JP3406615B2 - Activation, initial activation and stabilization of hydrogen storage alloy - Google Patents

Activation, initial activation and stabilization of hydrogen storage alloy

Info

Publication number
JP3406615B2
JP3406615B2 JP19923192A JP19923192A JP3406615B2 JP 3406615 B2 JP3406615 B2 JP 3406615B2 JP 19923192 A JP19923192 A JP 19923192A JP 19923192 A JP19923192 A JP 19923192A JP 3406615 B2 JP3406615 B2 JP 3406615B2
Authority
JP
Japan
Prior art keywords
hydrogen storage
hydrogen
storage alloy
activation
metal fluoride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19923192A
Other languages
Japanese (ja)
Other versions
JPH05213601A (en
Inventor
須田精二郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP19923192A priority Critical patent/JP3406615B2/en
Publication of JPH05213601A publication Critical patent/JPH05213601A/en
Application granted granted Critical
Publication of JP3406615B2 publication Critical patent/JP3406615B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • ing And Chemical Polishing (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、水素活性化金属を分散
させた水素吸蔵合金を活性化,初期活性化又は安定化す
る方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for activating, initially activating or stabilizing a hydrogen storage alloy having hydrogen activated metal dispersed therein.

【0002】[0002]

【従来技術及び問題点】水素吸蔵合金は、水素と可逆的
に反応し水素化物を作る性質を利用して水素の吸蔵・放
出に使用される材料であり、チタン,希土類元素,マグ
ネシウム,カルシウム,ジルコニウム等のベース金属に
ニッケル,鉄,マンガン等の水素活性化金属を合金化さ
せている。水素吸蔵合金に水素を吸蔵させる場合、高
圧,高真空,高温等の雰囲気下で水素活性化処理を複数
回繰り返す作業が必要である。たとえば、La−Ni−
Al系の水素吸蔵合金では、80〜100℃で真空脱気
し、1〜3MPaで水素の導入・排気を10回以上繰り
返す。Mg−Ni系の水素吸蔵合金では、350℃で真
空脱気し、2〜5MPaで水素の導入・排気を10回以
上繰り返す。
2. Description of the Related Art Hydrogen storage alloys are materials used for storage and release of hydrogen by utilizing the property of reversibly reacting with hydrogen to form hydrides, such as titanium, rare earth elements, magnesium, calcium, Hydrogen-activating metals such as nickel, iron, and manganese are alloyed with base metals such as zirconium. In order to store hydrogen in the hydrogen storage alloy, it is necessary to repeat the hydrogen activation treatment a plurality of times in an atmosphere of high pressure, high vacuum, high temperature, or the like. For example, La-Ni-
In the case of an Al-based hydrogen storage alloy, vacuum deaeration is performed at 80 to 100 ° C., and hydrogen introduction / exhaust is repeated 10 times or more at 1 to 3 MPa. In the Mg-Ni-based hydrogen storage alloy, vacuum degassing is performed at 350 ° C., and hydrogen introduction / exhaust is repeated 10 times or more at 2 to 5 MPa.

【0003】水素活性化処理(初期活性化)は、煩雑な
工程を要することからコスト高な操作である。しかも、
活性化された水素吸蔵合金が大気中で着火・発火しやす
いので、非常に危険な作業である。そのため、水中での
容器の開放や硫化物による合金表面の被毒が必要とされ
る。活性化された水素吸蔵合金は、大気曝露で失活する
不安定な状態にある。プロパン,ブタン,ペンタン等の
低級飽和炭化水素液に水素吸蔵合金を浸漬保存すること
によって活性状態を維持できるが、そのための取扱い操
作が面倒になる。
Hydrogen activation treatment (initial activation) is a costly operation because it requires complicated steps. Moreover,
This is a very dangerous work because the activated hydrogen storage alloy easily ignites and ignites in the atmosphere. Therefore, it is necessary to open the container in water and poison the alloy surface with sulfides. The activated hydrogen storage alloy is in an unstable state in which it is deactivated by exposure to the atmosphere. The hydrogen storage alloy can be maintained in an active state by dipping and storing it in a lower saturated hydrocarbon liquid such as propane, butane, pentane, etc. However, the handling operation for that purpose is troublesome.

【0004】このように、水素吸蔵合金の実用化には、
初期活性化の作業性,コスト高,活性化された水素吸蔵
合金の不安定性,取扱い時の危険性等、解決すべき問題
が多数ある。しかも、大半の水素吸蔵合金は、吸蔵可能
な水素量が最大でも2%程度と少ない。本発明は、この
ような問題を解消し、金属フッ化物の過飽和水溶液を処
理薬液に使用することにより、水素吸蔵合金を容易に活
性化でき、且つ活性化された水素吸蔵合金を大気雰囲気
中で安定状態に維持可能にすることを目的とする。
As described above, the practical use of the hydrogen storage alloy is as follows.
There are many problems to be solved such as workability of initial activation, high cost, instability of activated hydrogen storage alloy, and danger during handling. Moreover, most hydrogen storage alloys have a small hydrogen storage capacity of about 2% at maximum. The present invention solves such a problem, by using a supersaturated aqueous solution of a metal fluoride as a treatment chemical, the hydrogen storage alloy can be easily activated, and the activated hydrogen storage alloy in an air atmosphere. The purpose is to be able to maintain a stable state.

【0005】[0005]

【課題を解決するための手段】本発明では、金属フッ化
物の過飽和水溶液を用いて水素吸蔵合金を処理すること
により活性化処理又は安定化処理が施される。水素吸蔵
合金は活性化処理後に水素活性化処理され、水素活性化
処理された水素吸蔵合金は必要に応じて安定化処理され
る。水素活性化金属を含む水素吸蔵合金を金属フッ化物
の過飽和水溶液で処理すると、水素吸蔵合金の少なくと
も表面又は表層部が活性化される。活性化された水素吸
蔵合金を真空引きした後、水素ガスを導入することによ
り水素吸蔵合金に水素が吸蔵される。水素吸蔵後に金属
フッ化物の過飽和水溶液で処理すると、水素吸蔵合金の
表面が水素以外の毒性物質に対して不活性になる。
In the present invention, activation treatment or stabilization treatment is performed by treating a hydrogen storage alloy with a supersaturated aqueous solution of metal fluoride. The hydrogen storage alloy is subjected to hydrogen activation treatment after the activation treatment, and the hydrogen activation treated hydrogen storage alloy is subjected to stabilization treatment as required. When a hydrogen storage alloy containing a hydrogen activated metal is treated with a supersaturated aqueous solution of a metal fluoride, at least the surface or surface layer of the hydrogen storage alloy is activated. After evacuation of the activated hydrogen storage alloy, hydrogen is introduced into the hydrogen storage alloy by introducing hydrogen gas. When the hydrogen storage alloy is treated with a supersaturated aqueous solution of hydrogen fluoride, the surface of the hydrogen storage alloy becomes inactive to toxic substances other than hydrogen.

