JP2820969B2 - Method for manufacturing positive electrode part in battery - Google Patents

Method for manufacturing positive electrode part in battery

Info

Publication number
JP2820969B2
JP2820969B2 JP1216144A JP21614489A JP2820969B2 JP 2820969 B2 JP2820969 B2 JP 2820969B2 JP 1216144 A JP1216144 A JP 1216144A JP 21614489 A JP21614489 A JP 21614489A JP 2820969 B2 JP2820969 B2 JP 2820969B2
Authority
JP
Japan
Prior art keywords
positive electrode
mixture
battery
current collector
electrode portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1216144A
Other languages
Japanese (ja)
Other versions
JPH0381955A (en
Inventor
浩平 山本
義久 日野
吉郎 原田
雄三 田中
Original Assignee
富士電気化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電気化学株式会社 filed Critical 富士電気化学株式会社
Priority to JP1216144A priority Critical patent/JP2820969B2/en
Publication of JPH0381955A publication Critical patent/JPH0381955A/en
Application granted granted Critical
Publication of JP2820969B2 publication Critical patent/JP2820969B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Primary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 《産業上の利用分野》 この発明はスパイラル形非水電解液電池などに用いら
れる正極部の製造方法に関し、特に、正極集電体として
軽量且つ電気伝導性の高いアルミニウム箔板を用いた正
極部の製造方法に関するものである。
Description: TECHNICAL FIELD The present invention relates to a method for manufacturing a positive electrode portion used for a spiral-type nonaqueous electrolyte battery or the like, and particularly to a lightweight and highly conductive aluminum as a positive electrode current collector The present invention relates to a method for manufacturing a positive electrode portion using a foil plate.

《従来の技術》 スパイラル形非水電解液電池における正極部は、一般
に以下のようにして作られる。
<< Conventional Technology >> A positive electrode portion in a spiral-type nonaqueous electrolyte battery is generally produced as follows.

正極活物質に導電剤として黒鉛もしくはアセチレンブ
ラックを混合し、この混合物にバインダとしてポリビニ
ルブチラールを、また、可塑剤としてフタル酸ジブチル
および溶剤としてアルコールを加え、混練する。
Graphite or acetylene black is mixed with the positive electrode active material as a conductive agent, and polyvinyl butyral as a binder, dibutyl phthalate as a plasticizer, and alcohol as a solvent are added to the mixture, and kneaded.

その後、押出成形機によって前記混練物の内部に集電
体を挾んだ状態で押し出して一体成形する。
After that, the extruder extrudes the kneaded product into the kneaded product with the current collector sandwiched therebetween, and is integrally formed.

その後乾燥器で300℃まで段階的に昇温し、前記ポリ
ビニルブチラール、フタル酸ジブチルを熱分解させる。
Thereafter, the temperature is gradually increased to 300 ° C. in a drier to thermally decompose the polyvinyl butyral and dibutyl phthalate.

最終的にローラもしくはプレス機によって圧延,圧着
を行い、シート状の正極部を得る。
Finally, rolling and pressure bonding are performed by a roller or a press to obtain a sheet-shaped positive electrode portion.

以上の製造方法によって得られた正極部に用いる集電
体の材質は、チタンまたはステンレス鋼材などが一般的
であるが、通常の電池では問題は生じないものの、正極
部の厚みを薄くして同一容積で正極面積を大きくとり、
反応面積を増そうとする場合には次の問題があった。
The material of the current collector used for the positive electrode portion obtained by the above manufacturing method is generally titanium or stainless steel material, etc., but although there is no problem in a normal battery, the thickness of the positive electrode portion is reduced and the same. Increase the positive electrode area by volume,
There were the following problems when trying to increase the reaction area.

《発明が解決しようとする課題》 平板状のチタンまたはステンレス鋼材は、正極合剤に
対する付着姓が弱く、また展延性にも乏しい。したがっ
て、平板のまま正極合剤中に一体に挟込んで圧延圧着を
行うと、正極合剤のみが圧延方向に伸ばされながら密度
を高めるが、前記材質の集電体は展延性に乏しいため
に、正極合剤との間で層間剥離を生じ、集電体との一体
化ができなかった。
<< Problems to be Solved by the Invention >> A plate-like titanium or stainless steel material has a weak adhesion to the positive electrode mixture and has poor spreadability. Therefore, when pressed and rolled while integrally sandwiched in the positive electrode mixture as a flat plate, only the positive electrode mixture is stretched in the rolling direction while increasing the density, but since the current collector of the above material has poor spreadability, In addition, delamination occurred with the positive electrode mixture, and integration with the current collector could not be performed.

このため、従来では集電体としてパンチドメタル或い
はエキスパンドメタルを用いて、これらの開孔部を用
い、これによる物理的食い付きによる接着効果を利用し
て一体化するようにしていた。
For this reason, conventionally, a punched metal or an expanded metal has been used as a current collector, these openings have been used, and the current collector has been integrated by utilizing an adhesive effect by physical biting.

しかし、集電体の形状をこのような形態にした場合に
は、押出し圧力に耐えるだけの引っ張り強度を保つため
に、通常少なくとも50μm程度以上の板厚を必要として
いた。そのため、前記正極合剤を押出成形する場合に
は、成形体の厚みを薄くすることに一定の限界があっ
た。
However, when the current collector is formed in such a form, a plate thickness of at least about 50 μm or more is usually required in order to maintain a tensile strength enough to withstand the extrusion pressure. Therefore, when extruding the positive electrode mixture, there is a certain limit in reducing the thickness of the molded body.

特にパンチドメタルの場合には、板にあけられた孔の
ために、引っ張り強度は原板より低下するため、厚みを
あまり薄くできなかった。
In particular, in the case of punched metal, since the tensile strength is lower than that of the original plate due to the holes formed in the plate, the thickness cannot be reduced much.

さらに、エキスパンドメタルの場合には、引っ張り強
度は、その構造上、原板より著しく弱められ、且つ、端
部の変形が容易に発生し、正極合剤の表面に集電体が露
出する可能性もあって、内部短絡の原因となりやすいな
どの欠点があった。
Furthermore, in the case of expanded metal, the tensile strength is significantly weaker than that of the original plate due to its structure, and the end portion is easily deformed, and the current collector may be exposed on the surface of the positive electrode mixture. Therefore, there are drawbacks such as an internal short circuit.

そこでこの発明では、集電体を展延性に富むアルミニ
ウム箔板とし、かつ正極合剤の組成をアルミ箔板に付着
性のある組成とすることで、以上の問題の解決を図った
電池における正極部の製造方法を提供することを目的と
する。
Thus, in the present invention, the current collector is made of a highly extensible aluminum foil plate, and the composition of the positive electrode mixture is made to have a composition that is adherent to the aluminum foil plate. It is an object of the present invention to provide a method of manufacturing a part.

《課題を解決するための手段》 前記目的を達成するため、この発明の正極部の製造方
法は以下の工程からなっている。
<< Means for Solving the Problems >> In order to achieve the above object, a method for producing a positive electrode portion of the present invention comprises the following steps.

導電剤として黒鉛単体またはこれとアセチレンブラッ
クとの混合物を正極活物質100部に対して2部以上,15部
以下を添加混合し、これらの混合物にバインダ,可塑剤
および溶剤とを加えて押出し成形で成形する工程: 前記混合物中のバインダおよび可塑剤を熱分解して正
極合剤とする乾燥工程: 前記正極合剤を厚さ50μm以下のアルミニウム箔板か
らなる正極集電体に圧着させる工程。
Add 2 to 15 parts of graphite alone or a mixture of acetylene black as a conductive agent to 100 parts of the positive electrode active material, mix and add a binder, a plasticizer and a solvent to the mixture, and extrude the mixture. A drying step of thermally decomposing the binder and the plasticizer in the mixture to form a positive electrode mixture: a step of pressing the positive electrode mixture to a positive electrode current collector made of an aluminum foil plate having a thickness of 50 μm or less.

からなっている。Consists of

次により詳しい構成および工程を説明する。 Next, a more detailed configuration and steps will be described.

前記正極活物質としては、五酸化バナジウムV2O5など
が用いられ、これの100部に対して導電剤2部以上15部
以下が混合される。
As the positive electrode active material, vanadium pentoxide V 2 O 5 or the like is used, and 2 to 15 parts of a conductive agent is mixed with 100 parts of the mixture.

なお、導電剤として黒鉛単体のみを使用した場合に
は、前記アルミニウム箔板との付着性は良好である。
When only graphite alone is used as the conductive agent, the adhesion to the aluminum foil plate is good.

しかしながら、黒鉛単体のみでは正極合剤中の電導度
が低下し、また保液性も低下するため、内負部抵抗上昇
の原因となる。
However, the use of only graphite alone lowers the electrical conductivity in the positive electrode mixture and lowers the liquid retention, which causes an increase in the internal negative resistance.

この場合は、請求項2に記載の範囲内、すなわち、ア
セチレンブラックの組成比が10%以上,70%以下の範囲
で黒鉛と混合することによって電導度の低下を防ぎ、保
液性の向上を図ることができる。
In this case, a decrease in conductivity is prevented by mixing with graphite within the range described in claim 2, that is, a composition ratio of acetylene black of 10% or more and 70% or less, thereby improving the liquid retaining property. Can be planned.

なお、70%を越えてアセチレンブラックを混合した場
合には、アルミニウム箔板との付着性が低下し、集電効
率の低下及び局部的に電流が集中しデンドライトの発生
原因となるため、以上の範囲内の混合比とすることが必
要である。
If acetylene black is mixed in an amount exceeding 70%, the adhesion to the aluminum foil plate is reduced, the current collection efficiency is reduced, and the current is locally concentrated to cause dendrite. It is necessary to set the mixing ratio within the range.

前記バインダとしては、ポリビニルブチラールとテフ
ロンディスパージョンの任意の組成のものが用いられ
る。
As the binder, an arbitrary composition of polyvinyl butyral and Teflon dispersion is used.

前記可塑剤としては、一般的なフタル酸ジブチルが用
いられる。
As the plasticizer, general dibutyl phthalate is used.

さらに溶剤としては通常用いられているアルコールな
どが好適である。
Further, as the solvent, a commonly used alcohol or the like is preferable.

以上の正極合剤,導電剤、少量のバインダ,可塑剤お
よび溶剤は適宜混合され、押出し成形によってシート状
に成形される。
The positive electrode mixture, the conductive agent, a small amount of the binder, the plasticizer and the solvent are appropriately mixed and formed into a sheet by extrusion.

次いで、乾燥工程において段階的に昇温させることで
溶剤,バインダおよび可塑剤は効果的に熱分解され、シ
ート状の正極合剤が完成する。
Next, by gradually increasing the temperature in the drying step, the solvent, the binder, and the plasticizer are effectively thermally decomposed, and a sheet-shaped positive electrode mixture is completed.

そして、このシート状の正極合剤の完成後、アルミニ
ウム箔板からなる正極集電体に圧着される。この具体的
方法は、二枚のシート状正極合剤の間にアルミニウム箔
板を挾み、ロールまたはプレス機械によって圧延圧着
し、同時に合剤密度をも高める。
After the completion of the sheet-shaped positive electrode mixture, the sheet-shaped positive electrode mixture is pressure-bonded to a positive electrode current collector made of an aluminum foil plate. In this specific method, an aluminum foil plate is sandwiched between two sheet-shaped positive electrode mixtures and roll-pressed with a roll or a press machine, and at the same time, the density of the mixture is increased.

この圧着工程に用いられるアルミニウム箔板の厚みが
50μmを上回った場合には、圧着工程における展性が低
下し、正極合剤に対する付着性が低下する。
The thickness of the aluminum foil plate used in this crimping process
If it exceeds 50 μm, the malleability in the pressure bonding step will decrease, and the adhesion to the positive electrode mixture will decrease.

したがって、その厚みは請求の範囲に示すごとく50μ
m以下が望ましい。
Therefore, its thickness is 50μ as shown in the claims.
m or less is desirable.

第1図は、以上の工程を経て作られた正極部1を示し
ている。
FIG. 1 shows a positive electrode section 1 produced through the above steps.

正極部1は、二次の正極合剤2の間に前述のアルミニ
ウム箔板からなる集電体3がサンドイッチされた状態で
圧着されている。この正極部の厚みは0.25mm〜0.35mm程
度になり、従来よりもその下限値を大巾に下回ってい
る。また、集電体3の端部には予めリボン状の正極リー
ド板4がスポット溶接によって接続され、正極部1の一
端部上縁に突出している。
The positive electrode portion 1 is pressed in a state where the current collector 3 made of the above-described aluminum foil plate is sandwiched between the secondary positive electrode mixtures 2. The thickness of the positive electrode portion is about 0.25 mm to 0.35 mm, which is much lower than the lower limit than before. A ribbon-shaped positive electrode lead plate 4 is previously connected to an end of the current collector 3 by spot welding, and protrudes from an upper edge of one end of the positive electrode 1.

正極部1が完成した後に、これにセパレータ5を介し
てシート状のリチウム負極6が積層され、スパイラル状
に巻回される。
After the positive electrode portion 1 is completed, a sheet-shaped lithium negative electrode 6 is laminated on the positive electrode portion 1 with a separator 5 interposed therebetween, and spirally wound.

そして、この巻回したものを第2図に示すように負極
端子部を兼用した電池ケース7の内部に収納し、非水電
解液8を満たした後、前記正極リード板4と接続した正
極端子板9を封口ガスケット10を介して電池ケース7の
開口に配置し、周縁をカシメ付けて塞ぐことにより、ス
パイラル形リチウム電池が完成する。
Then, as shown in FIG. 2, this wound product is housed in a battery case 7 also serving as a negative electrode terminal portion, filled with a non-aqueous electrolyte solution 8, and then connected to the positive electrode lead plate 4. The spiral-type lithium battery is completed by disposing the plate 9 at the opening of the battery case 7 via the sealing gasket 10 and closing the periphery by caulking.

《作 用》 以上の製造方法によれば、平板状の薄いアルミニウム
箔板を用いることによって、圧着工程において正極合剤
とともに圧延され、剥離およびこれによるデンドライト
の発生を防止しつつ従来よりも厚みを大巾に薄くした正
極部の製造が可能となる。
<< Operation >> According to the above manufacturing method, by using a flat aluminum foil plate, it is rolled together with the positive electrode mixture in the pressure bonding step, and the thickness is reduced as compared with the conventional method while preventing peeling and the generation of dendrite due to this. It is possible to manufacture a positive electrode portion that is greatly thinned.

《発明の効果》 以上のようにこの発明の正極部の製造方法にあって
は、正極部の厚みを薄くすることが可能となり、同一容
量の電池において正極部の表面積を大きくすることがで
きるため、充・放電サイクル数を大巾に向上できる。
<< Effect of the Invention >> As described above, in the method for manufacturing a positive electrode portion of the present invention, the thickness of the positive electrode portion can be reduced, and the surface area of the positive electrode portion can be increased in a battery having the same capacity. The number of charge / discharge cycles can be greatly improved.

《実 施 例》 以下この発明の具体的実施例を説明する。<< Examples >> Specific examples of the present invention will be described below.

但し、この発明は以下の実施例のみに限定されるもの
ではない。
However, the present invention is not limited to only the following embodiments.

C6H形電池の製作を意図して、以下の組成で正極合剤
を作成した。
A positive electrode mixture was prepared with the following composition for the purpose of manufacturing a C6H type battery.

以上の組成比のものを混練し、シート状に成形した後
乾燥器により、順次300℃まで昇温して組成物中の溶
剤,バインダおよび可塑剤を熱分解させ、厚さ0.20〜0.
30mmのシート状正極合剤を作成し、次いで二枚の正極合
剤の間に端部に正極リード板をスポット溶接した厚さ20
μmmのアルミニウム箔板を介在した状態でプレス圧力を
加え、圧延圧着して、厚さ0.35mm,および幅40mm,長さ29
0mmの正極部を得た。
After kneading those having the above composition ratios, forming them into a sheet, and then sequentially heating them to 300 ° C. by a dryer to thermally decompose the solvent, the binder and the plasticizer in the composition to a thickness of 0.20 to 0.20.
A 30 mm sheet-shaped positive electrode mixture was prepared, and then a positive electrode lead plate was spot-welded to the end between the two positive electrode mixtures to a thickness of 20 mm.
Pressing pressure is applied with the aluminum foil plate of μmm interposed, roll-pressed, thickness 0.35mm, width 40mm, length 29
A positive electrode part of 0 mm was obtained.

次に厚さ0.08mm,幅40mm,長さ310mmのリチウム負極
を、厚さ0.025mm,幅43mm長さ330ないし350mmのセパレー
タを介して積層し、スパイラル状に巻回し、これを外径
14.5mm高さ50.5mmの電池ケース内に収装し、非水電解液
を満たした状態で各部の接続および端子板で蓋をして電
池を完成した。
Next, a lithium negative electrode having a thickness of 0.08 mm, a width of 40 mm, and a length of 310 mm is laminated through a separator having a thickness of 0.025 mm, a width of 43 mm, and a length of 330 to 350 mm, and wound in a spiral shape.
The battery was housed in a battery case having a height of 14.5 mm and a height of 50.5 mm, and was filled with a non-aqueous electrolyte solution, and connections were made to each part and a terminal plate was closed to complete the battery.

なお、前記電解液は、LiAsF6(1mol):PC+DO(1:1)
の組成のものを使用した。
The electrolyte was LiAsF 6 (1 mol): PC + DO (1: 1)
The composition of the following was used.

次に以上のようにして製作されたC6H形電池と従来の
同一規格の電池との充・放電サイクル数を測定したとこ
ろ、以下の表1に示す結果を得られた。
Next, the number of charge / discharge cycles of the C6H type battery manufactured as described above and a conventional battery of the same standard was measured, and the results shown in Table 1 below were obtained.

サイクル条件: 200mAの定電流による終止電圧2.0Vまでの放電を行っ
た後、3.8V終止電圧で100mAの充電を行い、これを1サ
イクルとしてサイクル試験を行った。尚サイクル寿命
は、初期容量の50%に低下した時点とした。
Cycle conditions: After discharging to a final voltage of 2.0 V with a constant current of 200 mA, charging was performed at 100 mA at a final voltage of 3.8 V, and a cycle test was performed using this as one cycle. The cycle life was set at the time when the capacity decreased to 50% of the initial capacity.

*なお、比較例に用いた電池の正極部用の集電体は、チ
タン製のパンチドメタル(厚さ50μm)を使用した。こ
の場合の正極部の寸法は、厚さ0.45mm,幅40mm,長さ250m
mとなっていた。
* In addition, the punched metal (50 micrometers in thickness) made from titanium was used for the collector for the positive electrode part of the battery used in the comparative example. In this case, the dimensions of the positive electrode were 0.45 mm thick, 40 mm wide, and 250 m long.
m.

以上の表1からも明らかなように、本発明に係る電池
によれば、正極部の厚みが薄くなり、面積が増加した分
だけ、充・放電特性が向上することが確認された。
As is clear from Table 1 above, according to the battery according to the present invention, it was confirmed that the thickness of the positive electrode portion was reduced and the charge / discharge characteristics were improved by the increased area.

次に正極活物質に対する導電剤の組成比と製品歩留ま
りとの関係を調べたところ以下の表2に示す結果が得ら
れた。
Next, the relationship between the composition ratio of the conductive agent to the positive electrode active material and the product yield was examined, and the results shown in Table 2 below were obtained.

