JPH06291366A - Light emitting element of gallium nitride compound semiconductor - Google Patents

Light emitting element of gallium nitride compound semiconductor

Info

Publication number
JPH06291366A
JPH06291366A JP9862193A JP9862193A JPH06291366A JP H06291366 A JPH06291366 A JP H06291366A JP 9862193 A JP9862193 A JP 9862193A JP 9862193 A JP9862193 A JP 9862193A JP H06291366 A JPH06291366 A JP H06291366A
Authority
JP
Japan
Prior art keywords
gallium nitride
compound semiconductor
light emitting
type gan
based compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9862193A
Other languages
Japanese (ja)
Other versions
JP2836686B2 (en
Inventor
Shuji Nakamura
修二 中村
Motokazu Yamada
元量 山田
Masanobu Tanaka
政信 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=14224626&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH06291366(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to JP9862193A priority Critical patent/JP2836686B2/en
Publication of JPH06291366A publication Critical patent/JPH06291366A/en
Application granted granted Critical
Publication of JP2836686B2 publication Critical patent/JP2836686B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49107Connecting at different heights on the semiconductor or solid-state body

Abstract

PURPOSE:To improve an external quantum efficiency of a light emitting element by forming a transparent film, on a surface of the gallium nitride compound semiconductor, of which the refractive index is between the refractive indexes of the compound semiconductor and a sealing material, and suppressing interference of light by multipath reflection inside the semiconductor. CONSTITUTION:A semiconductor wafer of gallium nitride compound, on the sapphire substrate 1 of which, an n-type GaN layer 2, a Zn doped InGaN layer 3 and a p-type GaN layer 4 are formed, is prepared. Forming a predetermined pattern of the p-type GaN layer 4, ohmic electrodes are formed on the p-type GaN layer 4 and the n-type GaN laer 2. Then masking a part of the electrode, a transparent film 5 of SnO2 is formed by deposition on the surface of the p-type GaN layer 4. The refractive index of the transparent film 5 at the wavelength of the light emission of the gallium nitride compound semiconductor is between the refractive indexes of the gallium nitride compound semiconductor and sealing material 6. Then the wafer is cut off into chips, after wire-bonding, each chip is sealed with epoxy resin, thus fabricating the light emitting elements.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はサファイア基板上に一般
式InXAlYGa1-X-YN(0≦X<1、0≦Y<1)で
表される窒化ガリウム系化合物半導体が積層されたチッ
プを、例えばエポキシ樹脂等の封止材料で封止してなる
窒化ガリウム系化合物半導体発光素子に関する。
The present invention relates to a sapphire substrate on which a gallium nitride compound semiconductor represented by the general formula In X Al Y Ga 1-XY N (0≤X <1, 0≤Y <1) is laminated. The present invention relates to a gallium nitride-based compound semiconductor light emitting device obtained by encapsulating the chip with an encapsulating material such as epoxy resin.

【0002】[0002]

【従来の技術】GaN、GaAlN、InGaN、In
AlGaN等の窒化ガリウム系化合物半導体は直接遷移
を有し、バンドギャップが1.95eV〜6eVまで変
化し、その発光色は紫外から赤色にまで及ぶため、発光
ダイオード、レーザダイオード等、発光素子の材料とし
て有望視されている。その窒化ガリウム系化合物半導体
よりなる発光素子は、一般にMOCVD、MBE法等の
気相成長法を用いてサファイア基板上にn型及びp型、
あるいはn型及びi型に成長して積層し、それぞれの層
から電極を取り出した後、チップ状としてリードフレー
ムに固定し、最後にエポキシ等の樹脂で封止することに
よって得られる。
2. Description of the Related Art GaN, GaAlN, InGaN, In
A gallium nitride-based compound semiconductor such as AlGaN has a direct transition, its band gap changes from 1.95 eV to 6 eV, and its emission color ranges from ultraviolet to red. Therefore, a material for a light emitting element such as a light emitting diode or a laser diode. Is seen as promising. The light emitting device made of the gallium nitride-based compound semiconductor generally uses n-type and p-type on a sapphire substrate by using a vapor phase growth method such as MOCVD or MBE.
Alternatively, it can be obtained by growing and stacking into n-type and i-type, taking out the electrodes from the respective layers, fixing them to a lead frame as a chip, and finally sealing with a resin such as epoxy.