【0006】[0006]

【実施の形態及び作用】従来の活性化処理は成分系が特
定された水素吸蔵合金にのみ有効であり、処理自体も煩
雑である。そこで、薬液処理のみで種々の成分系の水素
吸蔵合金を水素活性能の高い表面に容易に活性化できる
方法を種々調査・検討した。その結果,特定の金属フッ
化物水溶液で水素吸蔵合金を処理すると、極めて容易に
水素活性化処理されることを見出した。更に、水素吸蔵
合金に及ぼす金属フッ化物水溶液の影響について研究を
重ねたところ、初期活性化された水素吸蔵合金を同じ金
属フッ化物水溶液で再処理すると、水素吸蔵合金が極め
て安定化することを解明した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The conventional activation treatment is effective only for hydrogen storage alloys whose component system is specified, and the treatment itself is complicated. Therefore, various investigations and investigations have been made on a method for easily activating hydrogen storage alloys of various component systems on a surface having high hydrogen activating ability only by chemical treatment. As a result, they have found that hydrogen activation treatment is extremely easy when a hydrogen storage alloy is treated with a specific aqueous metal fluoride solution. Furthermore, when the research on the influence of the metal fluoride aqueous solution on the hydrogen storage alloy was repeated, it was clarified that the hydrogen storage alloy was extremely stabilized when the initially activated hydrogen storage alloy was retreated with the same metal fluoride aqueous solution. did.

【0007】〔金属フッ化物水溶液の調製〕 本発明で使用する金属フッ化物水溶液は、アルカリ金属
を含む六フッ化金属化合物等の金属フッ化物の過飽和水
溶液である。代表的な金属フッ化物に六フッ化アルミニ
ウムカリウム(K3AlF6)があるが、Alに代えてT
i,Zr,Si等も使用可能であり、Kに代えてNaを
成分とする六フッ化アルミニウムナトリウム(Na3
lF6)等のフッ化物も使用できる。金属フッ化物は用
途,目的に応じて選択され、2種以上の金属フッ化物を
混合することも可能である。六フッ化チタンカリウム
(K2TiF6),六フッ化ジルコニウムカリウム(K2
ZrF6),珪フッ化カリウム(K2SiF6)等、水素
吸蔵合金元素等を含む化合物も使用できる。ただし、こ
れらのフッ化物は全て水に対する溶解度が低く、なかで
もK2SiF6では水温低下に敏感に反応して結晶が著し
く析出する。そのため、フッ化物の使用に際しては、薬
液の調製に留意する必要がある。
[Preparation of Aqueous Metal Fluoride Solution] The aqueous metal fluoride solution used in the present invention is a supersaturated aqueous solution of a metal fluoride such as a metal hexafluoride compound containing an alkali metal. A typical metal fluoride is aluminum hexafluoride potassium (K 3 AlF 6 ), but T is used instead of Al.
i, Zr, Si, etc. can also be used, and sodium aluminum hexafluoride containing Na as a component in place of K (Na 3 A
Fluorides such as IF 6 ) can also be used. The metal fluoride is selected according to the use and purpose, and it is also possible to mix two or more kinds of metal fluorides. Potassium hexafluoride potassium (K 2 TiF 6 ), potassium zirconium hexafluoride (K 2
ZrF 6 ), potassium silicofluoride (K 2 SiF 6 ), and other compounds containing a hydrogen storage alloy element can also be used. However, all of these fluorides have low solubility in water, and among them, K 2 SiF 6 reacts sensitively to a decrease in water temperature and crystals are significantly precipitated. Therefore, it is necessary to pay attention to the preparation of the chemical solution when using the fluoride.

【0008】たとえば、K3AlF6を使用した金属フッ
化物水溶液では、K3AlF6を0.03W/V(重量対
容積比)で25℃の蒸留水に溶解し、十分に攪拌混合す
ることにより調製される。K3AlF6の濃度は、目的に
応じて0.01〜0.5W/Vの範囲で決定される。蒸留
水に代え、イオン交換水,上水,井戸水等も使用可能で
ある。調製時の水温は18〜40℃であれば良いが、3
0〜35℃の水温で最良の結果が得られる。金属フッ化
物水溶液は、調製直後のpHがおよそ4.00〜5.00
の範囲にある。pH値は、活性化処理の開始と同時に
5.2〜5.8程度に上がり、処理目的,処理時間に応じ
て中性側に変化する。場合によっては、7.00を超え
てアルカリ側に移行し、pH12近傍になることもあ
る。
[0008] For example, the metal fluoride solution using K 3 AlF 6, to dissolve the K 3 AlF 6 to 25 ° C. in distilled water at 0.03 W / V (weight to volume ratio), sufficiently mixed and stirred Is prepared by. The concentration of K 3 AlF 6 is determined in the range of 0.01 to 0.5 W / V depending on the purpose. Instead of distilled water, ion exchange water, tap water, well water, etc. can be used. The water temperature at the time of preparation should be 18 to 40 ° C, but 3
Best results are obtained with water temperatures between 0 and 35 ° C. The pH of the aqueous metal fluoride solution immediately after preparation is about 4.00 to 5.00.
Is in the range. The pH value rises to about 5.2 to 5.8 at the same time when the activation treatment is started, and changes to the neutral side depending on the treatment purpose and the treatment time. In some cases, the pH may exceed about 7.00 and shift to the alkaline side, and the pH may be around 12.

