以下p型GaN
層という)とを順に積層してなり、p型GaN層の一部
をエッチングしてn型GaN層を露出させ、n型GaN
層およびp型GaN層に電極を形成している。さらに電
極を形成する最上層のp型GaN層表面を非鏡面として
いる。この構造の窒化ガリウム系化合物半導体発光素子
において発光観測面はサファイア基板1側である。FIG. 1 is a schematic sectional view of a gallium nitride based compound semiconductor light emitting device according to one embodiment of the present invention. This light emitting device has an n-type GaN layer 2 on a sapphire substrate 1,
p-type or high-resistance i-type GaN layer 3 (hereinafter referred to as p-type GaN
), And a part of the p-type GaN layer is etched to expose the n-type GaN layer.
An electrode is formed on the layer and the p-type GaN layer. Further, the surface of the uppermost p-type GaN layer on which an electrode is formed is made non-mirror. In the gallium nitride-based compound semiconductor light emitting device having this structure, the emission observation surface is on the sapphire substrate 1 side.
【0007】また図2に本発明の他の実施例に係る窒化
ガリウム系化合物半導体素子の模式断面図を示す。これ
も構造的には図1と同様であって、同じく電極を形成す
る最上層のp型GaN層3を非鏡面としているが、この
発光素子は発光観測面がp型GaN層3側となってい
る。FIG. 2 is a schematic sectional view of a gallium nitride based compound semiconductor device according to another embodiment of the present invention. This is also structurally similar to FIG. 1 except that the uppermost p-type GaN layer 3 forming an electrode is also non-mirror, but this light-emitting element has a light emission observation surface on the p-type GaN layer 3 side. ing.
【0008】これらの図に示すように窒化ガリウム系化
合物半導体の最上層を非鏡面、即ち微細な凹凸が形成さ
れた状態とするには、第一に成長中より最上層を非鏡面
とする方法と、第二に成長後最上層を化学的または物理
的方法によって非鏡面とする方法とがある。第一の方法
は、窒化ガリウム系化合物半導体をサファイア基板のC
面(0001)からのオフ基板上に積層する方法であ
る。窒化ガリウム系化合物半導体は通常サファイア基板
のC面に成長されて積層されることが多く、C面上に成
長することにより最上層を鏡面とする窒化ガリウム系化
合物半導体を得ている。しかし本発明の方法では、C面
からのオフ基板、つまりC面から角度を数度ずらしたサ
ファイア基板上に、窒化ガリウム系化合物半導体をn
型、およびp型あるいはi型にステップ成長させて積層
することにより、最上層の窒化ガリウム系化合物半導体
を非鏡面とすることができる。オフ基板の角度(ずらし
た角度)はサファイアのC面に対し、0.2゜以上、1
5゜以下が好ましい。0.2゜より小さいと非鏡面とな
りにくく、また15゜よりも大きいと窒化ガリウム系化
合物半導体の結晶性が悪くなり発光素子の出力が低下す
る傾向にある。As shown in these figures, in order to make the uppermost layer of the gallium nitride-based compound semiconductor non-mirror surface, that is, a state in which fine irregularities are formed, first, the uppermost layer is made non-mirror surface during growth. And second, a method in which the uppermost layer after the growth is made non-specular by a chemical or physical method. The first method uses a gallium nitride-based compound semiconductor on a sapphire substrate C
This is a method of laminating on the off substrate from the plane (0001). The gallium nitride-based compound semiconductor is usually grown and laminated on the C-plane of the sapphire substrate, and by growing on the C-plane, a gallium nitride-based compound semiconductor having the uppermost layer as a mirror surface is obtained. However, in the method of the present invention, a gallium nitride-based compound semiconductor is deposited on an off-substrate from the C-plane, that is, a sapphire substrate whose angle is shifted from the C-plane by several degrees.
By performing step growth to form a p-type or p-type or i-type and stacking them, the uppermost gallium nitride-based compound semiconductor can be made non-mirror. The angle (offset angle) of the off-substrate is 0.2 ° or more with respect to the C-plane of sapphire.
5 ° or less is preferred. If the angle is smaller than 0.2 °, it is difficult to form a non-mirror surface.
【0009】一方、第二の方法は、鏡面を有する最上層
の窒化ガリウム系化合物半導体表面をエッチングする
か、または研磨することにより、微細な凹凸を設けて非
鏡面とする方法である。エッチングには例えばリン酸+
硫酸の混酸を用いるウエットエッチングと、RIE(反
応性イオンエッチング)等の装置を用いるドライエッチ
ングとの二種類の方法があるがいずれの方法でもよい。
研磨は適当な研磨剤を選択することにより、モース硬度
がほぼ9と非常に硬い窒化ガリウム系化合物半導体でも
研磨してその表面を非鏡面とすることができる。以上、
第一の方法と第二の方法とでは、好ましくは第一の方法
で非鏡面とする方がよい。なぜなら、第二の方法は物理
的または化学的に強制的に結晶に傷をつける方法である
のに対し、第一の方法は成長中より自然に最上層を非鏡
面とできるため、結晶を傷めることがない。従って発光
素子とした場合においても、第二の方法では発光強度が
低下する恐れがあるが、第一の方法では全くその心配が
ない。また第一の方法では窒化ガリウム系化合物半導体
を最初からオフ基板の上に成長しているため、第二の方
法のように余分な工程を省略でき、生産性に優れてい
る。On the other hand, the second method is a method in which fine irregularities are provided to make a non-mirror surface by etching or polishing the surface of the uppermost gallium nitride-based compound semiconductor having a mirror surface. For example, phosphoric acid +
There are two types of methods, wet etching using a mixed acid of sulfuric acid and dry etching using an apparatus such as RIE (reactive ion etching), and either method may be used.
By selecting an appropriate polishing agent for polishing, even a very hard gallium nitride-based compound semiconductor having a Mohs hardness of approximately 9 can be polished to make the surface non-mirror. that's all,
In the first method and the second method, it is preferable to make the first method non-specular. Because the second method is to physically or chemically forcibly damage the crystal, the first method damages the crystal because the top layer can be made non-mirror more naturally than during growth. Nothing. Therefore, even in the case of a light emitting element, the light emission intensity may be reduced in the second method, but is not at all concerned in the first method. In the first method, since the gallium nitride-based compound semiconductor is grown on the off-substrate from the beginning, an extra step can be omitted as in the second method, and the productivity is excellent.
【0010】[0010]
【作用】図3および図4は、発光状態における従来の窒
化ガリウム系化合物半導体発光素子と、本発明の窒化ガ
リウム系化合物半導体発光素子との光路を比較して示す
模式断面図である。これらの図に付された符号は図1お
よび図2の符号と同一物質を指している。なおこの構造
の発光素子において、発光層はp型GaN層3にあた
る。ここで、サファイアの屈折率がおよそ1.6、窒化
ガリウム系化合物半導体の屈折率がおよそ2である場
合、図3に示すように従来の発光素子は、サファイア基
板1、窒化ガリウム系化合物半導体2、3それぞれの材
料において屈折率が異なるため、p型GaN層3の発光
の一部がp型GaN層4と外界(発光ダイオードの場
合、エポキシ樹脂が用いられることが多い。)との界面
で反射され、さらに反射光はサファイア基板1とn型G
aN層2との界面で反射されることにより多重反射とな
り、次第に窒化ガリウム系化合物半導体層2、3中に吸
収されて減衰する。n型GaN層2、p型GaN層3に
関しては同一材料であり、それらの屈折率はほとんど同
一と見なしてもよいため、互いの半導体層界面での多重
反射は零(0)と見なしてよい。一方、図4の本発明の
ように、最上層であるp型GaN層3を非鏡面とした場
合、サファイア基板1とn型GaN層2との界面で反射
した光は、非鏡面なp型GaN層で散乱するため、窒化
ガリウム系化合物半導体内部での多重反射を抑制し、光
の干渉を少なくすることができる。FIGS. 3 and 4 are schematic cross-sectional views showing optical paths of a conventional gallium nitride-based compound semiconductor light emitting device and a gallium nitride-based compound semiconductor light emitting device of the present invention in a light emitting state. The reference numerals given in these figures indicate the same substances as those in FIGS. In the light emitting device having this structure, the light emitting layer corresponds to the p-type GaN layer 3. Here, when the refractive index of sapphire is approximately 1.6 and the refractive index of the gallium nitride-based compound semiconductor is approximately 2, as shown in FIG. 3, the conventional light-emitting device includes a sapphire substrate 1, a gallium nitride-based compound semiconductor 2 Since the materials have different refractive indices, a part of the light emission of the p-type GaN layer 3 is at the interface between the p-type GaN layer 4 and the outside (in the case of a light-emitting diode, an epoxy resin is often used). The sapphire substrate 1 and the n-type G
Reflection at the interface with the aN layer 2 causes multiple reflections, which are gradually absorbed into the gallium nitride-based compound semiconductor layers 2 and 3 and attenuated. Since the n-type GaN layer 2 and the p-type GaN layer 3 are made of the same material and may have almost the same refractive index, the multiple reflection at the interface between the semiconductor layers may be regarded as zero (0). . On the other hand, when the p-type GaN layer 3, which is the uppermost layer, is non-specular as in the present invention in FIG. Since the light is scattered by the GaN layer, multiple reflection inside the gallium nitride-based compound semiconductor can be suppressed, and light interference can be reduced.