【0003】しかしながら、その窒化ガリウム系化合物
半導体発光素子は、前記のようにサファイア基板の上
に、窒化ガリウム系化合物半導体という全く異なる材料
を積層するいわゆるヘテロエピタキシャル構造であるた
め、他のGaAs、GaP等、同一材料の上に積層され
る発光素子に比して、基板とエピタキシャル膜との屈折
率の違いにより外部量子効率が悪くなるいう欠点を有し
ている。具体的にはサファイア基板と窒化ガリウム系化
合物半導体、あるいは窒化ガリウム系化合物半導体と発
光素子を封止する樹脂モールドとの屈折率の違いによ
り、窒化ガリウム系化合物半導体の発光がそれらの界面
で多重反射され、反射光は窒化ガリウム系化合物半導体
内部で吸収されてしまい、発光を効率よく外部に取り出
せないという問題がある。
However, since the gallium nitride-based compound semiconductor light-emitting device has a so-called heteroepitaxial structure in which a completely different material called a gallium nitride-based compound semiconductor is laminated on the sapphire substrate as described above, other GaAs and GaP are used. As compared with a light emitting device laminated on the same material, the external quantum efficiency is deteriorated due to the difference in refractive index between the substrate and the epitaxial film. Specifically, due to the difference in refractive index between the sapphire substrate and the gallium nitride-based compound semiconductor, or the gallium nitride-based compound semiconductor and the resin mold that seals the light-emitting element, the light emission of the gallium-nitride-based compound semiconductor is reflected multiple times at their interfaces. However, the reflected light is absorbed inside the gallium nitride-based compound semiconductor, and there is a problem that the emitted light cannot be efficiently extracted to the outside.

【0004】[0004]

【発明が解決しようとする課題】窒化ガリウム系化合物
半導体と基板、封止材料、または大気との多重反射を抑
制し、干渉を少なくすることができれば、外部量子効率
を向上させて、発光効率を向上させることができる。従
って、本発明はこのような事情を鑑み成されたものであ
り、その目的とするところは、窒化ガリウム系化合物半
導体内部の光の多重反射により起こる干渉を抑えること
により、窒化ガリウム系化合物半導体発光素子の外部量
子効率を向上させることにある。
If the multiple reflections between the gallium nitride-based compound semiconductor and the substrate, the sealing material, or the atmosphere can be suppressed and the interference can be reduced, the external quantum efficiency can be improved and the luminous efficiency can be improved. Can be improved. Therefore, the present invention has been made in view of such circumstances, and an object of the present invention is to suppress gallium nitride compound semiconductor light emission by suppressing interference caused by multiple reflection of light inside the gallium nitride compound semiconductor. It is to improve the external quantum efficiency of the device.

【0005】[0005]

【課題を解決するための手段】我々は窒化ガリウム系化
合物半導体内部の多重反射を抑制し、外部量子効率を上
げるため数々の実験を行ったところ、封止材料の屈折率
と、窒化ガリウム系化合物半導体の屈折率との間に屈折
率を有する透明な光学薄膜を窒化ガリウム系化合物半導
体表面に形成することにより上記問題が解決できること
を新たに見いだした。即ち、本発明の窒化ガリウム系化
合物半導体発光素子は、サファイア基板上に窒化ガリウ
ム系化合物半導体が積層されたチップを封止材料で封止
してなる発光素子において、前記窒化ガリウム系化合物
半導体表面に、該窒化ガリウム系化合物半導体の発光波
長における屈折率が窒化ガリウム系化合物半導体の屈折
率と封止材料の屈折率との間にある透明薄膜が形成され
ていることを特徴とする。
[Means for Solving the Problems] We have conducted a number of experiments to suppress multiple reflections inside the gallium nitride-based compound semiconductor and to increase the external quantum efficiency. It has been newly found that the above problem can be solved by forming a transparent optical thin film having a refractive index between the refractive index of the semiconductor and the surface of the gallium nitride-based compound semiconductor. That is, the gallium nitride-based compound semiconductor light-emitting device of the present invention is a light-emitting device obtained by encapsulating a chip, in which a gallium nitride-based compound semiconductor is laminated on a sapphire substrate, with an encapsulating material. A transparent thin film having a refractive index at the emission wavelength of the gallium nitride compound semiconductor between the refractive index of the gallium nitride compound semiconductor and the refractive index of the sealing material is formed.

【0006】屈折率は波長によって多少異なるが、窒化
ガリウム系化合物半導体表面に形成する透明薄膜の材料
としては、その屈折率が窒化ガリウム系化合物半導体の
屈折率と封止材料との間にあり、透明な材料であればど
のようなものでもよい。具体的には、発光素子に用いら
れる窒化ガリウム系化合物半導体の屈折率がおよそ2、
封止材料として一般的に用いられているエポキシ樹脂の
屈折率がおよそ1.5であることから、2と1.5の間
にある材料として、例えばAl23(屈折率1.6
2)、MgO(1.75)、SnO2(1.9)、La
3(1.59)、CeF3(1.63)等を好ましい材
料として挙げることができ、それらの材料を例えば、蒸
着、スパッタリング、プラズマCVD等の装置を用いて
窒化ガリウム系化合物半導体の表面に形成することがで
きる。
Although the refractive index is slightly different depending on the wavelength, as a material of the transparent thin film formed on the surface of the gallium nitride compound semiconductor, the refractive index is between the refractive index of the gallium nitride compound semiconductor and the sealing material, Any transparent material may be used. Specifically, the gallium nitride-based compound semiconductor used for the light emitting device has a refractive index of about 2,
Since the epoxy resin generally used as a sealing material has a refractive index of about 1.5, a material between 2 and 1.5 is, for example, Al 2 O 3 (refractive index 1.6
2), MgO (1.75), SnO 2 (1.9), La
F 3 (1.59), CeF 3 (1.63) and the like can be mentioned as preferable materials, and these materials can be used, for example, on the surface of a gallium nitride-based compound semiconductor by using an apparatus such as vapor deposition, sputtering, or plasma CVD. Can be formed.

【0007】さらに透明薄膜の膜厚は透明薄膜の膜厚を
t、窒化ガリウム系化合物半導体の発光波長をλ、λに
おける透明薄膜の屈折率をnとすると、t=Aλ/(4
n)(但し、Aは自然数)の関係で形成することが好ま
しい。この膜厚で透明薄膜を形成することにより、透明
薄膜は発光波長λの光に対し無反射コートの条件を満た
し、界面で反射すること無く、光を封止樹脂に透過させ
ることができる。A値は特に限定するものではないが、
5以下の自然数を選択する方が膜厚を薄く形成でき、発
光が吸収される量が少なくなるため、さらに好ましい。
Further, assuming that the thickness of the transparent thin film is t, the emission wavelength of the gallium nitride compound semiconductor is λ, and the refractive index of the transparent thin film at λ is n, t = Aλ / (4
n) (however, A is a natural number). By forming the transparent thin film with this film thickness, the transparent thin film satisfies the condition of antireflection coating for the light of the emission wavelength λ, and the light can be transmitted to the sealing resin without being reflected at the interface. The A value is not particularly limited,
It is more preferable to select a natural number of 5 or less because the film thickness can be formed thinner and the amount of light emission absorbed is reduced.

【0008】[0008]

【作用】図1に、本発明の一実施例に係る窒化ガリウム
系化合物半導体発光素子の構造を示す。1はサファイア
基板、2はn型GaN層、3はZnドープInGaN
層、4はMgドープp型GaN層、5はSnO2よりな
る透明薄膜、6は全体を封止したエポキシ樹脂よりなる
封止材料であり、この構造の発光素子において、発光層
はZnドープInGaN層3にあたる。サファイアの屈
折率がおよそ1.6、窒化ガリウム系化合物半導体の屈
折率がおよそ2、エポキシ樹脂の屈折率がおよそ1.5
である場合、図2に示すように従来の発光素子は、サフ
ァイア基板1、窒化ガリウム系化合物半導体2、3、
4、エポキシ樹脂6、それぞれの材料において屈折率が
異なるため、InGaN層3の発光の一部がp型GaN
層4とエポキシ樹脂との界面で反射され、さらに反射光
はサファイア基板1とn型GaN層2との界面で反射さ
れることにより多重反射となり、次第に窒化ガリウム系
化合物半導体層2、3、4中で吸収されて減衰する。窒
化ガリウム系化合物半導体2、3、4に関してはそれら
の屈折率はほとんど同一と見なしてもよいため、互いの
半導体層界面での多重反射は零(0)と見なしてよい。
一方、本発明のように(図1、図3)Mgドープp型G
aN層の上に、屈折率が窒化ガリウム系化合物半導体と
エポキシ樹脂との間にあるSnO2膜5(屈折率1.
9)を形成した場合、図3に示すように、SnO2膜5
が緩衝層となり、界面での光の反射を少なくすることが
できる。特にそのSnO2膜5の膜厚tをt=λ/(4
n)の厚さに設定することにより、SnO2膜5は無反
射コートとして作用し、反射をほとんど無くすることが
できる。さらに好都合なことには、SnO2のような導
電性を有する透明薄膜を形成すると、オーミックコンタ
クトされた電極と電気的に接続することができ、p型G
aN層4の全面電極として作用させることができる。
1 shows the structure of a gallium nitride-based compound semiconductor light emitting device according to one embodiment of the present invention. 1 is a sapphire substrate, 2 is an n-type GaN layer, 3 is Zn-doped InGaN
Layer 4 is a Mg-doped p-type GaN layer, 5 is a transparent thin film made of SnO 2 , and 6 is an encapsulating material made of an epoxy resin for encapsulating the whole. In the light emitting device of this structure, the light emitting layer is Zn-doped InGaN. It corresponds to layer 3. Sapphire has a refractive index of about 1.6, gallium nitride-based compound semiconductor has a refractive index of about 2, and epoxy resin has a refractive index of about 1.5.
In the conventional light emitting device, as shown in FIG. 2, the sapphire substrate 1, the gallium nitride compound semiconductors 2, 3,
4, the epoxy resin 6 and the respective materials have different refractive indexes, so that part of the light emitted from the InGaN layer 3 is p-type GaN.
The light is reflected at the interface between the layer 4 and the epoxy resin, and the reflected light is reflected at the interface between the sapphire substrate 1 and the n-type GaN layer 2, resulting in multiple reflection, and gradually the gallium nitride-based compound semiconductor layers 2, 3, 4, It is absorbed in and attenuated. Since the gallium nitride-based compound semiconductors 2, 3, and 4 may be regarded as having almost the same refractive index, the multiple reflection at the interface between the semiconductor layers may be regarded as zero (0).
On the other hand, as in the present invention (FIGS. 1 and 3), Mg-doped p-type G
On the aN layer, a SnO 2 film 5 having a refractive index between the gallium nitride compound semiconductor and the epoxy resin (refractive index 1.
9), the SnO 2 film 5 is formed as shown in FIG.
Serves as a buffer layer, and the reflection of light at the interface can be reduced. In particular, the thickness t of the SnO 2 film 5 is t = λ / (4
By setting the thickness to n), the SnO 2 film 5 acts as a non-reflective coating, and reflection can be almost eliminated. More conveniently, when a transparent thin film having conductivity such as SnO 2 is formed, it can be electrically connected to an ohmic-contacted electrode, and p-type G
It can act as an entire surface electrode of the aN layer 4.

【0009】[0009]

【実施例】[実施例1]MOCVD法により、サファイ
ア基板上にGaNバッファ層と、Siドープn型GaN
層と、ZnドープInGaN層と、MgドープGaN層
とを順に成長させて積層した窒化ガリウム系化合物半導
体ウエハーを用意する。次に、このウエハーの最上層で
あるp型GaN層にフォトリソグラフィー技術により所
定のパターンを形成して、p型GaN層を一部エッチン
グして、電極を形成させるだけのn型GaN層を露出さ
せた後、p型GaN層、およびn型GaN層にオーミッ
ク電極を付ける。両電極に通電して、この窒化ガリウム
系化合物半導体の発光波長を測定したところ、470n
mにピークを有していた。
[Example 1] A GaN buffer layer and Si-doped n-type GaN are formed on a sapphire substrate by MOCVD.
A gallium nitride-based compound semiconductor wafer is prepared in which a layer, a Zn-doped InGaN layer, and a Mg-doped GaN layer are sequentially grown and laminated. Next, a predetermined pattern is formed on the p-type GaN layer, which is the uppermost layer of this wafer, by a photolithography technique, and the p-type GaN layer is partially etched to expose an n-type GaN layer for forming electrodes. After that, ohmic electrodes are attached to the p-type GaN layer and the n-type GaN layer. When the emission wavelength of this gallium nitride-based compound semiconductor was measured by energizing both electrodes, it was 470n.
It had a peak at m.

【0010】次に、電極の一部にマスクをした後、蒸着
によりp型GaN層の表面にSnO2よりなる透明薄膜
を形成する。なお膜厚は、470nmにおける窒化ガリ
ウム系化合物半導体の屈折率をおよそ2、SnO2の屈
折率を1.9とし、t=470/(4×1.9)より、
約620オングストロームとした。
Next, after masking a part of the electrode, a transparent thin film made of SnO 2 is formed on the surface of the p-type GaN layer by vapor deposition. The film thickness is 470 nm, the refractive index of the gallium nitride-based compound semiconductor is about 2, the refractive index of SnO 2 is 1.9, and t = 470 / (4 × 1.9)
It was set to about 620 angstroms.

【0011】次に電極のマスクを剥離し、ウエハーを
0.5mm角のチップに切断する。最後に常法に従いチ
ップをリードフレーム上に載置してワイヤーボンディン
グした後、エポキシ樹脂で封止して本発明の発光素子
(青色発光ダイオード)を得る。この発光ダイオードの
発光スペクトルを図4(a)に示す。一方比較のため、
透明薄膜を形成せず同様にして得た従来の発光ダイオー
ドのスペクトルを同じく図4(b)に示す。
Next, the mask of the electrode is peeled off, and the wafer is cut into 0.5 mm square chips. Finally, the chip is placed on a lead frame according to a conventional method and wire-bonded, and then sealed with an epoxy resin to obtain a light emitting device (blue light emitting diode) of the present invention. The emission spectrum of this light emitting diode is shown in FIG. On the other hand, for comparison,
The spectrum of a conventional light emitting diode obtained in the same manner without forming the transparent thin film is also shown in FIG. 4 (b).

【0012】この図に示すように、従来の発光ダイオー
ドのスペクトルは主発光ピーク以外に、多重反射の干渉
効果による複数のピークが現れている。一方、本発明の
発光ダイオードのスペクトルには多重反射による干渉効
果のピークが現れておらず、また発光強度が従来のもの
に比して10%以上向上したことがわかる。
As shown in this figure, in the spectrum of the conventional light emitting diode, in addition to the main emission peak, a plurality of peaks due to the interference effect of multiple reflection appears. On the other hand, in the spectrum of the light emitting diode of the present invention, the peak of the interference effect due to multiple reflection does not appear, and it is understood that the emission intensity is improved by 10% or more as compared with the conventional one.

【0013】[実施例2]サファイア基板上にGaNバ
ッファ層と、Siドープn型GaN層と、MgドープG
aN層とを順に成長させて積層し、その主発光波長を4
30nmとする窒化ガリウム系化合物半導体ウエハーを
準備する。
[Embodiment 2] A GaN buffer layer, a Si-doped n-type GaN layer, and a Mg-doped G layer on a sapphire substrate.
The aN layer and the aN layer are sequentially grown and laminated, and the main emission wavelength is 4
A gallium nitride-based compound semiconductor wafer having a thickness of 30 nm is prepared.

【0014】実施例1と同様にしてp型GaN層をエッ
チングした後、そのp型GaN層の表面に同じく蒸着に
て、Al23よりなる透明薄膜を形成する。なお透明薄
膜の厚さはAl23の屈折率が1.6であることから、
t=430/(4×1.6)で670オングストローム
とする。
After etching the p-type GaN layer in the same manner as in Example 1, a transparent thin film made of Al 2 O 3 is formed on the surface of the p-type GaN layer by vapor deposition as well. The transparent thin film has a thickness of Al 2 O 3 of 1.6 because
670 angstrom at t = 430 / (4 × 1.6).

【0015】後は実施例1と同様にして、青色発光ダイ
オードを作製し、そのスペクトルを測定した。その結果
を図5(c)に示す。また比較のため透明薄膜を形成し
ない青色発光ダイオードを同様にして作製し、そのスペ
クトルを図5(d)に示す。
Thereafter, a blue light emitting diode was prepared in the same manner as in Example 1 and its spectrum was measured. The result is shown in FIG. For comparison, a blue light emitting diode without a transparent thin film was similarly prepared, and its spectrum is shown in FIG. 5 (d).

【0016】この図も図4と同様に透明薄膜を形成しな
い従来の発光ダイオードの発光スペクトルには、多重反
射の干渉による複数のピークが出現している。これに対
し、本発明の発光ダイオードのスペクトルからは、複数
のピークが消え、しかも発光強度が10%以上向上して
いる。
Also in this figure, as in FIG. 4, a plurality of peaks due to interference of multiple reflections appear in the emission spectrum of the conventional light emitting diode in which the transparent thin film is not formed. On the other hand, from the spectrum of the light emitting diode of the present invention, a plurality of peaks disappeared and the emission intensity was improved by 10% or more.

【0017】[0017]

【発明の効果】以上説明したように、本発明の窒化ガリ
ウム系化合物半導体発光素子は、窒化ガリウム系化合物
半導体表面に、半導体内部で発生する多重反射の干渉を
抑える作用のある透明薄膜を形成しているため、窒化ガ
リウム系化合物半導体の発光を有効に外部に取り出すこ
とができ、発光素子の外部量子効率が向上する。また、
窒化ガリウム系化合物半導体以外の他の材料よりなる発
光素子はヘテロエピタキシャル構造ではないためそのよ
うな薄膜を設けても効果が少ないが、ヘテロエピタキシ
ャル構造である窒化ガリウム系化合物半導体発光素子は
透明薄膜の効果が顕著に現れる。
As described above, in the gallium nitride compound semiconductor light emitting device of the present invention, a transparent thin film having a function of suppressing the interference of multiple reflection generated inside the semiconductor is formed on the surface of the gallium nitride compound semiconductor. Therefore, the light emission of the gallium nitride-based compound semiconductor can be effectively extracted to the outside, and the external quantum efficiency of the light emitting device is improved. Also,
A light-emitting device made of a material other than a gallium nitride-based compound semiconductor does not have a heteroepitaxial structure, so providing such a thin film is less effective, but a gallium nitride-based compound semiconductor light-emitting device having a heteroepitaxial structure is a transparent thin film. The effect is remarkable.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施例に係る窒化ガリウム系化合
物半導体発光素子の構造の一部を示す模式断面図。
FIG. 1 is a schematic cross-sectional view showing a part of the structure of a gallium nitride-based compound semiconductor light emitting device according to an embodiment of the present invention.

【図2】 従来の発光素子の光路を説明する模式断面
図。
FIG. 2 is a schematic cross-sectional view illustrating an optical path of a conventional light emitting element.

【図3】 本発明の発光素子の光路を説明する模式断面
図。
FIG. 3 is a schematic cross-sectional view illustrating an optical path of a light emitting device of the present invention.

【図4】 本発明の一実施例に係る発光素子のスペクト
ルと、従来の発光素子のスペクトルとを比較して示す
図。
FIG. 4 is a diagram showing a spectrum of a light emitting element according to an embodiment of the present invention and a spectrum of a conventional light emitting element for comparison.

【図5】 本発明の一実施例に係る発光素子のスペクト
ルと、従来の発光素子のスペクトルとを比較して示す
図。
FIG. 5 is a diagram showing a spectrum of a light emitting element according to an embodiment of the present invention and a spectrum of a conventional light emitting element for comparison.

【符号の説明】[Explanation of symbols]

1・・・・サファイア基板 2・・・・n型
GaN層 3・・・・ZnドープInGaN層 4・・・・p型
GaN層 5・・・・透明薄膜 6・・・・封止
樹脂
1 ... Sapphire substrate 2 ... n-type GaN layer 3 ... Zn-doped InGaN layer 4 ... p-type GaN layer 5 ... Transparent thin film 6 ... Encapsulating resin

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 サファイア基板上に窒化ガリウム系化合
物半導体が積層されたチップを封止材料で封止してなる
発光素子において、前記窒化ガリウム系化合物半導体表
面に、該窒化ガリウム系化合物半導体の発光波長におけ
る屈折率が、窒化ガリウム系化合物半導体の屈折率と封
止材料の屈折率との間にある透明薄膜が形成されている
ことを特徴とする窒化ガリウム系化合物半導体発光素
子。
1. A light-emitting device comprising a sapphire substrate and a chip in which a gallium nitride-based compound semiconductor is stacked and sealed with a sealing material, wherein the gallium nitride-based compound semiconductor surface emits light of the gallium nitride-based compound semiconductor. A gallium nitride-based compound semiconductor light-emitting device, wherein a transparent thin film having a refractive index at a wavelength between the refractive index of a gallium nitride-based compound semiconductor and the refractive index of a sealing material is formed.
【請求項2】 前記透明薄膜は、透明薄膜の膜厚をt、
窒化ガリウム系化合物半導体の発光波長をλ、λにおけ
る透明薄膜の屈折率をnとすると、t=Aλ/(4n)
(但し、Aは自然数)の関係で形成されていることを特
徴とする請求項1に記載の窒化ガリウム系化合物半導体
発光素子。
2. The transparent thin film has a film thickness of t,
When the emission wavelength of the gallium nitride compound semiconductor is λ and the refractive index of the transparent thin film at λ is n, t = Aλ / (4n)
The gallium nitride-based compound semiconductor light emitting device according to claim 1, wherein the gallium nitride-based compound semiconductor light emitting device is formed in a relationship of (where A is a natural number).
【請求項3】 前記透明薄膜は導電性を有していること
を特徴とする請求項1に記載の窒化ガリウム系化合物半
導体発光素子。
3. The gallium nitride-based compound semiconductor light emitting device according to claim 1, wherein the transparent thin film has conductivity.
JP9862193A 1993-03-31 1993-03-31 Gallium nitride based compound semiconductor light emitting device Expired - Lifetime JP2836686B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9862193A JP2836686B2 (en) 1993-03-31 1993-03-31 Gallium nitride based compound semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9862193A JP2836686B2 (en) 1993-03-31 1993-03-31 Gallium nitride based compound semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JPH06291366A true JPH06291366A (en) 1994-10-18
JP2836686B2 JP2836686B2 (en) 1998-12-14

Family

ID=14224626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9862193A Expired - Lifetime JP2836686B2 (en) 1993-03-31 1993-03-31 Gallium nitride based compound semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP2836686B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6861270B2 (en) 2000-06-01 2005-03-01 Shiro Sakai Method for manufacturing gallium nitride compound semiconductor and light emitting element
US6884647B2 (en) 2000-09-22 2005-04-26 Shiro Sakai Method for roughening semiconductor surface
US7005685B2 (en) 2002-02-28 2006-02-28 Shiro Sakai Gallium-nitride-based compound semiconductor device
US7015511B2 (en) 2001-06-29 2006-03-21 Nitride Semiconductors Co., Ltd. Gallium nitride-based light emitting device and method for manufacturing the same
US7388232B2 (en) 2003-10-31 2008-06-17 Toyoda Gosei Co., Ltd. Light emitting element and light emitting device
JP2008218961A (en) * 2007-03-07 2008-09-18 Everlight Electronics Co Ltd Semiconductor light-emitting device and manufacturing method therefor
US7560294B2 (en) 2004-06-07 2009-07-14 Toyoda Gosei Co., Ltd. Light emitting element and method of making same
US7615798B2 (en) 2004-03-29 2009-11-10 Nichia Corporation Semiconductor light emitting device having an electrode made of a conductive oxide
US8934513B2 (en) 1994-09-14 2015-01-13 Rohm Co., Ltd. Semiconductor light emitting device and manufacturing method therefor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8934513B2 (en) 1994-09-14 2015-01-13 Rohm Co., Ltd. Semiconductor light emitting device and manufacturing method therefor
US6861270B2 (en) 2000-06-01 2005-03-01 Shiro Sakai Method for manufacturing gallium nitride compound semiconductor and light emitting element
US6884647B2 (en) 2000-09-22 2005-04-26 Shiro Sakai Method for roughening semiconductor surface
US7015511B2 (en) 2001-06-29 2006-03-21 Nitride Semiconductors Co., Ltd. Gallium nitride-based light emitting device and method for manufacturing the same
US7005685B2 (en) 2002-02-28 2006-02-28 Shiro Sakai Gallium-nitride-based compound semiconductor device
US7388232B2 (en) 2003-10-31 2008-06-17 Toyoda Gosei Co., Ltd. Light emitting element and light emitting device
US7615798B2 (en) 2004-03-29 2009-11-10 Nichia Corporation Semiconductor light emitting device having an electrode made of a conductive oxide
US7560294B2 (en) 2004-06-07 2009-07-14 Toyoda Gosei Co., Ltd. Light emitting element and method of making same
JP2008218961A (en) * 2007-03-07 2008-09-18 Everlight Electronics Co Ltd Semiconductor light-emitting device and manufacturing method therefor

Also Published As

Publication number Publication date
JP2836686B2 (en) 1998-12-14

Similar Documents

Publication Publication Date Title
JP2836687B2 (en) Gallium nitride based compound semiconductor light emitting device
US6121636A (en) Semiconductor light emitting device
JP5857786B2 (en) Manufacturing method of semiconductor light emitting device
US10658546B2 (en) High efficiency LEDs and methods of manufacturing
US8350277B2 (en) Light emitting element
WO2011016201A1 (en) Light-emitting element and light-emitting device
JP2000277804A (en) Nitride semiconductor device and manufacture thereof, and light emitting element
KR20070009673A (en) Light-emitting diode chip
JP2005183911A (en) Nitride semiconductor light-emitting element and method of manufacturing the same
WO2006126516A1 (en) Nitride semiconductor light emitting element
US20020145147A1 (en) Light emitting diode and manufacturing method thereof
WO2007086366A1 (en) Nitride semiconductor light emitting element
JP2005175462A (en) Semiconductor luminous element and manufacturing method of the same
KR100691497B1 (en) Light-emitting device and Method of manufacturing the same
JP2005268601A (en) Compound semiconductor light-emitting device
EP2985793A1 (en) Semiconductor light emitting element and method for manufacturing same
JP2836686B2 (en) Gallium nitride based compound semiconductor light emitting device
JP2008098486A (en) Light emitting element
JP2005276899A (en) Light-emitting element
JP2002232005A (en) Light emitting element
US20130207147A1 (en) Uv light emitting diode and method of manufacturing the same
JP4140007B2 (en) Light emitting device and method for manufacturing light emitting device
US20030119218A1 (en) Light emitting device and manufacturing method thereof
US20140159083A1 (en) Semiconductor light emitting device and fabrication method thereof
KR100433989B1 (en) Semiconductor LED device and manufacturing metheod thereof

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071009

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081009

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091009

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091009

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091009

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101009

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101009

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111009

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111009

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131009

Year of fee payment: 15

EXPY Cancellation because of completion of term