この表2に示す結果から、製品歩留まりを90%以上確
保するためには、正極活物水100部に対して2部ないし1
5部の範囲が好適であり、特に8部が最も良い歩留まり
となることが示されている。
From the results shown in Table 2, in order to ensure a product yield of 90% or more, it is necessary to use 2 to 1 part per 100 parts of the positive electrode active water.
A range of 5 parts has been shown to be suitable, especially 8 parts giving the best yield.

次に導電剤中の黒鉛に対するアセチレンブラックの比
率に対する歩留まりを調べたところ以下の表3に示す結
果が得られた。
Next, when the yield with respect to the ratio of acetylene black to graphite in the conductive agent was examined, the results shown in Table 3 below were obtained.

なお、導電剤全体としては正極活物質に対する上限値
である15部が混合されている。
In addition, 15 parts which is the upper limit value for the positive electrode active material is mixed in the entire conductive agent.

この表に示す結果から、アセチレンブラックの比率が
10〜70%の90%以上の歩留まりを得ることが確認され、
特に50%の場合には最高の歩留まりとなることが確認さ
れている。
From the results shown in this table, the ratio of acetylene black
It is confirmed that the yield of 90% or more of 10-70% is obtained,
In particular, it has been confirmed that the highest yield is obtained at 50%.

【図面の簡単な説明】[Brief description of the drawings]

第1図はこの発明に係る正極部およびこれに積層される
セパレータ,リチウム負極を示す説明図、第2図は同正
極部を用いて製造されたスパイラル形リチウム電池の断
面図である。 1……正極部 2……正極合剤 3……集電体 5……セパレータ 6……リチウム負極 7……電池ケース 8……非水電解液 9……正極端子板 10……封口ガスケット
FIG. 1 is an explanatory view showing a positive electrode portion according to the present invention, a separator and a lithium negative electrode laminated thereon, and FIG. 2 is a cross-sectional view of a spiral lithium battery manufactured using the positive electrode portion. DESCRIPTION OF SYMBOLS 1 ... Positive electrode part 2 ... Positive electrode mixture 3 ... Current collector 5 ... Separator 6 ... Lithium negative electrode 7 ... Battery case 8 ... Non-aqueous electrolyte 9 ... Positive electrode terminal plate 10 ... Sealing gasket

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田中 雄三 東京都港区新橋5丁目36番11号 富士電 気化学株式会社内 (56)参考文献 特開 昭60−253157(JP,A) 特開 昭61−294763(JP,A) 特開 昭59−117060(JP,A) 特開 平3−222257(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01M 4/00 - 10/04────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Yuzo Tanaka 5-36-11 Shimbashi, Minato-ku, Tokyo Inside Fuji Electric Chemical Co., Ltd. (56) References JP-A-60-253157 (JP, A) JP-A JP-A-61-294763 (JP, A) JP-A-59-117060 (JP, A) JP-A-3-222257 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) H01M 4 / 00-10/04

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】正極合剤とこれに一体化した集電体とによ
り構成される正極部と、この正極部にセパレータを介し
て一体的に積層されたリチウム負極および非水電解液か
らなる電池において: 前記正極部は、以下の工程により製造されていることを
特徴とする電池における正極部の製造方法。 導電剤として黒鉛単体またはこれとアセチレンブラッ
クとの混合物を正極活物質100部に対して2部以上,15部
以下を添加混合し、これらの混合物にバインダ,可塑剤
および溶剤とを加えて押出し成形で成形する工程: 前記混合物中のバインダおよび可塑剤を熱分解して正
極合剤とする乾燥工程: 前記正極合剤を厚さ50μm以下のアルミニウム箔板か
らなる正極集電体に圧着させる工程。
1. A battery comprising: a positive electrode portion composed of a positive electrode mixture and a current collector integrated therewith; a lithium negative electrode and a non-aqueous electrolyte integrally laminated on the positive electrode portion with a separator interposed therebetween. In the method described above, the positive electrode portion is manufactured by the following steps. Add 2 to 15 parts of graphite alone or a mixture of acetylene black as a conductive agent to 100 parts of the positive electrode active material, mix and add a binder, a plasticizer and a solvent to the mixture, and extrude. A drying step of thermally decomposing the binder and the plasticizer in the mixture to form a positive electrode mixture: a step of pressing the positive electrode mixture to a positive electrode current collector made of an aluminum foil plate having a thickness of 50 μm or less.
【請求項2】前記導電剤が黒鉛とアセチレンブラックと
の混合物である場合に、前記混合物中に占めるアセチレ
ンブラックの組成比が10%以上,70%以下であることを
特徴とする請求項1記載の電池における正極部の製造方
法。
2. The composition according to claim 1, wherein when the conductive agent is a mixture of graphite and acetylene black, the composition ratio of acetylene black in the mixture is 10% or more and 70% or less. A method for producing a positive electrode part in a battery of the present invention.
JP1216144A 1989-08-24 1989-08-24 Method for manufacturing positive electrode part in battery Expired - Lifetime JP2820969B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1216144A JP2820969B2 (en) 1989-08-24 1989-08-24 Method for manufacturing positive electrode part in battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1216144A JP2820969B2 (en) 1989-08-24 1989-08-24 Method for manufacturing positive electrode part in battery

Publications (2)

Publication Number Publication Date
JPH0381955A JPH0381955A (en) 1991-04-08
JP2820969B2 true JP2820969B2 (en) 1998-11-05

Family

ID=16683966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1216144A Expired - Lifetime JP2820969B2 (en) 1989-08-24 1989-08-24 Method for manufacturing positive electrode part in battery

Country Status (1)

Country Link
JP (1) JP2820969B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59117060A (en) * 1982-12-22 1984-07-06 Matsushita Electric Ind Co Ltd Production method of flat cell
JPS60253157A (en) * 1984-05-28 1985-12-13 Asahi Chem Ind Co Ltd Nonaqueous secondary battery
JPS61294763A (en) * 1985-06-24 1986-12-25 Shin Kobe Electric Mach Co Ltd Lithium battery

Also Published As

Publication number Publication date
JPH0381955A (en) 1991-04-08

Similar Documents

Publication Publication Date Title
CN1331259C (en) Method for producing electrode sheet of electrochemical elements
JP2000123873A (en) Solid electrolyte battery
WO2002071529A1 (en) Nonaqueous electrolyte secondary battery and its producing method
JP2008010253A (en) Electrode for lithium secondary battery, manufacturing method therefor, and the lithium secondary battery
JP2002117841A (en) Nonaqueous electrolyte secondary battery
JP2001266941A (en) Manufacturing method of gel electrolyte battery
JPH09134726A (en) Collector of electrochemical element, and manufacture of electrochemical element and collector of electrochemical element
JP2000251938A (en) Manufacture of all solid lithium battery
JP3508455B2 (en) Negative electrode plate for lithium ion battery and method for producing the same
US5429894A (en) Silver-iron battery
JP2820969B2 (en) Method for manufacturing positive electrode part in battery
JP2000149905A (en) Solid electrolyte battery
JP3168783B2 (en) Negative electrode plate for non-aqueous electrolyte secondary battery and method for producing the same
JPH07105970A (en) Non-aqueous secondary battery and its manufacture
JPH0738304B2 (en) Method for manufacturing sheet electrode
JPH1154135A (en) Organic electrolyte battery
JP2808610B2 (en) Manufacturing method of lithium secondary battery
KR100362286B1 (en) Method for Manufacturing pole plate of Lithium Secondry Battery
JP4975901B2 (en) Battery electrode plate and battery
JPH11288723A (en) Current collector for electrochemical element
JP3418940B2 (en) Method for producing negative electrode current collector for zinc alkaline battery
JP3697812B2 (en) Method for manufacturing lithium secondary battery
JPH07296821A (en) Thin battery and its manufacture
US6171724B1 (en) Battery electrodes, batteries, and methods of forming batteries and battery electrodes
JPH11354130A (en) Manufacture of air battery positive electrode

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080828

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090828

Year of fee payment: 11

EXPY Cancellation because of completion of term