【0011】[0011]
【実施例】[実施例1]C面から1゜ずらしたサファイ
アのオフ基板を用意し、その上にMOCVD法を用い
て、GaNバッファ層と、Siドープn型GaN層と、
Mgドープp型GaN層とを順に成長させる。このよう
にして成長したp型GaN層の表面には微細な凹凸が無
数に形成されていた。次にこのp型GaN層にフォトリ
ソグラフィー技術により所定のパターンを形成して、p
型GaN層を一部エッチングし、電極を形成させるだけ
のn型GaN層を露出させた後、p型GaN層、および
n型GaN層にオーミック電極を付ける。両電極に通電
して、この窒化ガリウム系化合物半導体の発光スペクト
ルを測定したところ、図5(a)に示すようなスペクト
ルであり、400nmにピークを有していた。[Example 1] A sapphire off-substrate shifted by 1 ° from the C-plane was prepared, and a GaN buffer layer, a Si-doped n-type GaN layer were formed thereon by MOCVD.
An Mg-doped p-type GaN layer is sequentially grown. Innumerable fine irregularities were formed on the surface of the p-type GaN layer thus grown. Next, a predetermined pattern is formed on this p-type GaN layer by photolithography technology,
After partially etching the n-type GaN layer to expose an n-type GaN layer only for forming an electrode, ohmic electrodes are attached to the p-type GaN layer and the n-type GaN layer. When current was applied to both electrodes, the emission spectrum of the gallium nitride-based compound semiconductor was measured. The spectrum was as shown in FIG. 5A, and had a peak at 400 nm.
【0012】一方、比較のためサファイア基板のC面上
に同様にして成長した従来の窒化ガリウム系化合物半導
体発光素子を同様にして作製し、そのスペクトルを測定
したところ、同じく400nmにピークを有していた
が、図5(b)の破線に示すようなスペクトルであっ
た。On the other hand, for comparison, a conventional gallium nitride-based compound semiconductor light-emitting device similarly grown on the C-plane of a sapphire substrate was fabricated in the same manner, and its spectrum was measured. However, the spectrum was as shown by the broken line in FIG.
【0013】図5(a)と(b)を比較すると、(b)
の方は400nmのピーク以外にも410nm付近と、
430nm付近と、460nm付近に多重反射による弱
いピークが見られる。一方、本発明の発光素子のスペク
トルである(a)の方では、それらのピークが見られ
ず、ブロードな曲線となっており、多重反射が緩和され
ていることがわかる。しかも発光強度は(a)の方が1
0%以上向上している。When comparing FIG. 5A and FIG. 5B, FIG.
Is near 410 nm besides the peak at 400 nm,
Weak peaks due to multiple reflection are observed around 430 nm and around 460 nm. On the other hand, in the case of (a), which is the spectrum of the light emitting device of the present invention, the peaks are not seen and the curve is broad, indicating that the multiple reflection is reduced. Moreover, the emission intensity is 1 in (a).
It has improved by 0% or more.
【0014】[実施例2]C面から10゜ずらしたサフ
ァイアのオフ基板を使用する他は、実施例1と同様にし
て、発光素子としたところ実施例1と同一スペクトル、
ほぼ同一強度の発光が観測された。Example 2 A light emitting device was formed in the same manner as in Example 1 except that a sapphire off-substrate shifted from the C plane by 10 ° was used.
Light emission of almost the same intensity was observed.
【0015】[実施例3]サファイア基板のC面上に成
長させる他は実施例1と同様にして、GaNバッファ
層、Siドープn型GaN層、およびMgドープp型G
aN層を積層した。さらに前記窒化ガリウム系化合物半
導体を積層したウエハーをリン酸と硫酸の混酸に浸漬
し、p型GaN層表面を非鏡面とする他は実施例1と同
様にして電極を設け、発光スペクトルを測定したとこ
ろ、実施例1と同一のブロードな曲線が得られ、強度は
実施例1に比して約10%低下していた。Example 3 A GaN buffer layer, a Si-doped n-type GaN layer, and a Mg-doped p-type G were formed in the same manner as in Example 1 except that the GaN layer was grown on the C-plane of the sapphire substrate.
An aN layer was laminated. Further, the wafer on which the gallium nitride-based compound semiconductor was laminated was immersed in a mixed acid of phosphoric acid and sulfuric acid, and electrodes were provided in the same manner as in Example 1 except that the surface of the p-type GaN layer was made non-mirror, and the emission spectrum was measured. However, the same broad curve as in Example 1 was obtained, and the strength was reduced by about 10% as compared with Example 1.
【0016】[実施例4]実施例2と同様にサファイア
のC面上にGaNバッファ層、n型GaN層、p型Ga
N層を成長させたウエハーのp型GaN層をRIEでエ
ッチングし、その表面を非鏡面とする他は、実施例1と
同様にして発光素子の発光スペクトルを測定したとこ
ろ、実施例1と同一のブロードな曲線が得られ、強度は
実施例1に比して約5%低下していた。[Embodiment 4] As in Embodiment 2, a GaN buffer layer, an n-type GaN layer, and a p-type Ga
The emission spectrum of the light emitting device was measured in the same manner as in Example 1 except that the p-type GaN layer of the wafer on which the N layer was grown was etched by RIE, and the surface was made non-mirror. Was obtained, and the strength was reduced by about 5% as compared with Example 1.
【0017】[0017]
【発明の効果】以上説明したように、本発明の窒化ガリ
ウム系化合物半導体素子はその最上層の窒化ガリウム系
化合物半導体表面を非鏡面としていることにより、窒化
ガリウム系化合物半導体層内の多重反射による光の干渉
を抑えることができる。従って、窒化ガリウム系化合物
半導体の発光を有効に外部に取り出すことができ、発光
素子の外部量子効率が向上する。また、発光スペクトル
に、目的とする発光ピーク以外の干渉によるピークが出
現してこないため、窒化ガリウム系化合物半導体を用い
て青色発光ダイオードを作製した場合にその色純度を向
上させることができる。As described above, the gallium nitride-based compound semiconductor device of the present invention has a non-mirror surface on the uppermost layer of the gallium nitride-based compound semiconductor. Light interference can be suppressed. Therefore, light emission of the gallium nitride-based compound semiconductor can be effectively extracted to the outside, and the external quantum efficiency of the light emitting element is improved. In addition, since a peak due to interference other than the intended emission peak does not appear in the emission spectrum, the color purity of a blue light-emitting diode manufactured using a gallium nitride-based compound semiconductor can be improved.
【図1】 本発明の一実施例に係る窒化ガリウム系化合
物半導体発光素子の構造を示す模式断面図。FIG. 1 is a schematic sectional view showing the structure of a gallium nitride based compound semiconductor light emitting device according to one embodiment of the present invention.
【図2】 本発明の他の実施例に係る窒化ガリウム系化
合物半導体素子の構造を示す模式断面図。FIG. 2 is a schematic sectional view showing the structure of a gallium nitride-based compound semiconductor device according to another embodiment of the present invention.
【図3】 従来の窒化ガリウム系化合物半導体発光素子
の光路を示す模式断面図。FIG. 3 is a schematic sectional view showing an optical path of a conventional gallium nitride based compound semiconductor light emitting device.
【図4】 本発明の一実施例に係る窒化ガリウム系化合
物半導体発光素子の光路を示す模式断面図。FIG. 4 is a schematic sectional view showing an optical path of a gallium nitride based compound semiconductor light emitting device according to one embodiment of the present invention.
【図5】 本発明の一実施例に係る窒化ガリウム系化合
物半導体発光素子と従来の窒化ガリウム系化合物半導体
発光素子の発光スペクトルを比較して示す図。FIG. 5 is a graph showing a comparison between emission spectra of a gallium nitride-based compound semiconductor light-emitting device according to one embodiment of the present invention and a conventional gallium nitride-based compound semiconductor light-emitting device.
1・・・・・サファイア基板 2・・・・・n型G
aN層 3・・・・・p型GaN層1 ... Sapphire substrate 2 ... N-type G
aN layer 3 p-type GaN layer
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平3−163883(JP,A) 特開 平4−354382(JP,A) 特開 平4−42582(JP,A) 特公 昭51−23868(JP,B1) (58)調査した分野(Int.Cl.6,DB名) H01L 33/00 JICSTファイル(JOIS)──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-3-163883 (JP, A) JP-A-4-354382 (JP, A) JP-A-4-42582 (JP, A) 23868 (JP, B1) (58) Field surveyed (Int. Cl. 6 , DB name) H01L 33/00 JICST file (JOIS)
Claims (2)
基板の上に発光素子となる窒化ガリウム系化合物半導体
層が成長され、その窒化ガリウム系化合物半導体の最上
層の表面が非鏡面とされていることを特徴とする窒化ガ
リウム系化合物半導体発光素子。1. A gallium nitride-based compound semiconductor layer serving as a light-emitting element is grown on an off-substrate on a C-plane (0001) of a sapphire substrate, and the surface of the uppermost layer of the gallium nitride-based compound semiconductor is non-mirror. A gallium nitride-based compound semiconductor light emitting device, comprising:
対し、0.2゜以上、15゜以下であることを特徴とす
る請求項1に記載の窒化ガリウム系化合物半導体発光素
子。2. The gallium nitride-based compound semiconductor light emitting device according to claim 1, wherein the angle of the off-substrate is not less than 0.2 ° and not more than 15 ° with respect to a sapphire C plane.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10021593A JP2836687B2 (en) | 1993-04-03 | 1993-04-03 | Gallium nitride based compound semiconductor light emitting device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10021593A JP2836687B2 (en) | 1993-04-03 | 1993-04-03 | Gallium nitride based compound semiconductor light emitting device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06291368A JPH06291368A (en) | 1994-10-18 |
JP2836687B2 true JP2836687B2 (en) | 1998-12-14 |
Family
ID=14268084
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10021593A Expired - Lifetime JP2836687B2 (en) | 1993-04-03 | 1993-04-03 | Gallium nitride based compound semiconductor light emitting device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2836687B2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007119619A1 (en) | 2006-03-31 | 2007-10-25 | Showa Denko K.K. | GaN SEMICONDUCTOR LIGHT EMITTING ELEMENT AND LAMP |
US7652299B2 (en) | 2005-02-14 | 2010-01-26 | Showa Denko K.K. | Nitride semiconductor light-emitting device and method for fabrication thereof |
US7683377B2 (en) | 2003-07-16 | 2010-03-23 | Panasonic Corporation | Semiconductor light emitting device, method of manufacturing the same, and lighting apparatus and display apparatus using the same |
US7803648B2 (en) | 2005-03-09 | 2010-09-28 | Showa Denko K.K. | Nitride semiconductor light-emitting device and method for fabrication thereof |
US8421107B2 (en) | 2008-06-20 | 2013-04-16 | Toyoda Gosei Co., Ltd. | Group-III nitride semiconductor light emitting device and production method thereof, and lamp |
US8492186B2 (en) | 2006-12-22 | 2013-07-23 | Toyoda Gosei Co., Ltd. | Method for producing group III nitride semiconductor layer, group III nitride semiconductor light-emitting device, and lamp |
US8796055B2 (en) | 2012-02-24 | 2014-08-05 | Toyoda Gosei Co., Ltd. | Method for manufacturing group III nitride semiconductor light-emitting element, group III nitride semiconductor light-emitting element, lamp, and reticle |
US8927348B2 (en) | 2008-05-14 | 2015-01-06 | Toyoda Gosei Co., Ltd. | Method of manufacturing group-III nitride semiconductor light-emitting device, and group-III nitride semiconductor light-emitting device, and lamp |
Families Citing this family (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6996150B1 (en) | 1994-09-14 | 2006-02-07 | Rohm Co., Ltd. | Semiconductor light emitting device and manufacturing method therefor |
US5779924A (en) * | 1996-03-22 | 1998-07-14 | Hewlett-Packard Company | Ordered interface texturing for a light emitting device |
US6091085A (en) * | 1998-02-19 | 2000-07-18 | Agilent Technologies, Inc. | GaN LEDs with improved output coupling efficiency |
JP3469484B2 (en) | 1998-12-24 | 2003-11-25 | 株式会社東芝 | Semiconductor light emitting device and method of manufacturing the same |
DE60041742D1 (en) * | 1999-02-26 | 2009-04-23 | Furukawa Electric Co Ltd | Semiconductor laser |
US6133589A (en) * | 1999-06-08 | 2000-10-17 | Lumileds Lighting, U.S., Llc | AlGaInN-based LED having thick epitaxial layer for improved light extraction |
JP3586594B2 (en) | 1999-08-25 | 2004-11-10 | シャープ株式会社 | Semiconductor light emitting device and method of manufacturing the same |
DE10020464A1 (en) * | 2000-04-26 | 2001-11-08 | Osram Opto Semiconductors Gmbh | Radiation-emitting semiconductor element has a semiconductor body formed by a stack of different semiconductor layers based on gallium nitride |
JP5523277B2 (en) * | 2000-04-26 | 2014-06-18 | オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング | Light emitting semiconductor device and method for manufacturing light emitting semiconductor device |
TW493284B (en) * | 2000-09-06 | 2002-07-01 | Highlink Technology Corp | LED device and the manufacturing method thereof |
US6576932B2 (en) | 2001-03-01 | 2003-06-10 | Lumileds Lighting, U.S., Llc | Increasing the brightness of III-nitride light emitting devices |
JP2002368263A (en) | 2001-06-06 | 2002-12-20 | Toyoda Gosei Co Ltd | Iii nitride compound semiconductor light-emitting device |
JP4055503B2 (en) | 2001-07-24 | 2008-03-05 | 日亜化学工業株式会社 | Semiconductor light emitting device |
JPWO2003034508A1 (en) * | 2001-10-12 | 2005-02-03 | 日亜化学工業株式会社 | Light emitting device and manufacturing method thereof |
KR101030068B1 (en) | 2002-07-08 | 2011-04-19 | 니치아 카가쿠 고교 가부시키가이샤 | Method of Manufacturing Nitride Semiconductor Device and Nitride Semiconductor Device |
US6878969B2 (en) | 2002-07-29 | 2005-04-12 | Matsushita Electric Works, Ltd. | Light emitting device |
US7777235B2 (en) * | 2003-05-05 | 2010-08-17 | Lighting Science Group Corporation | Light emitting diodes with improved light collimation |
TWI330413B (en) * | 2005-01-25 | 2010-09-11 | Epistar Corp | A light-emitting device |
WO2005018008A1 (en) | 2003-08-19 | 2005-02-24 | Nichia Corporation | Semiconductor device |
JP3841092B2 (en) | 2003-08-26 | 2006-11-01 | 住友電気工業株式会社 | Light emitting device |
JP4124102B2 (en) | 2003-11-12 | 2008-07-23 | 松下電工株式会社 | Light emitting device having multiple antireflection structure and method of manufacturing |
JP2005191530A (en) | 2003-12-03 | 2005-07-14 | Sumitomo Electric Ind Ltd | Light emitting device |
KR100541104B1 (en) | 2004-02-18 | 2006-01-11 | 삼성전기주식회사 | Nitride based semiconductor light emitting device |
JP4868709B2 (en) | 2004-03-09 | 2012-02-01 | 三洋電機株式会社 | Light emitting element |
US7385226B2 (en) | 2004-03-24 | 2008-06-10 | Epistar Corporation | Light-emitting device |
TWI237402B (en) | 2004-03-24 | 2005-08-01 | Epistar Corp | High luminant device |
JP2005354020A (en) * | 2004-05-10 | 2005-12-22 | Univ Meijo | Semiconductor light-emitting device manufacturing method and semiconductor light-emitting device |
JP2006100475A (en) * | 2004-09-29 | 2006-04-13 | Toyoda Gosei Co Ltd | Semiconductor light emitting element |
JP4925580B2 (en) * | 2004-12-28 | 2012-04-25 | 三菱化学株式会社 | Nitride semiconductor light emitting device and manufacturing method thereof |
US8097897B2 (en) | 2005-06-21 | 2012-01-17 | Epistar Corporation | High-efficiency light-emitting device and manufacturing method thereof |
US9508902B2 (en) | 2005-02-21 | 2016-11-29 | Epistar Corporation | Optoelectronic semiconductor device |
JP4635727B2 (en) * | 2005-06-02 | 2011-02-23 | 日立電線株式会社 | Method of manufacturing epitaxial wafer for nitride semiconductor light emitting diode, epitaxial wafer for nitride semiconductor light emitting diode, and nitride semiconductor light emitting diode |
EP1922769B1 (en) | 2005-09-06 | 2017-04-05 | Toyoda Gosei Co., Ltd. | Production method of gallium nitride-based compound semiconductor light-emitting device |
JP5025932B2 (en) * | 2005-09-26 | 2012-09-12 | 昭和電工株式会社 | Manufacturing method of nitride semiconductor light emitting device |
JP2007165409A (en) * | 2005-12-09 | 2007-06-28 | Rohm Co Ltd | Semiconductor light emitting element and method of manufacturing same |
EP1965442B1 (en) | 2005-12-14 | 2016-09-07 | Toyoda Gosei Co., Ltd. | Method for manufacturing gallium nitride compound semiconductor light-emitting device |
JP2007165613A (en) | 2005-12-14 | 2007-06-28 | Showa Denko Kk | Gallium-nitride compound semiconductor light emitting element, and its fabrication process |
JP5232969B2 (en) | 2006-03-23 | 2013-07-10 | 豊田合成株式会社 | Method for manufacturing gallium nitride compound semiconductor light emitting device |
KR100887856B1 (en) * | 2007-06-27 | 2009-03-09 | 엘지이노텍 주식회사 | Nitride semiconductor LED and fabrication method thereof |
US7982232B2 (en) | 2008-08-27 | 2011-07-19 | Showa Denko K.K. | Semiconductor light-emitting device, manufacturing method thereof, and lamp |
US8124992B2 (en) | 2008-08-27 | 2012-02-28 | Showa Denko K.K. | Light-emitting device, manufacturing method thereof, and lamp |
JP5232972B2 (en) | 2008-10-20 | 2013-07-10 | 豊田合成株式会社 | Semiconductor light emitting device and method for manufacturing semiconductor light emitting device |
JP2009060142A (en) * | 2008-12-01 | 2009-03-19 | Sanyo Electric Co Ltd | Nitride semiconductor light emitting device |
JP4581014B2 (en) * | 2009-01-19 | 2010-11-17 | 株式会社東芝 | Semiconductor element |
-
1993
- 1993-04-03 JP JP10021593A patent/JP2836687B2/en not_active Expired - Lifetime
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2475006A1 (en) | 2003-07-16 | 2012-07-11 | Panasonic Corporation | Semiconductor light emitting device, method of manufacturing the same, and lighting apparatus and display apparatus using the same |
US7683377B2 (en) | 2003-07-16 | 2010-03-23 | Panasonic Corporation | Semiconductor light emitting device, method of manufacturing the same, and lighting apparatus and display apparatus using the same |
US8742434B2 (en) | 2003-07-16 | 2014-06-03 | Panasonic Corporation | Semiconductor light emitting device, method of manufacturing the same, and lighting apparatus and display apparatus using the same |
US7872280B2 (en) | 2003-07-16 | 2011-01-18 | Panasonic Corporation | Semiconductor light emitting device, method of manufacturing the same, and lighting apparatus and display apparatus using the same |
US8237173B2 (en) | 2003-07-16 | 2012-08-07 | Panasonic Corporation | Semiconductor light emitting device, method of manufacturing the same, and lighting apparatus and display apparatus using the same |
EP2398074A1 (en) | 2003-07-16 | 2011-12-21 | Panasonic Corporation | Semiconductor light emitting device, method of manufacturing the same, and lighting apparatus and display apparatus using the same |
US7652299B2 (en) | 2005-02-14 | 2010-01-26 | Showa Denko K.K. | Nitride semiconductor light-emitting device and method for fabrication thereof |
US7803648B2 (en) | 2005-03-09 | 2010-09-28 | Showa Denko K.K. | Nitride semiconductor light-emitting device and method for fabrication thereof |
US7968361B2 (en) | 2006-03-31 | 2011-06-28 | Showa Denko K.K. | GaN based semiconductor light emitting device and lamp |
WO2007119619A1 (en) | 2006-03-31 | 2007-10-25 | Showa Denko K.K. | GaN SEMICONDUCTOR LIGHT EMITTING ELEMENT AND LAMP |
US8492186B2 (en) | 2006-12-22 | 2013-07-23 | Toyoda Gosei Co., Ltd. | Method for producing group III nitride semiconductor layer, group III nitride semiconductor light-emitting device, and lamp |
US8927348B2 (en) | 2008-05-14 | 2015-01-06 | Toyoda Gosei Co., Ltd. | Method of manufacturing group-III nitride semiconductor light-emitting device, and group-III nitride semiconductor light-emitting device, and lamp |
US8421107B2 (en) | 2008-06-20 | 2013-04-16 | Toyoda Gosei Co., Ltd. | Group-III nitride semiconductor light emitting device and production method thereof, and lamp |
US8796055B2 (en) | 2012-02-24 | 2014-08-05 | Toyoda Gosei Co., Ltd. | Method for manufacturing group III nitride semiconductor light-emitting element, group III nitride semiconductor light-emitting element, lamp, and reticle |
Also Published As
Publication number | Publication date |
---|---|
JPH06291368A (en) | 1994-10-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2836687B2 (en) | Gallium nitride based compound semiconductor light emitting device | |
US8013356B2 (en) | Semiconductor light emitting device | |
US7589355B2 (en) | Light emitting diode, method of manufacturing light emitting diode, light emitting diode backlight, light emitting diode illuminating device, light emitting diode display, and electronic apparatus | |
US6069394A (en) | Semiconductor substrate, semiconductor device and method of manufacturing the same | |
US8742439B2 (en) | Nitride based light emitting device | |
US7312480B2 (en) | Semiconductor device and method of fabricating the same | |
US8519412B2 (en) | Semiconductor light-emitting device and method for manufacturing thereof | |
KR101060830B1 (en) | Method for manufacturing gallium nitride compound semiconductor light emitting device, gallium nitride compound semiconductor light emitting device and lamp using same | |
JP4244542B2 (en) | Gallium nitride compound semiconductor light emitting device and method for manufacturing the same | |
US20090309126A1 (en) | Group III nitride-based compound semiconductor light-emitting device and production method therefor | |
US11217728B2 (en) | Semiconductor light emitting element and method of manufacturing semiconductor light emitting element | |
JPH11251631A (en) | Nitride semiconductor element and its manufacture | |
US20220285505A1 (en) | Indium-gallium-nitride structures and devices | |
JP2010098068A (en) | Light emitting diode, manufacturing method thereof, and lamp | |
JP2004006662A (en) | Gallium nitride compound semiconductor device | |
CN114902432A (en) | Formation of micro LED mesa structures with atomic layer deposition passivation sidewalls, self-aligned dielectric vias to top electrical contacts, and plasma damage free top contacts | |
JP2836686B2 (en) | Gallium nitride based compound semiconductor light emitting device | |
JP2006165407A (en) | Nitride semiconductor laser device | |
JP6321013B2 (en) | Light emitting device comprising a molded substrate | |
KR20140004361A (en) | Nitride semiconductor light emitting device using superlattice structure | |
JP2004048076A (en) | Semiconductor element and its manufacturing method | |
JPH08255952A (en) | Fabrication of semiconductor light emission element | |
JP5013463B2 (en) | Nitride semiconductor laser device and manufacturing method thereof | |
KR20080028292A (en) | Iii-nitride based light-emitting diode structure with monolithically integrated sidewall deflectors and method of thereof | |
KR100616631B1 (en) | Nitride based semiconductor light emitting device and method for manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071009 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081009 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091009 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091009 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091009 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101009 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101009 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111009 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111009 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121009 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121009 Year of fee payment: 14 |