【0009】〔活性化処理〕 調製された金属フッ化物水溶液を用いて水素吸蔵合金を
活性化処理すると、水素吸蔵合金の少なくとも表面又は
表層部が活性化能の高い状態に改質される。処理条件に
特段の制約はないが、常温又は常温近傍の温度(好まし
くは、18〜40℃)の常圧雰囲気下で水素吸蔵合金が
活性化処理される。粉末状又は微粉状の水素吸蔵合金を
活性化処理すると、表面又は表層部の面積が大きいため
処理効果が向上する。また、高速・高エネルギーを与え
る攪拌機を用いて活性化処理した粉末を機械的に合金化
するメカニカルアロイング法を施すと粒子の中心まで高
活性化されるので、後続する水素活性化処理で初期活性
化が容易になり、初期水素吸蔵量が増大する。活性化処
理した粉末を他の合金元素と共に溶解した合金や複合材
でも、同様な処理効果を期待できる。
[Activation Treatment] When the hydrogen storage alloy is activated using the prepared metal fluoride aqueous solution, at least the surface or the surface layer of the hydrogen storage alloy is modified to have a high activation ability. Although there are no particular restrictions on the treatment conditions, the hydrogen storage alloy is activated in a normal temperature atmosphere at or near room temperature (preferably 18 to 40 ° C.). When the powder or fine powder hydrogen storage alloy is activated, the treatment effect is improved because the surface or surface layer area is large. In addition, when the mechanical alloying method, which mechanically alloys the powder that has been activated using a stirrer that gives high speed and high energy, is applied, the particles are highly activated up to the center of the particles. Activation becomes easier and the initial hydrogen storage amount increases. Similar treatment effects can be expected with alloys and composite materials in which activated powder is melted together with other alloy elements.

【0010】活性化された水素吸蔵合金は、大気雰囲気
中でも安定しており、後続する水素活性化処理(初期活
性化)によって速やかに水素を吸蔵させることができ
る。しかも、水素吸蔵合金の表面における水の凝縮特性
や伝熱特性が著しく向上している。金属フッ化物水溶液
を用いた活性化処理で水素吸蔵合金の活性化能が高くな
る理由は必ずしも明確でないが、表面又は表層部の性
状,組織,構造等の変化に起因するものと推察される。
実際、活性化処理された水素吸蔵合金を観察すると微細
な凹凸や突起のある複雑な溝構造が表面に検出され、比
表面積が大きくなっていることが窺われる。また、表面
分析の結果は、水素吸蔵合金の少なくとも表面又は表層
部にフッ素と金属との化合物が存在していることを示し
ている。
The activated hydrogen storage alloy is stable even in the atmosphere, and hydrogen can be quickly stored by the subsequent hydrogen activation treatment (initial activation). Moreover, the condensation property and heat transfer property of water on the surface of the hydrogen storage alloy are remarkably improved. The reason why the activation ability of the hydrogen storage alloy is increased by the activation treatment using the aqueous solution of metal fluoride is not always clear, but it is presumed that it is caused by changes in the properties, structure, structure, etc. of the surface or surface layer.
In fact, when observing the activated hydrogen storage alloy, a complex groove structure with fine irregularities and protrusions is detected on the surface, which shows that the specific surface area is large. Further, the result of the surface analysis shows that the compound of fluorine and metal is present on at least the surface or the surface layer portion of the hydrogen storage alloy.

【0011】〔水素吸蔵:初期活性化〕 活性化された水素吸蔵合金を加熱することなく低真空度
で真空引きすることにより、金属フッ化物水溶液が水素
吸蔵合金から除去される。次いで、従来の水素吸蔵に比
較して1MPa程度の低圧の常温雰囲気下で水素を導入
するとき、水素吸蔵合金に水素が速やかに吸蔵される。
粉末状の水素吸蔵合金では、水素活性化反応及び脱水素
化反応を繰り返す水素活性化処理の初期段階で容易に制
御できる。水素吸蔵量は、温度,圧力等によって調整で
きる。水素吸蔵が迅速に進行するため、従来のような高
温高真空脱気や高圧高温下での初期活性化処理を10回
以上繰り返す煩雑な水素活性化処理を必要としない。
[Hydrogen Storage: Initial Activation] By evacuating the activated hydrogen storage alloy at a low vacuum level without heating, the metal fluoride aqueous solution is removed from the hydrogen storage alloy. Next, when hydrogen is introduced in a normal temperature atmosphere at a low pressure of about 1 MPa as compared with conventional hydrogen storage, hydrogen is quickly stored in the hydrogen storage alloy.
The powdery hydrogen storage alloy can be easily controlled at the initial stage of the hydrogen activation treatment in which the hydrogen activation reaction and the dehydrogenation reaction are repeated. The hydrogen storage amount can be adjusted by temperature, pressure and the like. Since hydrogen absorption proceeds rapidly, complicated hydrogen activation treatments such as conventional high temperature high vacuum deaeration and initial activation treatment under high pressure and high temperature which are repeated 10 times or more are not required.

【0012】〔再処理:安定化処理〕 水素活性化処理した水素吸蔵合金を金属フッ化物水溶液
又は金属フッ化物水溶液の廃液で再処理すると、水素分
子以外の被毒性を呈する空気,水分等の物質から水素吸
蔵合金の表面が保護される。そのため、再処理された水
素吸蔵合金は、保管,移送,加工等の取扱いが容易にな
る。たとえば、微粒子状の水素吸蔵合金を薄膜上に展開
し、或いは組成や特性が異なる微粒子状水素吸蔵合金を
層状に積層することも容易になる。その結果、ニッケル
/水素二次電池用電極としての用途では、耐食性,寿
命,電気容量等の特性向上が期待できる。水素活性化処
理された水素吸蔵合金を廃棄する場合でも、大気雰囲気
下における空気酸化に起因する着火・発火等の現象が再
処理で防止できるため、廃棄処理が安全且つ容易にな
る。
[Retreatment: Stabilization Treatment] When hydrogen-activated hydrogen storage alloy is retreated with a metal fluoride aqueous solution or a waste liquid of a metal fluoride aqueous solution, substances other than hydrogen molecules, such as air and water, are poisonous. The surface of the hydrogen storage alloy is protected from this. Therefore, the reprocessed hydrogen storage alloy can be easily handled such as storage, transfer and processing. For example, it becomes easy to develop a fine particle hydrogen storage alloy on a thin film or to layer fine particle hydrogen storage alloys having different compositions and characteristics in layers. As a result, when used as an electrode for a nickel / hydrogen secondary battery, improvements in characteristics such as corrosion resistance, life, and electric capacity can be expected. Even when discarding the hydrogen storage alloy subjected to the hydrogen activation treatment, phenomena such as ignition and ignition due to air oxidation in the air atmosphere can be prevented by the retreatment, so that the disposal treatment becomes safe and easy.

【0013】〔水素吸蔵合金の形態,材質等〕 水素吸蔵合金は、素材,中間製品,完成品等、種々の形
態をもつ。たとえば、粉末状,微粒子状,薄膜,シー
ト,カプセル,積層材等が挙げられる。材質としても、
水素吸蔵合金のベースとして知られているチタン,希土
類元素,マグネシウム,カルシウム,ジルコニウム等の
元素やニッケル,鉄,マンガン等の水素活性化元素の単
独又はこれら元素の合金等がある。また、ベース元素や
水素活性化元素又は合金を分散させた非金属材料や複合
材料としても使用可能である。
[Form, Material, etc. of Hydrogen Storage Alloy] The hydrogen storage alloy has various forms such as a material, an intermediate product and a finished product. Examples thereof include powder, fine particles, thin films, sheets, capsules and laminated materials. As a material,
Titanium, rare earth elements, elements such as magnesium, calcium, zirconium and the like, and hydrogen activating elements such as nickel, iron and manganese, which are known as the base of hydrogen storage alloys, and alloys of these elements and the like are available. It can also be used as a non-metal material or a composite material in which a base element, a hydrogen activation element or an alloy is dispersed.

【0014】[0014]

【実施例1】粒度0.2〜0.1mmに揃えたランタンニ
ッケル合金LaNi4.7Al0.3を粉末状水素吸蔵合金と
して使用した。金属フッ化物水溶液は、蒸留水に六フッ
化アルミニウムカリウムを0.025W/V溶解するこ
とにより調製した。金属フッ化物水溶液400mlを収
容したビーカーに水素吸蔵合金10gを投入し、スター
ラで十分攪拌した後、上澄み液を除去し、ビーカー底部
に沈殿した粒子を回収した。金属フッ化物水溶液のpH
値は、処理中に5.0から8.0付近まで変化した。活性
化した水素吸蔵合金の表面をESCA(表面分析),E
PMA(極表面組成分析)及びX線分析したところ、ラ
ンタン及びフッ素を含む化合物・フッ化ランタン(La
3)の生成が確認された。
Example 1 A lanthanum nickel alloy LaNi 4.7 Al 0.3 having a grain size of 0.2 to 0.1 mm was used as a powdery hydrogen storage alloy. The metal fluoride aqueous solution was prepared by dissolving potassium aluminum hexafluoride in 0.025 W / V in distilled water. 10 g of the hydrogen storage alloy was put into a beaker containing 400 ml of an aqueous metal fluoride solution, and after sufficiently stirring with a stirrer, the supernatant liquid was removed and the particles precipitated at the bottom of the beaker were collected. PH of aqueous metal fluoride solution
The value changed from 5.0 to around 8.0 during the treatment. The surface of the activated hydrogen storage alloy is ESCA (surface analysis), E
PMA (extreme surface composition analysis) and X-ray analysis showed that lanthanum and a compound containing fluorine, lanthanum fluoride (La
The production of F 3 ) was confirmed.

【0015】活性化処理された粉末状水素吸蔵合金を測
定系の反応セルに充填し、0.1トール程度まで真空引
きすることにより水素吸蔵合金から金属フッ化物水溶液
を除去した後、常温雰囲気下で約1MPaの水素ガスを
導入した。水素ガスの導入と同時に水素吸蔵合金による
水素吸蔵が始まり、急激な水素活性化現象が観察され
た。水素活性化処理された水素吸蔵合金の表面を同様に
分析したところ依然としてLaF3が検出され、初期活
性化処理によってもランタン,フッ素が合金表面からほ
とんど離脱していなかった。
The activated powdered hydrogen storage alloy was filled in the reaction cell of the measurement system, and the metal fluoride aqueous solution was removed from the hydrogen storage alloy by evacuation to about 0.1 Torr. Then, about 1 MPa of hydrogen gas was introduced. Simultaneously with the introduction of hydrogen gas, hydrogen storage by the hydrogen storage alloy started, and a rapid hydrogen activation phenomenon was observed. When the surface of the hydrogen storage alloy subjected to the hydrogen activation treatment was similarly analyzed, LaF 3 was still detected, and lanthanum and fluorine were hardly released from the alloy surface even by the initial activation treatment.

【0016】水素ガスを十分に吸収させることにより水
素吸蔵合金を金属水素化物にした後、金属フッ化物水溶
液の廃液中で反応セルを開封し、反応セルから金属水素
化物を取り出して溶液中に沈殿させた。沈殿物を蒸発・
乾固した後で粒径を測定したところ、40μmを中心と
する微細粒子状になっていた。ESCAによる分析結果
を図1〜18に示す。金属フッ化物水溶液で処理してい
ない試料では、試料表面に金属状態の結合エネルギーか
らシフトしたLaのピークが測定された(図1,2)。
また、自然酸化で生成したLa23のピークが出てお
り、エッチングを続けることによって金属状態のLaの
ピークが現れた。Ni(図3,4)及びAl(図5,
6)は、金属状態で散在していた。
After the hydrogen storage alloy is made into a metal hydride by sufficiently absorbing hydrogen gas, the reaction cell is opened in the waste liquid of the metal fluoride aqueous solution, and the metal hydride is taken out from the reaction cell and precipitated in the solution. Let Evaporate the precipitate
When the particle size was measured after drying to dryness, it was found to be in the form of fine particles centered at 40 μm. The results of analysis by ESCA are shown in FIGS. In the sample not treated with the aqueous metal fluoride solution, a peak of La shifted from the binding energy in the metallic state was measured on the surface of the sample (FIGS. 1 and 2).
Further, a peak of La 2 O 3 generated by natural oxidation appears, and a peak of La in a metallic state appeared by continuing etching. Ni (Figs. 3, 4) and Al (Fig. 5,
6) was scattered in a metallic state.

【0017】活性化処理された試料では、金属状態の結
合エネルギーよりシフトしたLa(図7〜10),Ni
(図11〜14)のピークが測定された。シフトしたピ
ークは、試料表面から酸化物がなくなり、最表面にLa
3、最表面直下にNiリッチの層が形成されているこ
とを示す。実際、活性化処理された試料をエッチングす
ると試料表面のフッ化物が削られ、金属状態のLa,N
iが現れた。Alは、試料表面に存在せず、エッチング
の継続に従って下層に向けて徐々に金属状態として現れ
た(図15〜18)。これらの結果は、試料内部が組成
変化なく当初の合金状態に維持されていることを意味す
る。
In the sample subjected to the activation treatment, La (FIGS. 7 to 10) and Ni shifted from the binding energy in the metallic state were used.
The peaks (Figs. 11-14) were measured. In the shifted peak, oxide disappeared from the sample surface, and La was observed on the outermost surface.
F 3 indicates that a Ni-rich layer is formed immediately below the outermost surface. In fact, when the activated sample is etched, the fluoride on the sample surface is scraped off, and La and N in the metallic state are removed.
i appeared. Al did not exist on the sample surface, and gradually appeared as a metal state toward the lower layer as the etching continued (FIGS. 15 to 18). These results mean that the inside of the sample is maintained in the original alloy state without change in composition.

【0018】水素活性化処理した水素吸蔵合金につい
て、圧力−組成−温度特性及び反応特性を調査した。図
19は、室温下で水素吸蔵させたときの圧力を縦軸,水
素吸蔵合金に吸蔵された水素の濃度を横軸にとり、活性
化処理した試料及び1回目,2回目の初期活性化処理を
施した試料の圧力−組成−温度特性を示す。軽く真空引
きした試料に10気圧程度の水素圧をかけると(1回
目),水素吸蔵反応が直ちに開始し水素濃度が0から
0.8程度に到達した(◎印)。それ以上では、ほぼよ
く活性化処理された試料と同じ過程を経て最高濃度に至
った。2回目の水素活性化処理では、数気圧の印加によ
って水素吸蔵反応が極めて容易に開始し、数十回以上の
水素活性化処理を繰り返した従来の試料と同等な特性を
呈した。
The pressure-composition-temperature characteristics and reaction characteristics of the hydrogen-activated hydrogen storage alloy were investigated. In FIG. 19, the pressure when hydrogen is stored at room temperature is plotted on the vertical axis, and the concentration of hydrogen stored in the hydrogen storage alloy is plotted on the horizontal axis, and the activated sample and the first and second initial activation treatments are shown. The pressure-composition-temperature characteristic of the applied sample is shown. When a hydrogen pressure of about 10 atm was applied to the sample that was lightly evacuated (first time), the hydrogen storage reaction immediately started and the hydrogen concentration reached about 0 to 0.8 (marked with ⊚). Above that, the maximum concentration was reached through almost the same process as the well-activated sample. In the second hydrogen activation treatment, the hydrogen absorption reaction was started very easily by the application of several atmospheric pressures, and exhibited the characteristics equivalent to those of the conventional sample in which the hydrogen activation treatment was repeated tens of times or more.

【0019】[0019]

【実施例2】実施例1で初期活性化された試料を金属フ
ッ化物水溶液に再度投入し、スターラで攪拌した。金属
フッ化物水溶液のpH値は、攪拌中に約4.90〜7.7
0の間で変化した。金属フッ化物水溶液を除去した後、
再処理した試料を時計皿に入れてドライヤで乾燥した。
乾燥後の試料を空気中に曝露したところ、活性状態であ
るにも拘らず、着火や発火現象は勿論、急激な空気酸化
現象が観察されなかった。乾燥試料を2週間以上外気に
曝露した後、反応容器に再度投入し、真空引きした。次
いで、1MPaの水素ガスを導入したところ水素吸蔵反
応が直ちに始まり、失活していないことが判った。すな
わち、常温下で長時間大気に曝露したにも拘らず、2回
の活性化処理で通常の反応特性が発現した(図20)。
金属フッ化物水溶液で処理していない通常試料では高圧
水素の印加によって所定の反応特性を発現するため数十
回以上の吸蔵・放出の繰返し及び高温下での脱気を必要
とするのに比較すると、金属フッ化物水溶液を用いた処
理効果が反応特性の回復に及ぼす影響は特筆すべきもの
である。
Example 2 The sample that was initially activated in Example 1 was charged again into the metal fluoride aqueous solution and stirred with a stirrer. The pH value of the aqueous metal fluoride solution is about 4.90 to 7.7 during stirring.
It changed between 0. After removing the metal fluoride aqueous solution,
The reprocessed sample was placed in a watch glass and dried in a dryer.
When the dried sample was exposed to the air, not only ignition and ignition phenomena but also rapid air oxidation phenomenon were not observed, although it was in an active state. The dried sample was exposed to the open air for 2 weeks or longer, and then put into the reaction vessel again and evacuated. Then, when 1 MPa of hydrogen gas was introduced, it was found that the hydrogen storage reaction immediately started and was not deactivated. That is, despite the fact that it was exposed to the atmosphere for a long time at room temperature, normal activation characteristics were exhibited by the activation treatment twice (FIG. 20).
A normal sample that has not been treated with an aqueous metal fluoride solution develops certain reaction characteristics by the application of high-pressure hydrogen, and therefore requires repeated occluding and releasing several tens of times and degassing at high temperature. It is noteworthy that the effect of the treatment with the aqueous solution of metal fluoride affects the recovery of the reaction characteristics.

【0020】[0020]

【実施例3】水素吸蔵合金として粒径0.075mm以
下のMg2Ni合金,粒径0.106〜0.075mmの
Mg2Ni合金,粒径0.250〜0.106mmのMm
Ni0.35Mn0.4Al0.3Co0.75合金(Mm:ミッシュ
メタル)を用意した。0.025W/Vの六フッ化アル
ミニウムカリウムを添加した金属フッ化物水溶液400
mlを収容したビーカーに各水素吸蔵合金20gを投入
し、スターラで十分攪拌した後、上澄み液を除去し、ビ
ーカー底部に沈殿した粒子を回収した。回収した粒子を
測定系の反応セルに充填し、表1の条件下で水素ガスを
導入することにより水素活性化状況を調査した。その結
果、図21〜23及び表1に示すように、水素ガスの導
入と同時に水素吸蔵反応が始まり、急激な活性化が生じ
ていた。大型水素リザーバを使用した以降も、圧力の変
化は少ないものの常温,短時間で効率よく水素を吸蔵し
た。
EXAMPLE 3 The particle size 0.075mm following Mg 2 Ni alloy as the hydrogen storage alloy, Mg 2 Ni alloy having a particle size 0.106~0.075Mm, particle size 0.250~0.106Mm Mm
A Ni 0.35 Mn 0.4 Al 0.3 Co 0.75 alloy (Mm: misch metal) was prepared. Aqueous metal fluoride solution 400 to which 0.025 W / V potassium hexafluoroaluminum has been added
20 g of each hydrogen storage alloy was put into a beaker containing ml, and after sufficiently stirring with a stirrer, the supernatant was removed and the particles precipitated at the bottom of the beaker were recovered. The recovered particles were filled in a reaction cell of the measurement system, and hydrogen activation was investigated by introducing hydrogen gas under the conditions shown in Table 1. As a result, as shown in FIGS. 21 to 23 and Table 1, the hydrogen storage reaction started at the same time as the introduction of the hydrogen gas, and the rapid activation occurred. Even after using the large-sized hydrogen reservoir, the pressure changed little, but it occluded hydrogen efficiently at room temperature in a short time.

【0021】 [0021]

【0022】試料No.1,2について、水素吸蔵反応の
経時変化をそれぞれ図21,22に示す。図21,22
から、従来350℃以上の高温でないと水素吸蔵反応を
生起しなかったMg2Ni合金であっても、金属フッ化
物水溶液を用いた活性化処理によって室温下で水素を十
分吸蔵できる活性状態に改質されていることが判る。試
料No.3に1回目の水素ガス印加をしたところ、図23
に示すように水素吸蔵反応が開始された。室温下で最初
に約10気圧を印加し,次いで15気圧,20気圧と変
化させ,各段階での圧力変化を経時的に観察した。ニッ
ケル/水素吸蔵合金二次電池の電極としての典型例であ
る。なお、本実施例で容積の大きなガス容器を使用した
ため、圧力変化を容易に観察できるように水素ガスの圧
力を高めたが、実際の印加圧は室温下10気圧程度で十
分であることが判る。
With respect to Samples Nos. 1 and 2, changes over time in the hydrogen storage reaction are shown in FIGS. 21 and 22
From the above, even if the Mg 2 Ni alloy, which has not conventionally caused a hydrogen storage reaction at a high temperature of 350 ° C. or higher, it is changed to an active state in which hydrogen can be sufficiently stored at room temperature by activation treatment using an aqueous solution of metal fluoride. You can see that it is quality. When hydrogen gas was applied for the first time to sample No. 3, FIG.
As shown in, the hydrogen storage reaction was started. At room temperature, about 10 atm was first applied, and then it was changed to 15 atm and 20 atm, and the pressure change at each stage was observed over time. It is a typical example as an electrode of a nickel / hydrogen storage alloy secondary battery. Since the gas container having a large volume was used in this example, the pressure of the hydrogen gas was increased so that the pressure change could be easily observed. However, it is found that the actual applied pressure is about 10 atm at room temperature. .

【0023】[0023]

【発明の効果】以上に説明したように、金属フッ化物水
溶液を用いて水素吸蔵合金を活性化処理すると、高温高
真空雰囲気下での脱気処理や多数回の活性化処理が不要
となり、活性化処理プロセス及び処理装置が簡略化さ
れ、量産化に適した水素吸蔵合金が得られる。その結
果、自動車用燃料タンク,蓄熱用貯蔵容器,ヒートポン
プ,冷凍機,大容量水素貯蔵・輸送容器,燃料電池用水
素貯蔵容器等への充填や充填後の活性化が極めて容易に
なる。しかも、金属フッ化物水溶液を用いた活性化処理
によると、金属水素化物の表面が保護されるため活性状
態を維持したままで大気中での処理が可能となる。その
ため、高圧容器によることなく、プラスチック容器,プ
ラスチックコーティングした紙製容器の利用も可能にな
る。更に、空気中で乾燥させた水素吸蔵合金粒子が水素
ガスに対してのみ活性を呈し、空気中の酸素を始めとす
る他のガスや水分に対しては反応しないことから、水素
の選択分離剤としても使用可能である。
As described above, when the hydrogen storage alloy is activated by using the aqueous solution of metal fluoride, the degassing treatment under the high temperature and high vacuum atmosphere and the activation treatment for many times become unnecessary, and the activation The chemical treatment process and the treatment apparatus are simplified, and a hydrogen storage alloy suitable for mass production can be obtained. As a result, it becomes extremely easy to fill a fuel tank for automobiles, a storage container for heat storage, a heat pump, a refrigerator, a large-capacity hydrogen storage / transport container, a hydrogen storage container for a fuel cell, or the like, and to activate after filling. Moreover, according to the activation treatment using the aqueous solution of metal fluoride, the surface of the metal hydride is protected, so that the treatment in the atmosphere can be performed while maintaining the active state. Therefore, it is possible to use a plastic container or a plastic-coated paper container instead of using a high-pressure container. Furthermore, since the hydrogen-absorbing alloy particles dried in the air are active only against hydrogen gas and do not react with other gases such as oxygen in the air and moisture, a selective separating agent for hydrogen It can also be used as

【図面の簡単な説明】[Brief description of drawings]

【図1】 金属フッ化物水溶液で処理していないLaN
4.7Al0.3試料をESCA分析することにより得られ
たLaのピークを示すグラフ
FIG. 1 LaN not treated with an aqueous metal fluoride solution
Graph showing La peaks obtained by ESCA analysis of i 4.7 Al 0.3 sample

【図2】 ESCA分析された同じLaNi4.7Al0.3
試料をエッチングした後で再度のESCA分析で得られ
たLaのピークを示すグラフ
FIG. 2: Same LaNi 4.7 Al 0.3 analyzed by ESCA.
Graph showing the peak of La obtained by ESCA analysis again after etching the sample

【図3】 金属フッ化物水溶液で処理していないLaN
4.7Al0.3試料をESCA分析することにより得られ
たNiのピークを示すグラフ
FIG. 3 LaN not treated with an aqueous metal fluoride solution
Graph showing Ni peaks obtained by ESCA analysis of i 4.7 Al 0.3 sample

【図4】 ESCA分析された同じLaNi4.7Al0.3
試料をエッチングした後で再度のESCA分析で得られ
たNiのピークを示すグラフ
Figure 4 Same LaNi 4.7 Al 0.3 analyzed by ESCA.
Graph showing the peak of Ni obtained by ESCA analysis again after etching the sample

【図5】 金属フッ化物水溶液で処理していないLaN
4.7Al0.3試料をESCA分析することにより得られ
たAlのピークを示すグラフ
FIG. 5: LaN not treated with aqueous metal fluoride solution
Graph showing Al peaks obtained by ESCA analysis of i 4.7 Al 0.3 sample

【図6】 ESCA分析された同じLaNi4.7Al0.3
試料をエッチングした後で再度のESCA分析で得られ
たAlのピークを示すグラフ
FIG. 6: Same LaNi 4.7 Al 0.3 analyzed by ESCA.
Graph showing Al peaks obtained by ESCA analysis again after etching the sample

【図7】 金属フッ化物水溶液で処理したLaNi4.7
Al0.3試料をESCA分析することにより得られたL
aのピークを示すグラフ
FIG. 7: LaNi 4.7 treated with metal fluoride aqueous solution
L obtained by ESCA analysis of Al 0.3 sample
Graph showing peak of a

【図8】 ESCA分析された同じLaNi4.7Al0.3
試料をエッチングした後で再度のESCA分析で得られ
たLaのピークを示すグラフ
FIG. 8: The same LaNi 4.7 Al 0.3 ESCA analyzed.
Graph showing the peak of La obtained by ESCA analysis again after etching the sample

【図9】 同じLaNi4.7Al0.3試料を更にエッチン
グした後で再度のESCA分析で得られたLaのピーク
を示すグラフ
FIG. 9 is a graph showing La peaks obtained by ESCA analysis again after the same LaNi 4.7 Al 0.3 sample was further etched.

【図10】 同じLaNi4.7Al0.3試料を一層エッチ
ングを継続した後で再度のESCA分析で得られたLa
のピークを示すグラフ
FIG. 10: La obtained by ESCA analysis again after continuing the etching of the same LaNi 4.7 Al 0.3 sample.
Graph showing the peak of

【図11】 金属フッ化物水溶液で処理したLaNi
4.7Al0.3試料をESCA分析することにより得られた
Niのピークを示すグラフ
FIG. 11: LaNi treated with an aqueous metal fluoride solution
4.7 Graph showing Ni peak obtained by ESCA analysis of 0.3 Al sample

【図12】 ESCA分析された同じLaNi4.7Al
0.3試料をエッチングした後で再度のESCA分析で得
られたNiのピークを示すグラフ
FIG. 12 Same LaNi 4.7 Al analyzed by ESCA
Graph showing Ni peaks obtained by ESCA analysis again after etching 0.3 samples

【図13】 同じLaNi4.7Al0.3試料を更にエッチ
ングした後で再度のESCA分析で得られたNiのピー
クを示すグラフ
FIG. 13 is a graph showing Ni peaks obtained by ESCA analysis again after further etching the same LaNi 4.7 Al 0.3 sample.

【図14】 同じLaNi4.7Al0.3試料を一層エッチ
ングを継続した後で再度のESCA分析で得られたNi
のピークを示すグラフ
FIG. 14: Ni obtained by ESCA analysis again after the same LaNi 4.7 Al 0.3 sample was further etched.
Graph showing the peak of

【図15】 金属フッ化物水溶液で処理したLaNi
4.7Al0.3試料をESCA分析することにより得られた
Alのピークを示すグラフ
FIG. 15: LaNi treated with an aqueous metal fluoride solution
4.7 Graph showing Al peaks obtained by ESCA analysis of 0.3 Al samples

【図16】 ESCA分析された同じLaNi4.7Al
0.3試料をエッチングした後で再度のESCA分析で得
られたAlのピークを示すグラフ
FIG. 16: Same LaNi 4.7 Al analyzed by ESCA
Graph showing Al peaks obtained by ESCA analysis again after etching 0.3 samples

【図17】 同じLaNi4.7Al0.3試料を更にエッチ
ングした後で再度のESCA分析で得られたAlのピー
クを示すグラフ
FIG. 17 is a graph showing Al peaks obtained by ESCA analysis again after further etching the same LaNi 4.7 Al 0.3 sample.

【図18】 同じLaNi4.7Al0.3試料を一層エッチ
ングを継続した後で再度のESCA分析で得られたAl
のピークを示すグラフ
FIG. 18: Al obtained by ESCA analysis again after the same LaNi 4.7 Al 0.3 sample was further etched.
Graph showing the peak of

【図19】 実施例1で使用した水素吸蔵合金の圧力−
組成−温度特性を示すグラフ
FIG. 19: Pressure of hydrogen storage alloy used in Example 1-
Graph showing composition-temperature characteristics

【図20】 実施例2の水素吸蔵合金が長期間外気に曝
露した後でも失活しないことを示すグラフ
FIG. 20 is a graph showing that the hydrogen storage alloy of Example 2 does not deactivate even after being exposed to the atmosphere for a long period of time.

【図21】 粒径0.075mm以下のMg2Ni合金
(実施例3)の初期活性化状況を示すグラフ
FIG. 21 is a graph showing a state of initial activation of a Mg 2 Ni alloy having a particle size of 0.075 mm or less (Example 3).

【図22】 粒径0.106〜0.075mm以下のMg
2Ni合金(実施例3)の初期活性化状況を示すグラフ
FIG. 22: Mg with a grain size of 0.106 to 0.075 mm or less
2 Graph showing initial activation status of Ni alloy (Example 3)

【図23】 MmNi0.35Mn0.4Al0.3Co0.75合金
(実施例3)の初期活性化状況を示すグラフ
FIG. 23 is a graph showing the initial activation status of MmNi 0.35 Mn 0.4 Al 0.3 Co 0.75 alloy (Example 3).

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 水素吸蔵合金を金属フッ化物の過飽和水
溶液で処理し、水素吸蔵合金の少なくとも表面又は表層
部を活性化することを特徴とする水素吸蔵合金の活性化
処理方法。
1. A hydrogen storage alloy is used as a supersaturated water of a metal fluoride.
Treated with a solution, at least the surface or surface layer of the hydrogen storage alloy
Activation of hydrogen storage alloys characterized by activating parts
Processing method.
【請求項2】 請求項1で活性化された水素吸蔵合金を
真空引きした後、水素ガスを導入することにより水素吸
蔵合金に水素を吸蔵させることを特徴とする水素吸蔵合
金の初期活性化処理方法。
2. A hydrogen storage alloy activated according to claim 1.
After vacuuming, hydrogen gas is introduced to absorb hydrogen.
Hydrogen storage alloy characterized by storing hydrogen in a storage alloy
Initial activation treatment method of gold.
【請求項3】 請求項2で水素を吸蔵させた水素吸蔵合
金を金属フッ化物の過飽和水溶液で処理し、毒性物質に
対して水素吸蔵合金の表面を不活性にすることを特徴と
する水素吸蔵合金の安定化処理方法。
3. A hydrogen storage mixture in which hydrogen is stored according to claim 2.
Treating gold with a supersaturated aqueous solution of metal fluoride to make it a toxic substance
In contrast, the surface of the hydrogen storage alloy is made inert.
Method for stabilizing hydrogen storage alloy.
JP19923192A 1991-07-01 1992-07-01 Activation, initial activation and stabilization of hydrogen storage alloy Expired - Fee Related JP3406615B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19923192A JP3406615B2 (en) 1991-07-01 1992-07-01 Activation, initial activation and stabilization of hydrogen storage alloy

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP3-186805 1991-07-01
JP18680591 1991-07-01
JP19923192A JP3406615B2 (en) 1991-07-01 1992-07-01 Activation, initial activation and stabilization of hydrogen storage alloy

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2002065382A Division JP3410463B2 (en) 1991-07-01 2002-03-11 Metal surface treatment method

Publications (2)

Publication Number Publication Date
JPH05213601A JPH05213601A (en) 1993-08-24
JP3406615B2 true JP3406615B2 (en) 2003-05-12

Family

ID=26503990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19923192A Expired - Fee Related JP3406615B2 (en) 1991-07-01 1992-07-01 Activation, initial activation and stabilization of hydrogen storage alloy

Country Status (1)

Country Link
JP (1) JP3406615B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5450721A (en) * 1992-08-04 1995-09-19 Ergenics, Inc. Exhaust gas preheating system
CA2266474C (en) 1996-09-26 2003-05-13 Toyota Jidosha Kabushiki Kaisha Hydrogen absorbing alloy powder and method of producing hydrogen absorbing alloy powder
JP3573925B2 (en) 1997-08-28 2004-10-06 三洋電機株式会社 Metal-hydride alkaline storage battery and method of manufacturing the same
JP2002317980A (en) * 2001-04-16 2002-10-31 Seijiro Suda Method and apparatus for generating clean humid air
JP4178143B2 (en) * 2004-07-21 2008-11-12 岩谷産業株式会社 Hydrogen separation membrane and method for producing the same
EP1995854B1 (en) 2006-03-16 2016-09-07 Panasonic Corporation Radial anisotropic magnet manufacturing method, permanent magnet motor using radial anisotropic magnet, iron core-equipped permanent magnet motor
JP5267800B2 (en) 2009-02-27 2013-08-21 ミネベア株式会社 Self-repairing rare earth-iron magnet
JP5344171B2 (en) 2009-09-29 2013-11-20 ミネベア株式会社 Anisotropic rare earth-iron resin magnet

Also Published As

Publication number Publication date
JPH05213601A (en) 1993-08-24

Similar Documents

Publication Publication Date Title
JP3406615B2 (en) Activation, initial activation and stabilization of hydrogen storage alloy
Adachi et al. The effect of hydrogen absorption on the electrical resistivities of LaNi5 and MmNi4. 5Mn0. 5 films (Mm misch metal)
US5007243A (en) Vessel for making high-purity fine particles of active metals
JP2631055B2 (en) Sorption method of residual gas by non-evaporable barium getter alloy
US5312606A (en) Process for the sorption of residual gas by means of a non-evaporated barium getter alloy
JP2006205029A (en) Hydrogen storage material and its production method
Percheron-Guégan et al. Preparation of intermetallics and hydrides
JP2627703B2 (en) Sorption method of residual gas, especially nitrogen gas by non-evaporable barium getter alloy
US8529673B2 (en) Safe gas sorbents with high sorption capacity on the basis of lithium alloys
EP1099665B1 (en) Highly activated hydrogen containing material and method for producing the material
Pal Synthesis, characterization and dehydriding behavior of the intermetallic compound LaMg12
US4247410A (en) Composition for dispensing in manner of aerosol, pressurizing catalyst useful therein, precursors thereof, and their preparation
Clark et al. Hydrogen absorption in the Zr Al system
JPS5938293B2 (en) Titanium-chromium-vanadium hydrogen storage alloy
JP2835327B2 (en) High activation and stabilization of hydrogen storage metal
JP3350691B2 (en) High activation and stabilization of hydrogen storage metal
JPS635321B2 (en)
Lee et al. Microstructures and hydrogenation properties of TiFel− xMχ alloys
KR20050005398A (en) Method for the production of protective coatings on the surface of chemically active materials
JP3319333B2 (en) Stabilization method of hydrogen storage alloy
TW464912B (en) Getter devices for calcium evaporation
Guthrie et al. The development of lightweight hydride alloys based on magnesium
WO2008032774A1 (en) Hydrogen storage material and method for manufacturing the same
EP0011660A1 (en) Activated silicon containing aluminium complex and method of preparation
RU2082249C1 (en) Sorption method for residual gas, including gaseous nitrogen by means of nonevaporated gas-absorbing barium alloy

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees