JP2835327B2 - High activation and stabilization of hydrogen storage metal - Google Patents

High activation and stabilization of hydrogen storage metal

Info

Publication number
JP2835327B2
JP2835327B2 JP6337870A JP33787094A JP2835327B2 JP 2835327 B2 JP2835327 B2 JP 2835327B2 JP 6337870 A JP6337870 A JP 6337870A JP 33787094 A JP33787094 A JP 33787094A JP 2835327 B2 JP2835327 B2 JP 2835327B2
Authority
JP
Japan
Prior art keywords
hydrogen
metal material
hydrogen storage
storage metal
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP6337870A
Other languages
Japanese (ja)
Other versions
JPH08183601A (en
Inventor
明良 小菅
文昭 青野
学 伊藤
又五郎 前野
良司 平山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BENKAN KK
HASHIMOTO KASEI KK
Original Assignee
BENKAN KK
HASHIMOTO KASEI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BENKAN KK, HASHIMOTO KASEI KK filed Critical BENKAN KK
Priority to JP6337870A priority Critical patent/JP2835327B2/en
Publication of JPH08183601A publication Critical patent/JPH08183601A/en
Application granted granted Critical
Publication of JP2835327B2 publication Critical patent/JP2835327B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、水素を吸蔵する金属材
の表面に、フッ化物からなる化合物層を形成して高活性
化すると共に、被毒性を有する気体、液体、蒸気等に対
し非活性化して安定化する処理法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a compound layer made of fluoride on the surface of a metal material that absorbs hydrogen, thereby activating the compound. The present invention relates to a treatment method for activating and stabilizing.

【0002】[0002]

【従来の技術】従来、水素吸蔵金属材が安定的に水素の
吸蔵、放出を行うようにするには、高温,高圧,高真空
等で初期の水素活性化処理を必要とし、例えばMg−N
i合金の場合は、350℃で真空脱気し、2〜5MPa
で10回以上の水素の吸蔵,放出を繰り返す。La−N
i−(Al)合金の場合は、80〜100℃で真空排気
し、1〜3MPaで10回以上の水素の吸蔵,放出を繰
り返す必要がある。
2. Description of the Related Art Conventionally, in order for a hydrogen storage metal material to stably store and release hydrogen, an initial hydrogen activation process at high temperature, high pressure, high vacuum or the like is required.
In the case of an i-alloy, degas in a vacuum at 350 ° C.
The hydrogen absorption and release is repeated 10 times or more. La-N
In the case of an i- (Al) alloy, it is necessary to evacuate at 80 to 100 ° C. and repeat the storage and release of hydrogen at least 1 to 3 MPa at least 10 times.

【0003】また、一度活性化処理された水素吸蔵金属
材であっても、再度大気中などに曝されると、水素吸蔵
能が失われ、また着火,発火の危険性を伴うため、取り
扱いには十分な配慮を必要としていた。また、本来IM
Pa未満で使用する場合においても、初期の水素活性処
理時に1MPa以上の高圧を必要とするため、高圧ガス
取締法に準拠した過剰な設備投資を必要とされてきた。
以上のように、水素吸蔵金属材を使用するに当って、初
期の水素活性化処理の作業性,不安定性,取り扱いの危
険性,コスト高などが実用上問題となっていた。
[0003] Further, even if the hydrogen storage metal material is activated once, if it is exposed to the atmosphere again, the hydrogen storage capacity is lost and there is a danger of ignition and ignition. Needed careful attention. Also, originally IM
Even when used under Pa, a high pressure of 1 MPa or more is required at the time of the initial hydrogen activation treatment, so that an excessive capital investment in accordance with the High Pressure Gas Control Law has been required.
As described above, in using the hydrogen storage metal material, workability, instability, danger of handling, high cost, and the like of the initial hydrogen activation treatment have been practical problems.

【0004】上記の問題点を解決するために、特開平5
−213601号公報に薬液による表面処理によって水
素吸蔵金属材の高活性化又は安定化処理法が提案されて
いる。しかし薬液により処理する方法には次のような問
題点がある。 目的とする表面層を得るには微妙なPH調整を必要と
する。 処理量に対し大きな装置を必要とする。 最終乾燥に時間がかかる。 原料となるフッ化金属化合物は、当然高純度で有る方
が望ましいが、高純度品は高価格である。 処理後の廃液処理が厄介である。 以上の点より工業的生産においては効率的な生産を望む
ことは難しく、問題を充分に解決するまでには至ってい
ない。
In order to solve the above problems, Japanese Patent Laid-Open No.
Japanese Patent Application Publication No. 213601 proposes a method for enhancing or stabilizing a hydrogen storage metal material by surface treatment with a chemical solution. However, the method using a chemical solution has the following problems. Fine pH adjustment is required to obtain the desired surface layer. Requires large equipment for throughput. It takes time for final drying. Naturally, it is desirable that the metal fluoride compound as a raw material has high purity, but a high-purity product is expensive. Waste liquid treatment after treatment is troublesome. Oite in industrial production from the point of view of above it is difficult overlooking the efficient production, have yet to up to sufficiently solve the problem.

【0005】[0005]

【発明が解決しようとする課題】そこで本発明は、従来
法の問題点を解決し、水素吸蔵金属材の表面を容易に
活性化させると共に、水素分子以外の表面被毒を有する
物質に対し非活性にする水素吸蔵金属材の高活性化及び
安定化処理法を提供しようとするものである。
SUMMARY OF THE INVENTION Accordingly, the present invention solves the problems of the conventional method , easily activates the surface of a hydrogen storage metal material, and removes substances having surface poisoning other than hydrogen molecules. An object of the present invention is to provide a method for highly activating and stabilizing a hydrogen storage metal material to be deactivated.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
の本発明の水素吸蔵金属材の高活性化及び安定化処理法
の1つは、反応容器内に、水素吸蔵金属材と、高濃度フ
ッ化水素酸水溶液又は無水フッ化水素酸溶液或いはピリ
ジン、トリエチルアミン、イソプロピルアルコール等の
有機化合物と無水フッ化水素との溶液を入れ、反応容器
を外部より所定の温度まで加熱し、加熱過程において
素吸蔵金属材の表面にその金属フッ化物を主成分とする
膜を形成して、水素分子に対し高活性化すると共に、水
素分子以外の表面被毒を有する物質に対し非活性化する
ことを特徴とするものである。
To solve the above-mentioned problems, one of the methods of the present invention for increasing the activation and stabilization of a hydrogen-absorbing metal material is to provide a hydrogen-absorbing metal material having a high concentration in a reaction vessel. aqueous hydrofluoric acid or anhydride hydrofluoric acid solution or pyridine, triethylamine, charged with a solution of an organic compound and anhydrous hydrogen fluoride, such as isopropyl alcohol, heating the reaction reaction container unit than to a predetermined temperature outside the heating process water
Forming a film containing metal fluoride as the main component on the surface of elemental metal occlusion to activate hydrogen molecules and to deactivate substances with surface poisoning other than hydrogen molecules. It is a feature.

【0007】また、本発明の水素吸蔵金属材の初期活性
化方法は、上記のように処理した水素吸蔵金属材の充填
された反応容器内を水素ガスで置換し、その後水素ガス
を導入し、水素吸蔵金属材に水素を吸蔵させて、水素吸
蔵金属材の初期活性化を図るものである。
Further, in the method for initial activation of a hydrogen storage metal material of the present invention, the inside of a reaction vessel filled with the hydrogen storage metal material treated as described above is replaced with hydrogen gas, and then hydrogen gas is introduced. The hydrogen storage metal material absorbs hydrogen to achieve the initial activation of the hydrogen storage metal material.

【0008】本発明の水素吸蔵金属材の高活性化及び安
定化処理法の他の1つは、前記のように処理した水素吸
蔵金属材の充填された反応容器内に、所要の温度,圧力
条件に水素を導入し、水素吸蔵金属材を微粉化処理し
た後、その反応容器内に高濃度フッ化水素酸水溶液又は
無水フッ化水素酸溶液或いはピリジン、トリエチルアミ
ン、イソプロピルアルコール等の有機化合物と無水フッ
化水素との溶液を投入し、反応容器を外部より所定の温
度まで加熱し、加熱過程において前記の微粉化された水
素吸蔵金属材の表面に金属フッ化物を主成分とする膜を
形成して、水素分子に対し高活性化すると共に、水素分
子以外の表面被毒を有する物質に対し非活性化すること
を特徴とするものである。上記各方法における水素吸蔵
金属材は、粉末,インゴットなどの素材、又は中間製品
若しくは完成品のいずれでも良い。
[0008] Another method of the present invention for highly activating and stabilizing a hydrogen storage metal material is to provide a reaction vessel filled with the hydrogen storage metal material treated as described above at a required temperature and pressure. introducing hydrogen Te on condition, after processing micronized hydrogen storage metal material, high density aqueous solution of hydrofluoric acid or anhydride hydrofluoric acid solution or pyridine in the reaction vessel, triethylamine, an organic compound such as isopropyl alcohol A solution with anhydrous hydrogen fluoride is charged, the reaction vessel is heated from the outside to a predetermined temperature, and a film mainly composed of metal fluoride is formed on the surface of the finely divided hydrogen absorbing metal material in the heating process. Then, it is highly activated with respect to hydrogen molecules and is inactivated with respect to substances having surface poisoning other than hydrogen molecules. The hydrogen storage metal material in each of the above methods may be a material such as a powder or an ingot, or an intermediate product or a finished product.

【0009】[0009]

【作用】上記のように本発明は、高濃度フッ化水素酸水
溶液中、又は無水フッ化水素酸溶液中、或いはピリジ
ン,トリエチルアミン,イソプロピルアルコール等の有
機化合物と無水フッ化水素との溶液中において、水素吸
蔵金属材の表面に金属フッ化物を主成分とする膜を形成
するので、水素分子に対し高活性となり、高温,高圧,
高真空を必要としていた水素吸蔵金属材の初期活性化
は、低温,低圧,真空排気無しで可能となり、また、表
面に形成されたフッ化膜は安定した化合物層であるか
ら、大気中における発火,着火の危険性が無く、水素分
子以外の表面被毒を有する物質に対しては非活性である
為、取り扱い上の危険性が解決されると共に、これまで
危険を回避する為に必要とされてきた設備,生産,輸送
における保全費用を大幅に削減できる。
As described above, the present invention can be used in a high-concentration aqueous solution of hydrofluoric acid, in a solution of anhydrous hydrofluoric acid, or in a solution of an organic compound such as pyridine, triethylamine or isopropyl alcohol and anhydrous hydrogen fluoride. Since a film containing a metal fluoride as a main component is formed on the surface of the hydrogen storage metal material, it becomes highly active against hydrogen molecules,
Initial activation of a hydrogen storage metal material that required a high vacuum can be performed at low temperature, low pressure, and without vacuum evacuation. Also, since the fluoride film formed on the surface is a stable compound layer, it can be ignited in air. There is no danger of ignition, and it is inactive against substances having surface poisoning other than hydrogen molecules. Therefore, it is necessary to solve the danger in handling and to avoid the danger. Maintenance costs in equipment, production and transportation can be greatly reduced.

【0010】また、本発明は、高濃度溶液中或いは無水
溶液中での反応によるフッ化膜の形成であるため、大が
かりな装置や反応工程における複雑な手法を必要とせ
ず、大量生産規模にも対応可能な水素吸蔵金属材の高活
性化及び安定化処理を同時に行うことができる。
Further, since the present invention is based on the formation of a fluoride film by a reaction in a high-concentration solution or in a non-aqueous solution, it does not require a large-scale apparatus or a complicated method in a reaction process, and is applicable to a mass production scale. The highly activating and stabilizing treatment of the corresponding hydrogen storage metal material can be performed simultaneously.

【0011】[0011]

【実施例】本発明の基本的構成と具体的な実施例につい
て説明する。先ず基本的構成について説明する。本発明
は、基本的には水素吸蔵金属材の表面に、高濃度フッ化
水素酸溶液中、又は無水フッ化水素酸溶液中、或いはピ
リジン,トリエチルアミン,イソプロピルアルコール等
の有機化合物と無水フッ化水素との溶液中において、金
属フッ化物を主成分とする膜を形成せしめるものであ
り、水素吸蔵金属材としては通常水素吸蔵合金として従
来より知られているものが広い範囲でいずれも使用さ
れ、その代表的なものとして、LaNi4.7 Al0.3
金、Mg2 Ni合金が示される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A basic configuration of the present invention and a specific embodiment will be described. First, the basic configuration will be described. The present invention basically relates to a method in which an organic compound such as pyridine, triethylamine, isopropyl alcohol, etc. In the solution, a film mainly composed of a metal fluoride is formed, and as the hydrogen storage metal material, any of those conventionally known as hydrogen storage alloys is generally used in a wide range. As typical examples, LaNi 4.7 Al 0.3 alloy and Mg 2 Ni alloy are shown.

【0012】高濃度フッ化水素酸水溶液中、又は無水フ
ッ化水素酸溶液中、或いはピリジン,トリエチルアミ
ン,イソプロピルアルコール等の有機化合物と無水フッ
化水素との溶液中において、水素吸蔵金属材の表面に金
属フッ化物を主成分とする膜を形成する際、反応容器中
に、高濃度フッ化水素酸水溶液又は無水フッ化水素酸溶
液或いはピリジン,トリエチルアミン,イソプロピルア
ルコール等の有機化合物と無水フッ化水素との溶液を充
填し、次いで水素吸蔵金属材を浸漬させフッ素化反応を
行う。
[0012] In a high-concentration aqueous solution of hydrofluoric acid, in a solution of anhydrous hydrofluoric acid, or in a solution of an organic compound such as pyridine, triethylamine or isopropyl alcohol and anhydrous hydrogen fluoride, the surface of the hydrogen-absorbing metal material is treated. When forming a film containing a metal fluoride as a main component, a high-concentration aqueous solution of hydrofluoric acid or a solution of anhydrous hydrofluoric acid or an organic compound such as pyridine, triethylamine, isopropyl alcohol and anhydrous hydrogen fluoride are placed in a reaction vessel. And then dipping the hydrogen storage metal material to perform a fluorination reaction.

【0013】この場合、水素吸蔵金属材表面のフッ素化
反応が進みすぎると、本来の水素吸蔵金属材が持ってい
る諸特性が損なわれるため、反応の進行を抑えるため、
なるべく水分の少ない系が望まれ、高濃度フッ化水素酸
水溶液を使用の場合は重量濃度として70%以上のフッ
化水素酸水溶液の使用が望ましく、また反応温度も室温
付近でよい。また有機フッ化水素化合物の溶液として、
ピリジンフッ化水素溶液、トリエチルアミンフッ化水素
溶液、イソプロピルアルコールフッ化水素溶液等を用い
る場合の処理方法も、高濃度フッ化水素酸水溶液、無水
フッ化水素酸溶液使用の場合の処理方法に準ずる。次い
で過剰の溶液を分離した後、Ar,N2,He等の不活
性ガスでパージを行いながら室温から500℃、好まし
くは100℃〜250℃で乾燥を行い、フッ化水素雰囲
気がなくなってからも、同温度もしくは乾燥温度以上の
温度で熱処理を行って、水素吸蔵金属材の表面の膜質を
整える。こうして形成されたフッ化膜を表面に持つ水素
吸蔵金属材は、水素分子に対し高活性であり、また水素
分子以外の表面被毒を有する物質に対し非活性であると
いう特性を示す。
In this case, if the fluorination reaction on the surface of the hydrogen storage metal material proceeds too much, various properties of the original hydrogen storage metal material are impaired.
A system containing as little water as possible is desired. When a high-concentration aqueous solution of hydrofluoric acid is used, it is preferable to use an aqueous solution of hydrofluoric acid having a weight concentration of 70% or more, and the reaction temperature may be around room temperature. In addition, as a solution of an organic hydrogen fluoride compound,
The treatment method using a pyridine hydrogen fluoride solution, a triethylamine hydrogen fluoride solution, an isopropyl alcohol hydrogen fluoride solution, or the like also conforms to the treatment method using a high-concentration aqueous solution of hydrofluoric acid or an anhydrous hydrofluoric acid solution. Next, after separating the excess solution, drying is performed at room temperature to 500 ° C., preferably 100 ° C. to 250 ° C. while purging with an inert gas such as Ar, N 2 , or He. Also, heat treatment is performed at the same temperature or at a temperature higher than the drying temperature to adjust the film quality of the surface of the hydrogen storage metal material. The hydrogen-absorbing metal material having a fluoride film formed on the surface in this way has a property of being highly active against hydrogen molecules and inactive against substances having surface poisoning other than hydrogen molecules.

【0014】次に本発明の具体的な実施例について説明
する。 〈実施例1〉 内容積500mlの反応容器に、粒径5
00μm以下の水素吸蔵合金LaNi4.7 Al0.3 10
0gを充填し、さらに80%フッ化水素酸溶液100m
lを投入し、約10分間撹拌し、溶液を分離した後、1
50℃に設定された電気炉の中で1時間加熱しながらN
2 ガスで反応容器内のパージを行った。処理後、エネル
ギー分散型X線分析装置にて分析を行い、サンプル表面
にフッ素が存在していることを確認した。解析チャート
を図1に示す。
Next, a specific embodiment of the present invention will be described. <Example 1> A reaction vessel having an inner volume of 500 ml was charged with a particle size of 5
00μm or less of the hydrogen storage alloy LaNi 4.7 Al 0.3 10
0 g, and 80 m hydrofluoric acid solution 100 m
and stirred for about 10 minutes to separate the solution.
While heating for 1 hour in an electric furnace set at 50 ° C, N
Purging of the reaction vessel was performed with two gases. After the treatment, analysis was performed with an energy dispersive X-ray analyzer, and it was confirmed that fluorine was present on the sample surface. An analysis chart is shown in FIG.

【0015】また実施例1にて処理された試料の水素吸
蔵金属材としての特性について以下に記す。 (評価1) 前記実施例1によって処理された試料及び
比較例として未処理の試料についての初期活性化を同じ
条件にて測定した。図2は横軸に水素を吸蔵するまでに
要した時間、縦軸に合金中に吸蔵された水素の濃度を示
しており、反応条件は、合金の温度80℃一定、真空排
気0.01Torrになるまで行い、水素導入圧2.5
MPaで行った(以下条件1とする)。その結果、前記
実施例1によって処理された試料は、水素導入後直ちに
反応し、水素導入後2分位で水素濃度0から0.9程度
まで達した。それに対し未処理試料は、水素導入後約4
0分位から反応を開始し、約60分後ようやく水素濃度
0から0.9位まで達した。このように実施例1によっ
て処理された試料は、未処理試料に対し初期の水素化反
応が速く、水素に対し高活性化するようになる。
The characteristics of the sample treated in Example 1 as a hydrogen storage metal material are described below. (Evaluation 1) The initial activation of the sample treated according to Example 1 and the untreated sample as a comparative example were measured under the same conditions. FIG. 2 shows the time required to occlude hydrogen on the horizontal axis and the concentration of hydrogen occluded in the alloy on the vertical axis. The reaction conditions were as follows: the temperature of the alloy was constant at 80 ° C .; And a hydrogen introduction pressure of 2.5
The measurement was performed at MPa (hereinafter referred to as condition 1). As a result, the sample treated in Example 1 reacted immediately after the introduction of hydrogen, and reached a hydrogen concentration of about 0 to 0.9 in about two minutes after the introduction of hydrogen. On the other hand, the untreated sample is about 4
The reaction was started at about 0 minutes, and reached about 0.9 after about 60 minutes. Thus, the sample treated according to Example 1 has a faster initial hydrogenation reaction than the untreated sample, and is highly activated with respect to hydrogen.

【0016】(評価2) 前記実施例1によって処理さ
れた試料及び比較例として未処理の試料を用い、評価1
に対しより反応しにくい条件にて試験を実施した。その
時の反応条件は、合金の温度60℃一定、真空排気無し
の水素ブロー、水素導入圧1MPaで行った(以下条件
2とする)。その結果、図3に示されるように前記実施
例1によって処理された試料は、水素導入後速やかに反
応を開始し、水素導入後約13分位で水素濃度0から
0.9程度まで達した。それに対し未処理試料は、水素
導入後60分経過しても反応は確認されなかった。この
ように実施例1によって処理された試料は、未処理試料
では反応しないような反応条件においても第1回目から
速やかに水素と反応し、しかもこれまで水素の高圧導入
及び真空排気を必要としていた初期の活性化において、
低圧(1MPa以下)しかも真空排気を必要としない
で、初期の活性化が可能となる。
(Evaluation 2) Using the sample treated according to the above-mentioned Example 1 and an untreated sample as a comparative example,
The test was carried out under conditions that make the reaction more difficult. The reaction conditions were as follows: the alloy temperature was constant at 60 ° C., hydrogen was blown without evacuation, and the hydrogen introduction pressure was 1 MPa (hereinafter referred to as condition 2). As a result, as shown in FIG. 3, the sample treated according to Example 1 started the reaction immediately after the introduction of hydrogen, and reached a hydrogen concentration of about 0 to 0.9 in about 13 minutes after the introduction of hydrogen. . On the other hand, no reaction was observed in the untreated sample even after 60 minutes from the introduction of hydrogen. The sample treated in this way in Example 1 reacts with hydrogen promptly from the first time even under reaction conditions that do not react with the untreated sample, and has required high-pressure introduction of hydrogen and evacuation until now. In the initial activation,
Initial activation is possible at low pressure (1 MPa or less) and without the need for evacuation.

【0017】(評価3) 実施例1にて処理した試料
を、292時間外気に放置し、その後前記条件2にて初
期の活性化反応を行った処、図4に示すような結果を得
た。この図4で判るように実施例1にて処理した試料
は、外気に曝されていたにもかかわらず前記評価2と同
じ反応特性を示した。また、実施例1にて処理した試料
を、292時間水中に浸し、その後水中より取り出し大
気中にて自然乾燥させた試料を、前記条件2にて初期の
活性化反応を行った処、図5に示すような結果を得た。
この図5で判るように292時間の外気放置の結果と同
様に評価2と同じ反応特性を示した。よって、外気中や
水中内に放置して合金の活性は失われないことが確認さ
れた。
(Evaluation 3) The sample treated in Example 1 was left in the open air for 292 hours, and then the initial activation reaction was carried out under the above condition 2, and the results shown in FIG. 4 were obtained. . As can be seen from FIG. 4, the sample treated in Example 1 exhibited the same reaction characteristics as in Evaluation 2 above, despite being exposed to the outside air. In addition, the sample treated in Example 1 was immersed in water for 292 hours, then taken out of the water, and naturally dried in the air. The result as shown in FIG.
As can be seen from FIG. 5, the same reaction characteristics as in Evaluation 2 were shown in the same manner as in the result of leaving for 292 hours in the open air. Therefore, it was confirmed that the activity of the alloy was not lost when left in the open air or in water.

【0018】〈実施例2〉 内容積500mlの反応容
器に、粒径30μm以下の水素吸蔵合金LaNi4.7
0.3 100gを充填し、さらに80%フッ化水素酸溶
液100mlを投入し、約10分間撹拌し、溶液を分離
した後、120℃に設定された電気炉の中で1時間加熱
しながらN2 ガスで反応容器内のパージを行った。処理
後、サンプル表面をエネルギー分散型X線分析装置にて
分析を行い、サンプル表面にフッ素が存在していること
を確認した。解析チャートを図6に示す。
Example 2 A hydrogen storage alloy LaNi 4.7 A having a particle size of 30 μm or less was placed in a reaction vessel having an internal volume of 500 ml.
100 g of 0.3 % and further charged with 100 ml of 80% hydrofluoric acid solution, stirred for about 10 minutes, separated the solution, and heated in an electric furnace set at 120 ° C. for 1 hour while heating with N 2. The gas was purged inside the reaction vessel. After the treatment, the surface of the sample was analyzed by an energy dispersive X-ray analyzer, and it was confirmed that fluorine was present on the sample surface. An analysis chart is shown in FIG.

【0019】また実施例2にて処理された試料の水素吸
蔵金属材としての特性について以下に記す。 (評価4) 実施例2にて処理した試料を、前記条件2
にて活性化反応させた時の第1〜3回目の反応結果を図
7に示す。この図7で判るように第1回目水素導入後速
やかに反応を開始し、水素導入後約15分位で第2,3
回目の水素濃度に達した。また、第2,3回目は水素導
入後直ちに反応を開始し、未処理試料では反応しなかっ
た条件においても、2回の反応で十分に活性化され、未
処理試料を数10回以上の活性化処理を施した試料と同
等の特性を持つようになった。
The characteristics of the sample treated in Example 2 as a hydrogen storage metal material are described below. (Evaluation 4) The sample treated in Example 2 was subjected to the conditions 2
FIG. 7 shows the results of the first to third reactions when the activation reaction was carried out in the above. As can be seen from FIG. 7, the reaction was started immediately after the first hydrogen introduction, and about 15 minutes after the hydrogen introduction, the second and third reactions were started.
The second hydrogen concentration was reached. In the second and third times, the reaction was started immediately after the introduction of hydrogen, and even when the untreated sample did not react, the reaction was sufficiently activated by the two reactions. It has characteristics equivalent to those of the sample subjected to the chemical treatment.

【0020】(評価5) 実施例2にて処理した試料
が、表面被毒を有する物質に対して非活性化しているか
について、未処理の試料と比較試験した結果を図8に示
す。図8は、横軸に水素の吸蔵、放出によるサイクル
数、縦軸に水素吸蔵量変化の割合を示している。比較試
験は、先ず前記2種類の試料を、温度80℃、真空排気
0.01Torrになるまで排気し、次に7Nの高純度
水素ガスを使い、導入圧力2.5MPaの条件で活性化
処理を5回行った。活性化処理後、926ppmのCO
を含んだ水素ガスを温度60℃、導入圧力1MPaで1
0分間吸蔵させ、その後温度60℃で反応容器内の圧力
が0.12MPaになるまで水素の自然放出を行い、サ
イクル数による合金特性の変化を見た。その結果、未処
理の試料の水素吸蔵量は、10サイクル目で0サイクル
目の初期吸蔵量に対し15%前後まで減少し、反応速度
も極端に低下した。それに対し実施例2にて処理した試
料の吸蔵量は、サイクル数が増加しても減少は全く見ら
れず、安定して0サイクル目に対し100%の吸蔵量を
維持し、反応速度の低下も特に見られず、初期の性能を
維持し続けた。よって、水素吸蔵金属材を実施例2にて
処理することにより、水素分子以外の表面被毒を有する
物質に対し非活性化することが確認された。
(Evaluation 5) FIG. 8 shows the results of a comparison test between the sample treated in Example 2 and an untreated sample as to whether it is inactivated with respect to a substance having surface poisoning. In FIG. 8, the horizontal axis indicates the number of cycles due to the storage and release of hydrogen, and the vertical axis indicates the rate of change in the hydrogen storage amount. In the comparative test, first, the two kinds of samples were evacuated to a temperature of 80 ° C. and evacuated to 0.01 Torr, and then activated using a 7N high-purity hydrogen gas under an introduction pressure of 2.5 MPa. Performed 5 times. After the activation treatment, 926 ppm of CO
Hydrogen gas containing 1 at a temperature of 60 ° C and an introduction pressure of 1 MPa.
After occlusion for 0 minutes, hydrogen was spontaneously released at a temperature of 60 ° C. until the pressure in the reaction vessel became 0.12 MPa, and the change in alloy characteristics with the number of cycles was observed. As a result, the hydrogen storage amount of the untreated sample decreased to about 15% of the initial storage amount at the 10th cycle with respect to the initial storage amount at the 0th cycle, and the reaction rate also extremely decreased. On the other hand, the occlusion amount of the sample treated in Example 2 did not show any decrease even when the number of cycles increased, and stably maintained an occlusion amount of 100% with respect to the 0th cycle, resulting in a decrease in the reaction rate. No particular problems were observed, and the initial performance was maintained. Therefore, it was confirmed that the treatment of the hydrogen-absorbing metal material in Example 2 inactivates substances having surface poisoning other than hydrogen molecules.

【0021】〈実施例3〉 内容積300mlの反応容
器に、無水フッ化水素酸溶液100mlを充填し、その
中へ粒径500μm以下の水素吸蔵合金Mg2 Ni10
0gを浸漬させ、約10分間撹拌し、溶液を分離した
後、100℃に設定された電気炉の中で1時間加熱しな
がらN2 ガスで反応容器内のパージを行った。処理後、
サンプル表面をエネルギー分散型X線分析装置にて分析
を行い、サンプル表面にフッ素が存在していることを確
認した。解析チャートを図9に示す。
Example 3 A reaction vessel having an internal volume of 300 ml was filled with 100 ml of anhydrous hydrofluoric acid solution, and a hydrogen storage alloy Mg 2 Ni 10 having a particle size of 500 μm or less was filled therein.
Then, 0 g was immersed, stirred for about 10 minutes, and after the solution was separated, the inside of the reaction vessel was purged with N 2 gas while heating for 1 hour in an electric furnace set at 100 ° C. After treatment,
The sample surface was analyzed with an energy dispersive X-ray analyzer to confirm that fluorine was present on the sample surface. An analysis chart is shown in FIG.

【0022】また実施例3にて処理された試料の水素吸
蔵金属材としての特性について以下に記す。(評価6)
例3にて処理された試料及び比較例として未処理
の試料についての初期活性化を測定した。反応条件は、
合金温度330℃一定、真空排気0.01Torrにな
るまで行い、水素導入圧2.5MPaで行った。その結
果、実施例3にて処理された試料は、図10に示すよう
に水素導入後直ちに反応を開始し、未処理試料の4倍以
上の反応速度で水素を吸蔵するようになった。
The characteristics of the sample treated in Example 3 as a hydrogen storage metal material are described below. (Evaluation 6)
It was measured the initial activity of the untreated sample as the sample and the comparative examples processed by the implementation example 3. The reaction conditions are
The temperature was maintained until the alloy temperature was constant at 330 ° C. and the vacuum evacuation was 0.01 Torr, and the hydrogen introduction pressure was 2.5 MPa. As a result, the sample treated in Example 3 started the reaction immediately after the introduction of hydrogen as shown in FIG. 10, and absorbed hydrogen at a reaction rate four times or more that of the untreated sample.

【0023】〈実施例4〉 内容積500mlの反応容
器に、粒径500μm以下の水素吸蔵合金LaNi4.7
Al0.3 100gを充填し、さらにピリジンフッ化水素
酸(フッ化水素酸濃度 20%)溶液200mlを投入
し、約10分間撹拌し、溶液を分離した後、200℃に
設定された電気炉の中で1時間加熱しながらN2 ガスで
反応容器内のパージを行った。処理後、サンプル表面に
フッ素が存在していることを確認した。
Example 4 A hydrogen storage alloy LaNi 4.7 having a particle size of 500 μm or less was placed in a reaction vessel having an inner volume of 500 ml.
100 g of Al 0.3 was charged, and 200 ml of a pyridine hydrofluoric acid (hydrofluoric acid concentration: 20%) solution was further added. The mixture was stirred for about 10 minutes. After the solution was separated, the solution was placed in an electric furnace set at 200 ° C. The reactor was purged with N 2 gas while heating for 1 hour. After the treatment, it was confirmed that fluorine was present on the sample surface.

【0024】〈実施例5〉 内容積500mlの反応容
器に、粒径500μm以下の水素吸蔵合金LaNi4.7
Al0.3 100gを充填し、さらにトリエチルアミンフ
ッ化水素酸(フッ化水素酸濃度 35%)溶液200m
lを投入し、約10分間撹拌し、溶液を分離した後、2
00℃に設定された電気炉の中で1時間加熱しながらN
2 ガスで反応容器内のパージを行った。処理後、サンプ
ル表面にフッ素が存在していることを確認した。
Example 5 A hydrogen storage alloy LaNi 4.7 having a particle size of 500 μm or less was placed in a reaction vessel having an inner volume of 500 ml.
Al 0.3 100 g was filled, and triethylamine hydrofluoric acid (hydrofluoric acid concentration 35%) solution 200 m
and stirred for about 10 minutes to separate the solution.
While heating for 1 hour in an electric furnace set to 00 ° C, N
Purging of the reaction vessel was performed with two gases. After the treatment, it was confirmed that fluorine was present on the sample surface.

【0025】〈実例6〉 内容積500mlの反応容
器に、粒径.500μm以下の水素吸蔵合金LaNi
4・7Al0・3100gを充填し、さらにイソプロピ
ルアルコールフッ化水素酸(フッ化水素酸濃度 25
%)溶液200mlを投入し、約10分間攪拌し、溶液
を分離した後、200℃に設定された電気炉の中で1時
間加熱しながらNガスで反応容器内のパージを行っ
た。処理後、サンプル表面にフッ素が存在していること
を確認した。また実施例4,5,6にて処理された試料
の水素吸蔵金属材としての特性について以下に記す。
[0025] in the reaction vessel of <implementation Example 6> internal volume of 500ml, particle size. Hydrogen storage alloy LaNi of 500 μm or less
4.7 filling the Al 0 - 3 100 g, further isopropyl alcohol hydrofluoric acid (hydrofluoric acid concentration of 25
%) Solution, and the mixture was stirred for about 10 minutes. After the solution was separated, the inside of the reaction vessel was purged with N 2 gas while heating for 1 hour in an electric furnace set at 200 ° C. After the treatment, it was confirmed that fluorine was present on the sample surface. The properties of the samples treated in Examples 4, 5, and 6 as a hydrogen storage metal material are described below.

【0026】(評価7) 前記実施例4,5,6によっ
て処理された試料及び比較例として未処理の試料につい
ての初期活性化を同じ条件にて測定した。図11は、横
軸に水素を吸蔵するまでに要した時間、縦軸は合金中に
吸蔵された水素の濃度を示しており、反応条件は、条件
1にて行った。その結果、前記実施例4,5,6によっ
てされた試料は、いづれも水素導入後直ちに反応し、水
素導入後1〜10分位で水素濃度0から0.9程度まで
達した。それに対し未処理試料は、水素導入後約40分
位から反応を開始し、約60分後ようやく水素濃度0か
ら0.9位まで達した。このように実施例4,5,6に
よって処理された試料は、未処理試料に対し初期の水素
化反応が速く、水素に対し高活性化するようになる。
(Evaluation 7) The initial activation of the samples treated according to Examples 4, 5 and 6, and the untreated sample as a comparative example were measured under the same conditions. FIG. 11 shows the time required to occlude hydrogen on the horizontal axis and the concentration of hydrogen occluded in the alloy on the vertical axis. As a result, each of the samples obtained in Examples 4, 5, and 6 reacted immediately after hydrogen introduction, and reached a hydrogen concentration of about 0 to 0.9 in about 1 to 10 minutes after hydrogen introduction. On the other hand, the untreated sample started the reaction from about 40 minutes after the introduction of hydrogen, and reached the hydrogen concentration from 0 to about 0.9 only after about 60 minutes. Thus, the samples treated according to Examples 4, 5, and 6 have a faster initial hydrogenation reaction than the untreated sample, and are highly activated with respect to hydrogen.

【0027】[0027]

【発明の効果】以上の通り本発明の水素吸蔵金属材の高
活性化及び安定化処理法は、水素吸蔵金属材の表面を、
高濃度フッ化水素酸水溶液中又は無水フッ化水素酸溶液
中或いはピリジン,トリエチルアミン,イソプロピルア
ルコール等の有機化合物と無水フッ化水素との溶液中に
おいて処理して、表面に金属フッ化物を主成分とする膜
を形成するのであるから、水素分子に対し高活性とな
り、高温,高圧,高真空を必要としていた水素吸蔵金属
材の初期活性化を低温,低圧,真空排気無しで可能とな
り、また表面に形成されたフッ化膜は安定した化合物で
あるから、大気中における発火、着火の危険性が無く、
水素分子以外の表面被毒を有する物質に対しては非活性
である為、取り扱い上の危険性が解決されると共に、こ
れまで危険を回避する為に必要とされてきた設備,生
産,輸送における保全費用を大幅に削減できる。
As described above, the method for highly activating and stabilizing a hydrogen storage metal material according to the present invention provides a method for treating the surface of a hydrogen storage metal material by:
Treated in a high-concentration aqueous solution of hydrofluoric acid, in a solution of anhydrous hydrofluoric acid, or in a solution of an organic compound such as pyridine, triethylamine, isopropyl alcohol, and anhydrous hydrogen fluoride, the surface containing metal fluoride as a main component The film is highly active against hydrogen molecules, and the initial activation of the hydrogen storage metal material that required high temperature, high pressure and high vacuum is possible at low temperature, low pressure and without vacuum evacuation. Since the formed fluoride film is a stable compound, there is no danger of ignition or ignition in the atmosphere,
It is inactive against substances with surface poisoning other than hydrogen molecules, which solves the dangers in handling and reduces the risk of equipment, production, and transportation required to avoid hazards. Maintenance costs can be significantly reduced.

【0028】また、本発明の水素吸蔵金属材の高活性化
及び安定化処理法は、高濃度溶液中、或いは無水溶液で
の化合物反応を利用している為、大がかりな設備や複雑
な工程を必要とせず、大量生産規模にも対応可能な水素
吸蔵金属材の高活性化及び安定化処理を同時に行うこと
ができる。
In addition, the method of the present invention for highly activating and stabilizing a hydrogen storage metal material uses a compound reaction in a highly concentrated solution or in a non-aqueous solution, so that large equipment and complicated steps are required. It is possible to simultaneously perform the high activation and stabilization processing of the hydrogen storage metal material which is not necessary and can cope with the mass production scale.

【0029】さらに、本発明の水素吸蔵金属材の活性化
及び安定化処理法により処理された水素吸蔵金属材は、
水素分子以外の物質に対し非活性であり、低圧において
も容易に水素と反応する特性を有するものとなり、これ
を使用すれば水素濃度の低いガス中から安定的に水素の
みを回収することができ、またヒートポンプや自動車燃
料用、水素運搬用等の水素貯蔵タンクに使用した際にも
長期間にわたって安定した性能を維持することが可能と
なり、さらにニッケル−水素2次電池用電極として使用
した際にも電解液に対する耐蝕性,長寿命等に優れたも
のとなる。
Further, the hydrogen storage metal material treated by the method for activating and stabilizing the hydrogen storage metal material of the present invention comprises:
It is inactive against substances other than hydrogen molecules, and has the property of easily reacting with hydrogen even at low pressure.Using this makes it possible to recover only hydrogen stably from gas with low hydrogen concentration. In addition, when used in a hydrogen storage tank for heat pumps, automobile fuels, hydrogen transport, etc., it is possible to maintain stable performance for a long period of time, and when used as an electrode for a nickel-hydrogen secondary battery. Also, it is excellent in corrosion resistance against electrolyte, long life, and the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1により処理された水素吸蔵金
属材の試料表面をエネルギー分散型X線分析装置にて分
析した解析チャートを示す図である。
FIG. 1 is a diagram showing an analysis chart obtained by analyzing a sample surface of a hydrogen storage metal material treated according to Example 1 of the present invention with an energy dispersive X-ray analyzer.

【図2】本発明の実施例1により処理された試料と未処
理試料の初期活性化反応における水素吸蔵に要する時間
と水素濃度との関係を示す図である。
FIG. 2 is a diagram showing a relationship between a time required for hydrogen storage and a hydrogen concentration in an initial activation reaction of a sample treated according to Example 1 of the present invention and an untreated sample.

【図3】本発明の実施例1により処理された試料と未処
理試料の反応しにくい条件での初期活性化反応における
水素吸蔵に要する時間と水素濃度との関係を示す図であ
る。
FIG. 3 is a diagram showing the relationship between the time required for hydrogen storage and the hydrogen concentration in an initial activation reaction under conditions where a sample treated according to Example 1 of the present invention and an untreated sample are unlikely to react with each other.

【図4】本発明の実施例1にて処理した試料を外気に2
92時間放置後反応しにくい条件での活性化反応におけ
る水素吸蔵に要する時間と水素濃度との関係を示す図で
ある。
FIG. 4 shows a sample treated in Example 1 of the present invention,
It is a figure which shows the relationship between the time required for hydrogen storage and the hydrogen concentration in the activation reaction on the conditions which are hard to react after standing for 92 hours.

【図5】本発明の実施例1にて処理した試料を水中に2
92時間し、その後水中より取り出して自然乾燥させた
後、反応しにくい条件での活性化反応における水素吸蔵
に要する時間と水素濃度との関係を示す図である。
FIG. 5 shows a sample treated in Example 1 of the present invention in water
FIG. 9 is a diagram showing the relationship between the time required for hydrogen storage and the hydrogen concentration in an activation reaction under conditions that are difficult to react after taking out from water for 92 hours and then allowing it to dry naturally.

【図6】本発明の実施例2により処理された水素吸蔵金
属材の試料表面をエネルギー分析型X線分析装置にて分
析した解析チャートを示す図である。
FIG. 6 is a diagram showing an analysis chart obtained by analyzing a sample surface of a hydrogen storage metal material treated according to Example 2 of the present invention with an energy analysis type X-ray analyzer.

【図7】本発明の実施例2にて処理された試料と未処理
試料の反応しにくい条件での活性化反応における水素吸
蔵に要する時間と水素濃度との関係を示す図である。
FIG. 7 is a diagram showing the relationship between the time required for hydrogen storage and the hydrogen concentration in an activation reaction of a sample treated in Example 2 of the present invention and an untreated sample under conditions where reaction is difficult.

【図8】本発明の実施例2にて処理した試料と未処理試
料の表面被毒を有する物質に対し非活性化しているかに
ついての比較試験の結果を示す図である。
FIG. 8 is a view showing the results of a comparative test as to whether or not a substance having surface poisoning was inactivated between a sample treated in Example 2 of the present invention and an untreated sample.

【図9】本発明の実施例3により処理された水素吸蔵金
属材の試料表面をエネルギー分散型X分析装置にて分析
した解析チャートを示す図である。
FIG. 9 is a diagram showing an analysis chart obtained by analyzing a sample surface of a hydrogen storage metal material treated according to Example 3 of the present invention with an energy dispersive X analyzer.

【図10】本発明の実施例3にて処理した試料と未処理
試料の初期活性化反応における水素導入圧力と反応速度
との関係を示す図である。
FIG. 10 is a diagram showing a relationship between a hydrogen introduction pressure and a reaction rate in an initial activation reaction of a sample treated in Example 3 of the present invention and an untreated sample.

【図11】本発明の実施例4,5,6にて処理された試
料と未処理試料との初期活性化反応における水素導入圧
力と反応速度との関係を示す図である。
FIG. 11 is a diagram showing a relationship between a hydrogen introduction pressure and a reaction rate in an initial activation reaction between a sample treated in Examples 4, 5, and 6 of the present invention and an untreated sample.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 伊藤 学 東京都大田区山王2丁目5番13号 株式 会社ベンカン内 (72)発明者 前野 又五郎 大阪府堺市海山町7丁目227番地 橋本 化成株式会社三宝工場内 (72)発明者 平山 良司 大阪府堺市海山町7丁目227番地 橋本 化成株式会社三宝工場内 (56)参考文献 特開 平7−268649(JP,A) (58)調査した分野(Int.Cl.6,DB名) C01B 3/00 B22F 1/02──────────────────────────────────────────────────続 き Continuing on the front page (72) Manabu Ito 2-5-13 Sanno, Ota-ku, Tokyo Inside Benkan Co., Ltd. (72) Inventor Ryoji Hirayama 7-227 Kaiyama-cho, Sakai City, Osaka Prefecture Hashimoto Kasei Co., Ltd. Miho Plant (56) References JP-A-7-268649 (JP, A) (58) Fields investigated (Int.Cl. 6 , DB name) C01B 3/00 B22F 1/02

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 反応容器内に、水素吸蔵金属材と、高濃
度フッ化水素酸水溶液又は無水フッ化水素酸溶液或いは
ピリジン,トリエチルアミン,イソプロピルアルコール
等の有機化合物と無水フッ化水素との溶液を入れ、反応
容器を外部より所定の温度まで加熱し、加熱過程におい
て水素吸蔵金属材の表面に金属フッ化物を主成分とする
膜を形成して、水素分子に対し高活性化すると共に、水
素分子以外の表面被毒を有する物質に対し非活性化する
ことを特徴とする水素吸蔵合金材の高活性化及び安定化
処理法。
1. A hydrogen storage metal material, a high-concentration aqueous solution of hydrofluoric acid or a solution of anhydrous hydrofluoric acid, or a solution of an organic compound such as pyridine, triethylamine or isopropyl alcohol and anhydrous hydrogen fluoride in a reaction vessel. Then, the reaction vessel is heated to a predetermined temperature from the outside, and in the heating process, a film containing metal fluoride as a main component is formed on the surface of the hydrogen-absorbing metal material. A method for highly activating and stabilizing a hydrogen-absorbing alloy material, characterized by deactivating substances having surface poisoning other than the above.
【請求項2】 請求項1で処理した水素吸蔵金属材の充
填された反応容器内を水素ガスで置換し、その後水素ガ
スを導入し、水素吸蔵金属材に水素を吸蔵させることを
特徴とする水素吸蔵金属材の初期活性化処理法。
2. The method according to claim 1, wherein the inside of the reaction vessel filled with the hydrogen storage metal material treated in claim 1 is replaced with hydrogen gas, and then hydrogen gas is introduced to cause the hydrogen storage metal material to store hydrogen. Initial activation method for hydrogen storage metal material.
【請求項3】 請求項1で処理した水素吸蔵金属材の充
填された反応容器内に、所要の温度,圧力条件にて水素
を導入し、水素吸蔵金属材を微粉化処理した後、その反
応容器内に高濃度フッ化水素酸水溶液又は無水フッ化水
素酸溶液或いはピリジン,トリエチルアミン,イソプロ
ピルアルコール等の有機化合物と無水フッ化水素との溶
液を投入し、反応容器を外部より所定の温度まで加熱
し、加熱過程において前記の微粉化された水素吸蔵金属
材の表面に金属フッ化物を主成分とする膜を形成して、
水素分子に対し高活性化すると共に、水素分子以外の表
面被毒を有する物質に対し非活性化することを特徴とす
る水素吸蔵合金材の高活性化及び安定化処理法。
3. Hydrogen is introduced into the reaction vessel filled with the hydrogen storage metal material treated in claim 1 at required temperature and pressure conditions, and after the hydrogen storage metal material is pulverized, the reaction is carried out. A high-concentration aqueous solution of hydrofluoric acid or anhydrous hydrofluoric acid or a solution of an organic compound such as pyridine, triethylamine, isopropyl alcohol and anhydrous hydrogen fluoride is charged into the vessel, and the reaction vessel is heated to a predetermined temperature from outside. And forming a film mainly composed of metal fluoride on the surface of the finely divided hydrogen absorbing metal material in the heating process,
A method for highly activating and stabilizing a hydrogen-absorbing alloy material, characterized in that it is highly activated with respect to hydrogen molecules and is inactivated with respect to substances having surface poisoning other than hydrogen molecules.
【請求項4】 水素吸蔵金属材が、粉末、インゴットな
どの素材、又は中間製品、若しくは完成品のいずれかで
ある請求項1〜3のいずれかに記載の処理法。
4. The processing method according to claim 1, wherein the hydrogen storage metal material is one of a raw material such as a powder and an ingot, an intermediate product, and a finished product.
JP6337870A 1994-12-27 1994-12-27 High activation and stabilization of hydrogen storage metal Expired - Fee Related JP2835327B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6337870A JP2835327B2 (en) 1994-12-27 1994-12-27 High activation and stabilization of hydrogen storage metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6337870A JP2835327B2 (en) 1994-12-27 1994-12-27 High activation and stabilization of hydrogen storage metal

Publications (2)

Publication Number Publication Date
JPH08183601A JPH08183601A (en) 1996-07-16
JP2835327B2 true JP2835327B2 (en) 1998-12-14

Family

ID=18312770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6337870A Expired - Fee Related JP2835327B2 (en) 1994-12-27 1994-12-27 High activation and stabilization of hydrogen storage metal

Country Status (1)

Country Link
JP (1) JP2835327B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1099665A1 (en) * 1999-11-09 2001-05-16 Benkan Corporation Highly activated hydrogen containing material and method for producing the material

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998013158A1 (en) * 1996-09-26 1998-04-02 Toyota Jidosha Kabushiki Kaisha Hydrogen absorbing alloy powder and method of producing hydrogen absorbing alloy powder
JP2006261030A (en) * 2005-03-18 2006-09-28 Matsushita Electric Works Ltd Fuel cell power generation system
CN101401282B (en) 2006-03-16 2011-11-30 松下电器产业株式会社 Radial anisotropic magnet manufacturing method, permanent magnet motor using radial anisotropic magnet, iron core-equipped permanent magnet motor
JP5267800B2 (en) 2009-02-27 2013-08-21 ミネベア株式会社 Self-repairing rare earth-iron magnet
JP5344171B2 (en) 2009-09-29 2013-11-20 ミネベア株式会社 Anisotropic rare earth-iron resin magnet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1099665A1 (en) * 1999-11-09 2001-05-16 Benkan Corporation Highly activated hydrogen containing material and method for producing the material

Also Published As

Publication number Publication date
JPH08183601A (en) 1996-07-16

Similar Documents

Publication Publication Date Title
US5208207A (en) Electrocatalyst
Mizuno et al. Titanium concentration in FeTix (l⩽ x⩽ 2) alloys and its effect on hydrogen storage properties
CA1202200A (en) Oxygen stabilized zirconium-vanadium-iron alloy
JP2835327B2 (en) High activation and stabilization of hydrogen storage metal
US4278466A (en) Titanium alloy composition and method for the storage of hydrogen
US8119094B2 (en) Fluorine storage material
JP3350691B2 (en) High activation and stabilization of hydrogen storage metal
Lovrecek et al. The Potential of the Semiconductor–Solution Interface in the Absence of Net Current Flow: Germanium
US4461631A (en) Zeolite encapsulating material
KR100427678B1 (en) Highly activated hydrogen containing material and method for producing the material
JP3406615B2 (en) Activation, initial activation and stabilization of hydrogen storage alloy
WO2011046139A1 (en) Fluorine storage device
JP4762579B2 (en) Hydrogen storage material, production method thereof, and hydrogen storage method
JP2709792B2 (en) High activation and stabilization of hydrogen storage metal
US5441715A (en) Method for the separation of hydrogen isotopes using a hydrogen absorbing alloy
JP2688452B2 (en) Method for producing tantalum powder with high surface area and low metal impurities
JP2743123B2 (en) Materials for hydrogen storage
JP5724809B2 (en) Method for producing carbon nanohorn, fluorinated carbon nanohorn, and method for producing the same
CN109012563B (en) Metal Ti modified black phosphorus alkene and preparation method and application thereof
US5693306A (en) Production process for refined hydrogen iodide
JPH09124515A (en) Hydrogenation of carbon oxide
JP3000680B2 (en) Materials for hydrogen storage
JPS5970743A (en) Metallic material for occluding hydrogen
JP5865655B2 (en) Method for producing carbon nanohorn, fluorinated carbon nanohorn, and method for producing the same
JPS6313925B2 (en)

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980428

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071009

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081009

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091009

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101009

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101009

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111009

Year of fee payment: 13

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111009

Year of fee payment: 13

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees