JP2818983B2 - Method for producing birefringent film - Google Patents

Method for producing birefringent film

Info

Publication number
JP2818983B2
JP2818983B2 JP3304046A JP30404691A JP2818983B2 JP 2818983 B2 JP2818983 B2 JP 2818983B2 JP 3304046 A JP3304046 A JP 3304046A JP 30404691 A JP30404691 A JP 30404691A JP 2818983 B2 JP2818983 B2 JP 2818983B2
Authority
JP
Japan
Prior art keywords
film
birefringent
stretching
stretched
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3304046A
Other languages
Japanese (ja)
Other versions
JPH05157911A (en
Inventor
裕之 吉見
辰樹 長塚
保夫 藤村
達也 大須賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP3304046A priority Critical patent/JP2818983B2/en
Publication of JPH05157911A publication Critical patent/JPH05157911A/en
Application granted granted Critical
Publication of JP2818983B2 publication Critical patent/JP2818983B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、複屈折の補償に好適な
複屈折性フィルムの製造方法に関する。
The present invention relates to relates to the production how suitable birefringent-fill beam to compensate for birefringence.

【0002】[0002]

【従来の技術】パーソナルコンピュータやワードプロセ
ッサ等の種々の画面表示にSTN型等の複屈折性を利用
した高コントラストな液晶表示装置が使用されている。
かかる液晶表示装置では偏光板を介して直線偏光とした
入射光が液晶セルによる複屈折で楕円偏光となり、それ
を偏光板を介して見た場合にディスプレイが黄色ないし
青色系統に着色する問題がある。そのため、液晶セル透
過後の楕円偏光を直線偏光に戻して着色を防止すべく、
液晶セルの複屈折による位相差を補償する手段として、
液晶セルと偏光板の間に延伸フィルムからなる位相差板
を介在させるFTN方式が提案されている。
2. Description of the Related Art High contrast liquid crystal display devices utilizing birefringence such as STN type are used for various screen displays such as personal computers and word processors.
In such a liquid crystal display device, there is a problem that incident light that has been converted into linearly polarized light through a polarizing plate becomes elliptically polarized light due to birefringence by a liquid crystal cell, and the display is colored yellow or blue when viewed through the polarizing plate. . Therefore, in order to return the elliptically polarized light after passing through the liquid crystal cell to linearly polarized light to prevent coloring,
As a means to compensate for the phase difference due to birefringence of the liquid crystal cell,
An FTN system in which a retardation film made of a stretched film is interposed between a liquid crystal cell and a polarizing plate has been proposed.

【0003】しかし、前記FTN方式における位相差板
として、普通の延伸フィルムを用いたのでは、視点を若
干変えるだけで再び着色表示が現れるなど、白黒表示と
して見ることができる視野角が狭く、また良好なコント
ラスで見ることができる視野角も狭くて視認性に劣るこ
とが判明し、視野角の向上をはかりうる、厚さ方向の屈
折率を制御した位相差板が提案されている(特開平2−
47629号公報、特開平2−160204号公報)。
However, when a normal stretched film is used as the retardation plate in the FTN method, a viewing angle that can be viewed as a black and white display is narrow, for example, a colored display appears again by slightly changing the viewpoint, and a viewing angle is narrow. It has been found that the viewing angle that can be viewed with a good contrast is narrow and the visibility is inferior, and a retardation plate with a controlled refractive index in the thickness direction that can improve the viewing angle has been proposed (Japanese Patent Application Laid-Open (JP-A) No) 2-
No. 47629, JP-A-2-160204).

【0004】しかしながら、前記の特開平2−4762
9号公報に関る位相差板は、延伸方向に屈折率が減少す
る負の複屈折特性を示す樹脂からなるフィルムを一軸延
伸したものであり、かかる特性を示す樹脂の種類が少な
くて、ガラス等との反射損などを抑制するために屈折率
を選択する場合にその幅が大きく制約される問題点、ま
た延伸処理によりもたせうる各方向における屈折率の差
が小さい問題点があった。
However, the above-mentioned Japanese Patent Application Laid-Open No. 2-4762
The retardation plate according to Japanese Patent Publication No. 9 is obtained by uniaxially stretching a film made of a resin having a negative birefringence property in which the refractive index decreases in the stretching direction. When the refractive index is selected in order to suppress the reflection loss and the like, there is a problem that the width is greatly restricted and a problem that the difference in the refractive index in each direction that can be provided by the stretching process is small.

【0005】一方、前記の特開平2−160204号公
報に関る位相差板は、押出成形ロッドをスライスして得
た、厚さ方向に分子配向した板を延伸処理したもので、
その製造効率に劣る問題点があった。また、ハイビジョ
ンテレビ等の大液晶画面などに適用できる大判体を得る
ことが困難な問題点があった。
On the other hand, the retardation plate according to Japanese Patent Application Laid-Open No. 2-160204 is obtained by stretching a plate obtained by slicing an extruded rod and having a molecular orientation in the thickness direction.
There is a problem that the manufacturing efficiency is inferior. Further, there is a problem that it is difficult to obtain a large-sized body applicable to a large liquid crystal screen of a high-definition television or the like.

【0006】[0006]

【発明が解決しようとする課題】本発明は、種々の樹脂
を用いて大判体も容易に製造でき、各方向における屈折
率差が大きくて、しかも種々の屈折率を有し、広い視角
範囲で補償できる位相差板、ないし楕円偏光板、及び視
認性に優れる液晶表示装置を得ることができる複屈折性
フィルムの製造方法の開発を課題とする。
[SUMMARY OF THE INVENTION The present invention can be easily manufactured even large-sized body by using various resins, the large refractive index difference in each direction, yet have a different refractive index, has a wide viewing angle range Retardation plate or elliptically polarizing plate that can be compensated for by the above, and birefringence that can obtain a liquid crystal display device with excellent visibility
The task is to develop a method for producing films .

【0007】[0007]

【課題を解決するための手段】本発明は、樹脂フィルム
を延伸処理する際に、その樹脂フィルムの片面又は両面
に収縮性フィルムを接着して積層体を形成し、その積層
体を加熱延伸処理して前記樹脂フィルムの延伸方向と直
交する方向の収縮力を付与することを特徴とする複屈折
性フィルムの製造方法を提供するものである。
According to the present invention, when a resin film is stretched, a shrinkable film is adhered to one or both surfaces of the resin film to form a laminate, and the laminate is heated and stretched. is to provide a manufacturing how the birefringent film, which comprises to impart the direction of the contraction force perpendicular to the stretching direction of the resin film.

【0008】 また本発明は、フィルムの平面方向に配
向した分子群と、厚さ方向に配向した分子群が混在して
なる複屈折性フィルムの製造方法を提供するものであ
る。
[0008] The present invention also relates to a film arrangement in a plane direction of a film.
Oriented molecules and molecules oriented in the thickness direction
A method for producing a birefringent film.

【0009】 さらに本発明は、板平面の直交軸方向と
板の厚さ方向における屈折率をそれぞれn 、n 、n
とした場合に、n >n として0<(n −n
/(n −n )<1である位相差板を得るための複屈
折性フィルムの製造方法を提供するものである。
Further, the present invention relates to
The refractive index in the thickness direction of the plate, respectively n x, n y, n
when the z, 0 as n x> n y <(n x -n z)
/ (N x -n y) <Fuku屈for obtaining a phase difference plate 1
An object of the present invention is to provide a method for producing a foldable film .

【0010】[0010]

【作用】樹脂フィルムの延伸時にその片面又は両面に収
縮性フィルムを接着して積層体を形成し、その積層体を
加熱延伸処理して樹脂フィルムに延伸方向と直交する方
向の収縮力を付与することにより、延伸方向と厚さ方向
にそれぞれ配向した分子群が混在する複屈折性フィルム
を得ることができ、その厚さ方向の分子配向でnx>ny
で0<(nx−nz)/(nx−ny)<1を満足する位相
差板が得られる。かかる位相差板は、位相差の視角によ
る変化が小さく、これを複屈折性の液晶セルに適用して
コントラストや白黒表示域等の視認性を向上させること
ができる。
When a resin film is stretched, a shrinkable film is adhered to one or both sides of the resin film to form a laminate, and the laminate is heated and stretched to apply a shrinkage force in a direction perpendicular to the stretching direction to the resin film. by birefringent film molecular groups oriented respectively in the stretch direction and thickness direction are mixed can be obtained, n x> n y in the molecular orientation of the thickness direction
In 0 <(n x -n z) / (n x -n y) < retardation plate satisfying the relation 1 is obtained. Such a retardation plate has a small change in retardation due to a viewing angle, and can be applied to a birefringent liquid crystal cell to improve the contrast and the visibility of a monochrome display area.

【0011】[0011]

【実施例】本発明の製造方法は、樹脂フィルムを延伸処
理する際に、その樹脂フィルムの片面又は両面に収縮性
フィルムを接着して積層体を形成し、その積層体を加熱
延伸処理して前記樹脂フィルムの延伸方向と直交する方
向の収縮力を付与することにより複屈折性フィルムを得
るものである。かかる方法によりフィルムの平面方向に
配向した分子群と、厚さ方向に配向した分子群が混在す
る複屈折性フィルムを得ることができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the production method of the present invention, when a resin film is stretched, a shrinkable film is adhered to one or both surfaces of the resin film to form a laminate, and the laminate is heated and stretched. A birefringent film is obtained by applying a contraction force in a direction perpendicular to the stretching direction of the resin film.
Things. By such a method, in the plane direction of the film
Oriented molecules and thickness-oriented molecules coexist
Birefringent film can be obtained.

【0012】延伸処理に用いる樹脂フィルムは、例えば
キャスティング法や、押出法等の適宜な方式で形成した
ものであってよい。また、正又は負のいずれの複屈折特
性を示す樹脂からなっていてもよく、透明性に優れるフ
ィルムを形成するものが好ましい。樹脂フィルムの厚は
任意であるが、一般には10〜500μm、就中20〜
200μmである。なお正の複屈折特性を示す樹脂と
は、上記した負の複屈折特性を示す樹脂とは反対に、延
伸方向の屈折率が増大するもの(分子の配向方向に遅相
軸が表れるもの)をいう。
The resin film used for the stretching treatment may be formed by an appropriate method such as a casting method or an extrusion method. Further, it may be made of a resin exhibiting any of positive and negative birefringence characteristics, and it is preferable to form a film having excellent transparency. The thickness of the resin film is arbitrary, but is generally 10 to 500 μm, preferably 20 to 500 μm.
200 μm. In addition, the resin having a positive birefringence property is, as opposed to the resin having a negative birefringence property, a resin having an increased refractive index in a stretching direction (a resin having a slow axis in a molecular orientation direction). Say.

【0013】前記した正の複屈折特性を示す樹脂として
は、例えばポリカーボネート、ポリビニルアルコール、
酢酸セルロース、ポリエステル、ポリアリレート、ポリ
イミド、ポリオレフィンの如き汎用樹脂があげられる。
就中、非晶質で透明性の熱可塑性樹脂や芳香族系ポリカ
ーボネートが好ましく用いられる。
Examples of the resin having the positive birefringence characteristic include polycarbonate, polyvinyl alcohol, and the like.
General-purpose resins such as cellulose acetate, polyester, polyarylate, polyimide, and polyolefin are exemplified.
Above all, amorphous and transparent thermoplastic resins and aromatic polycarbonates are preferably used.

【0014】負の複屈折特性を示す樹脂としては、例え
ばポリスチレンやスチレン系共重合体、ポリメチルメタ
クリレートやメチルメタクリレート系共重合体などがあ
げられる。就中、ポリスチレンや、スチレン・アクリロ
ニトリル共重合体、スチレン・メタクリル酸共重合体、
スチレン・メチルメタクリレート共重合体、スチレン・
ブタジエン共重合体、スチレン・無水マレイン酸共重合
体の如きスチレン系共重合体が好ましく用いられる。
Examples of the resin having a negative birefringence characteristic include polystyrene and styrene copolymers, polymethyl methacrylate and methyl methacrylate copolymers. Above all, polystyrene, styrene-acrylonitrile copolymer, styrene-methacrylic acid copolymer,
Styrene methyl methacrylate copolymer, styrene
Styrene-based copolymers such as butadiene copolymer and styrene / maleic anhydride copolymer are preferably used.

【0015】樹脂フィルムの延伸時における延伸方向と
直交する方向の収縮力の付与は、例えば加熱延伸時に延
伸方向と直交ないし交差する方向に収縮する収縮性フィ
ルムを延伸対象の樹脂フィルムの片面、又は両面に接着
してその積層体を加熱延伸処理する方法などにより行う
ことができる。これにより、収縮性フィルムによる当該
直交ないし交差方向の収縮力に基づいて、樹脂フィルム
の厚さ方向に延伸応力を発生させることができる。
The shrinking force in the direction perpendicular to the stretching direction at the time of stretching the resin film may be applied, for example, by shrinking the shrinkable film which shrinks in a direction orthogonal or intersecting with the stretching direction during heat stretching, on one side of the resin film to be stretched, or It can be carried out by a method in which the laminate is adhered to both surfaces and the laminate is heated and stretched. This makes it possible to generate a stretching stress in the thickness direction of the resin film based on the shrinking force of the shrinkable film in the orthogonal or cross direction.

【0016】樹脂フィルムを延伸する際に厚さ方向の延
伸力を印加して厚さ方向に配向した分子群を混在させる
ことにより、正又は負のいずれの複屈折特性を示す樹脂
においても、(nx−nz)/(nx−ny)=Nzとして
(以下同じ)、0<Nz<1を満足する複屈折性フィル
ムを得ることができる。
By applying a stretching force in the thickness direction to stretch the resin film to mix molecules oriented in the thickness direction, the resin having either a positive or negative birefringence property can be obtained by the following method. as n x -n z) / (n x -n y) = n z ( hereinafter the same), it is possible to obtain the birefringent film satisfying the 0 <n z <1.

【0017】前記において樹脂フィルムを単に延伸処理
した場合には、延伸方向の屈折率をnxとして、正の複
屈折特性を示す樹脂では(nx>ny)、一軸延伸の場
合:Nz=1、二軸延伸の場合:Nz>1となり、負の複
屈折特性を示す樹脂では(nx<ny)、一軸延伸の場
合:Nz=0、二軸延伸の場合:Nz<0となり、0<N
z<1を満足するものは得ることができない。
[0017] When it is simply stretching a resin film in the can a refractive index in the stretching direction as n x, a resin exhibiting positive birefringence (n x> n y), the case of monoaxial stretching: N z = 1, the case of biaxial stretching: n z> 1, and the in resins exhibiting negative birefringence (n x <n y), the case of monoaxial stretching: n z = 0, in the case of biaxial stretching: n z <0, 0 <N
Those satisfying z <1 cannot be obtained.

【0018】上記した延伸時における延伸方向と直交す
る方向の収縮力の付与に用いる収縮性フィルムとして
は、例えば二軸延伸フィルムや、一軸延伸フィルムなど
があげられる。就中、ポリエステル、ポリスチレン、ポ
リエチレン、ポリプロピレン、ポリ塩化ビニル、ポリ塩
化ビニリデンの如き樹脂からなリ、処理対象の樹脂フィ
ルムよりもその延伸方向と直交する方向への収縮率が5
%以上、就中10%以上大きい熱収縮性を有する延伸フ
ィルムが好ましく用いられる。
Examples of the shrinkable film used for applying the shrink force in the direction perpendicular to the stretching direction during the above stretching include a biaxially stretched film and a uniaxially stretched film. In particular, it is made of a resin such as polyester, polystyrene, polyethylene, polypropylene, polyvinyl chloride, polyvinylidene chloride, and has a shrinkage rate of 5 in the direction orthogonal to the stretching direction of the resin film to be processed.
% Or more, especially 10% or more, is preferably used.

【0019】樹脂フィルムと収縮性フィルムの接着は、
収縮性フィルムの熱収縮方向が少なくとも樹脂フィルム
の延伸方向と直交する方向の成分を含むように行われ
る。すなわち、収縮性フィルムの熱収縮力の全部又は一
部が樹脂フィルムの延伸方向と直交する方向に作用する
ように行われる。従って収縮性フィルムの熱収縮方向が
樹脂フィルムの延伸方向と斜交していてもよく、完全に
直交する方向にある必要はない。
The adhesion between the resin film and the shrinkable film is as follows:
The heat shrinking direction of the shrinkable film is performed so as to include at least a component in a direction orthogonal to the stretching direction of the resin film. That is, the heat shrinkage of the shrinkable film is performed so that all or a part of the heat shrinkage acts in a direction orthogonal to the stretching direction of the resin film. Therefore, the heat shrinkage direction of the shrinkable film may be oblique to the stretching direction of the resin film, and need not be completely orthogonal.

【0020】樹脂フィルムと収縮性フィルムの接着処理
は、フィルム自体の粘着力や粘着剤などの剥離可能な接
着手段を利用して適宜に行ってよい。目的とする複屈折
性フィルムにおける、フィルムの平面方向に配向した分
子群と厚さ方向に配向した分子群との混在割合の制御、
ひいては屈折率の制御は、収縮性フィルムの加熱延伸時
における延伸方向と直交する方向の収縮力を調節するこ
とにより行うことができる。なお位相差板は通例、収縮
性フィルムを剥離除去して実用に供される。
The adhesive treatment between the resin film and the shrinkable film may be appropriately performed using a peeling adhesive means such as the adhesive force of the film itself or an adhesive. In the target birefringent film, control of the mixture ratio of the molecular group oriented in the plane direction of the film and the molecular group oriented in the thickness direction of the film,
In addition, the control of the refractive index can be performed by adjusting the contraction force in the direction perpendicular to the stretching direction during the heat stretching of the shrinkable film. The retardation plate is usually put to practical use after removing the shrinkable film.

【0021】 本発明による複屈折性フィルムは、位相
差板の形成に好ましく用いうる。その位相差板は、前記
複屈折性フィルムの少なくとも1枚を用いて、n>n
として0<N<1、すなわちn>n>nとな
るように形成したものである。従って、位相差板(3)
は、図1に例示の如く複屈折性フィルム1の単層体から
なっていてもよいし、図2に例示の如く複屈折性フィル
ム1同士の積層体からなっていてもよい。後者の場合、
が同じ複屈折性フィルムの組合せであってもよい
し、Nが異なる複屈折性フィルムの組合せであっても
よい。なお、図中の2は透明な接着層である。
The birefringent film according to the present invention has a phase
It can be preferably used for forming a difference plate. Retardation of that is, using at least one of said birefringent film, n x> n
0 as y <N z <1, i.e. n x> n z> is obtained by forming such that n y. Therefore, the phase difference plate (3)
May be composed of a single layer of the birefringent film 1 as illustrated in FIG. 1, or may be composed of a laminate of the birefringent films 1 as illustrated in FIG. In the latter case,
N z may be a combination of the same birefringent films, or N z may be a combination of different birefringent films. In addition, 2 in a figure is a transparent adhesive layer.

【0022】さらに、0<Nz<1を満足する前記した
複屈折性フィルム1と、厚さ方向の屈折率を制御してい
ない通例の一軸や二軸等の延伸フィルム(Nz≧1、Nz
≦0)との積層体からなっていてもよい。
Further, the above-mentioned birefringent film 1 satisfying 0 <N z <1 and a conventional uniaxially or biaxially stretched film (N z ≧ 1, where the refractive index in the thickness direction is not controlled). N z
≦ 0).

【0023】前記において、複屈折性フィルム又は延伸
フィルムの積層により、その光軸の交差角度に基づいて
各フィルムによる位相差を重畳、ないし加減することが
できる。その場合、複屈折性フィルム等の積層数は任意
であるが、光の反射損や透過率低下の抑制等の点よりは
少ないほど有利である。一般には、2〜3層の積層数と
される。
In the above, by laminating a birefringent film or a stretched film, the phase difference between the films can be superimposed or adjusted based on the crossing angle of the optical axis. In this case, the number of layers of the birefringent film or the like is arbitrary, but the smaller the number, the more advantageous it is in terms of suppression of light reflection loss and reduction in transmittance. Generally, the number of layers is two to three.

【0024】複屈折性フィルム等の積層に際しては、各
フィルムを光軸が30度以下程度の交差角度となるよう
にずらせて旋光性等を制御してもよい。なお、位相差板
の形成に用いる複屈折性フィルム等は、等方性の透明な
樹脂層やガラス層等で保護、ないし補強されていてもよ
い。
When laminating a birefringent film or the like, the optical rotation may be controlled by shifting each film so that the optical axis has an intersection angle of about 30 degrees or less. The birefringent film used for forming the retardation plate may be protected or reinforced with an isotropic transparent resin layer or glass layer.

【0025】複屈折性フィルム等の積層には、例えばア
クリル系等の透明な接着剤、ないし粘着剤などを用いる
ことができる。その接着剤等の種類については特に限定
はない。複屈折性フィルム等の光学特性の変化防止の点
より、硬化や乾燥の際に高温のプロセスを要しないもの
が好ましく、長時間の硬化処理や乾燥時間を要しないも
のが望ましい。屈折率が異なるものを積層する場合に
は、中間の屈折率を有する接着剤等が反射損の抑制など
の点より好ましく用いられる。
For laminating the birefringent film or the like, for example, a transparent adhesive such as acrylic or an adhesive can be used. There is no particular limitation on the type of the adhesive or the like. From the viewpoint of preventing a change in optical properties of the birefringent film or the like, a film that does not require a high-temperature process for curing and drying is preferable, and a film that does not require a long curing treatment or drying time is desirable. When layers having different refractive indices are laminated, an adhesive having an intermediate refractive index is preferably used from the viewpoint of suppressing reflection loss.

【0026】液晶セルの着色を防止して白黒表示を達成
するための補償に好ましく用いうる位相差板は、その厚
さをdとした場合に、100nm<(nx−ny)d<10
00nmであるもの、すなわち位相差が100〜1000
nmのものである。
[0026] When the phase difference plate can be preferably used in compensation to achieve a black and white display by preventing coloration of the liquid crystal cell, which is its thickness as d, 100nm <(n x -n y) d <10
00 nm, that is, a phase difference of 100 to 1000
nm.

【0027】 本発明による前記した位相差板は、それ
と偏光板を積層した楕円偏光板の形成に好ましく用いう
る。図3にその例(5)を示した。4が偏光板、2が接
着層、3が位相差板である。図例では、液晶セル等に接
着するために粘着剤からなる接着層2が位相差板3の外
側に付設してある。
[0027] The present invention retardation plate described above by the Ru <br/> Let preferably used therewith <br/> and formation of elliptically polarizing plate obtained by laminating a polarizing plate. Figure 3 shows an example of Niso (5). 4 is a polarizing plate, 2 is an adhesive layer, and 3 is a retardation plate. In the illustrated example, an adhesive layer 2 made of a pressure-sensitive adhesive is attached to the outside of the retardation plate 3 to adhere to a liquid crystal cell or the like.

【0028】前記の偏光板には適宜なものを用いること
ができ、特に限定はない。一般には、ポリビニルアルコ
ールの如き親水性高分子からなるフィルムをヨウ素の如
き二色性染料で処理して延伸したものや、ポリ塩化ビニ
ルの如きプラスチックフィルムを処理してポリエンを配
向させたものなどからなる偏光フィルム、ないしそれを
封止処理したものなどが用いられる。
As the above-mentioned polarizing plate, an appropriate one can be used, and there is no particular limitation. In general, a film made of a hydrophilic polymer such as polyvinyl alcohol is stretched by treating with a dichroic dye such as iodine, or a film obtained by treating a plastic film such as polyvinyl chloride and orienting a polyene. Or a film obtained by sealing the same.

【0029】位相差板3と偏光板4との接着は、適宜に
行ってよいが、補償効果の点よりは位相差板の進相軸と
偏光板の吸収軸が平行となるように行うことが好まし
い。なお接着には、例えば上記した複屈折性フィルム等
の積層で例示した接着剤、ないし粘着剤など、適宜なも
のを用いてよい。
The bonding between the retardation plate 3 and the polarizing plate 4 may be performed as appropriate, but it is preferable that the fast axis of the retardation plate and the absorption axis of the polarizing plate are parallel to each other from the viewpoint of the compensation effect. Is preferred. For the bonding, for example, an appropriate adhesive such as an adhesive or a pressure-sensitive adhesive exemplified in the above-described lamination of the birefringent film or the like may be used.

【0030】 本発明による上記した位相差板は、液晶
表示装置の形成にも好ましく用いうる。その液晶表示装
置は、液晶セルの片側、又は両側に上記位相差板を介し
て偏光板を配置したものである。その形成には、前記の
楕円偏光板としたものが好ましく用いられる。図4、図
5にその液晶表示装置を例示した。5が楕円偏光板、6
が液晶セルである。図4のものは両側に位相差板が配置
してあり、図5のものは片側にのみ位相差板が配置して
ある。
The above retardation plate according to the present invention is a liquid crystal
It can be preferably used for forming a display device. Its liquid crystal display device is obtained by placing a polarizing plate through the phase difference plate side, or on both sides of the liquid crystal cell. The elliptically polarizing plate is preferably used for the formation. 4 and 5 illustrate the liquid crystal display device. 5 is an elliptically polarizing plate, 6
Is a liquid crystal cell. 4 has a retardation plate on both sides, and FIG. 5 has a retardation plate on only one side.

【0031】前記の位相差板としては、液晶セルの位相
差を広い視角範囲にわたり補償するものが好ましく用い
られる。これにより、広い視角範囲にわたり着色防止が
達成される。用いる液晶セルは任意である。例えば、薄
膜トランジスタ型に代表されるアクティブマトリクス駆
動型のもの、ツイストネマチック型やスーパーツイスト
ネマチック型に代表される単純マトリクス駆動型のもの
などがあげられる。
As the retardation plate, one that compensates for the retardation of the liquid crystal cell over a wide viewing angle range is preferably used. This achieves prevention of coloring over a wide viewing angle range. The liquid crystal cell used is arbitrary. For example, there are an active matrix driving type represented by a thin film transistor type, a simple matrix driving type represented by a twisted nematic type and a super twisted nematic type, and the like.

【0032】実施例1 厚さ50μmのポリカーボネートフィルムの片面に、二
軸延伸ポリエステルフィルムをアクリル系の弱粘着型
(加熱による接着力上昇の低いタイプ)粘着剤を介して
接着し、その積層体を160℃で15%一方向に延伸し
たのち二軸延伸ポリエステルフィルムを剥離して、複屈
折性フィルムを得た。
Example 1 A biaxially stretched polyester film was adhered to one surface of a polycarbonate film having a thickness of 50 μm via an acrylic weak pressure-sensitive adhesive (a type having a small increase in adhesive force by heating). After stretching in one direction by 15% at 160 ° C., the biaxially stretched polyester film was peeled off to obtain a birefringent film.

【0033】実施例2 ポリカーボネートフィルムの両面に二軸延伸ポリエステ
ルフィルムを接着して延伸したほかは実施例1に準じて
複屈折性フィルムを得た。
Example 2 A birefringent film was obtained in the same manner as in Example 1 except that a biaxially stretched polyester film was adhered to both surfaces of a polycarbonate film and stretched.

【0034】実施例3 厚さ70μmのポリスチレンフィルムの両面に、二軸延
伸ポリプロピレンフィルムをアクリル系の弱粘着型粘着
剤を介して接着し、その積層体を100℃で50%一方
向に延伸したのち二軸延伸ポリプロピレンフィルムを剥
離して、複屈折性フィルムを得た。
Example 3 A biaxially stretched polypropylene film was adhered to both sides of a polystyrene film having a thickness of 70 μm via an acrylic weak adhesive, and the laminate was uniaxially stretched at 100 ° C. by 50%. Thereafter, the biaxially stretched polypropylene film was peeled off to obtain a birefringent film.

【0035】実施例4 厚さ80μmのポリビニルアルコールフィルムの両面
に、二軸延伸ポリスチレンフィルムをアクリル系の弱粘
着型粘着剤を介して接着し、その積層体を115℃で8
0%一方向に延伸したのち二軸延伸ポリスチレンフィル
ムを剥離して、複屈折性フィルムを得た。
Example 4 A biaxially stretched polystyrene film was adhered to both sides of a polyvinyl alcohol film having a thickness of 80 μm via an acrylic weak pressure-sensitive adhesive, and the laminate was heated at 115 ° C. for 8 hours.
After stretching in 0% unidirectionally, the biaxially stretched polystyrene film was peeled off to obtain a birefringent film.

【0036】実施例5 厚さ50μmの酢酸セルロースフィルムの両面に、二軸
延伸ポリスチレンフィルムをアクリル系の弱粘着型粘着
剤を介して接着し、その積層体を120℃で100%一
方向に延伸したのち二軸延伸ポリスチレンフィルムを剥
離して、複屈折性フィルムを得た。
Example 5 A biaxially stretched polystyrene film was adhered to both sides of a cellulose acetate film having a thickness of 50 μm via an acrylic weak tackiness adhesive, and the laminate was stretched 100% unidirectionally at 120 ° C. After that, the biaxially stretched polystyrene film was peeled off to obtain a birefringent film.

【0037】実施例6 厚さ35μmのポリエステルフィルムの両面に、二軸延
伸ポリプロピレンフィルムをアクリル系の弱粘着型粘着
剤を介して接着し、その積層体を150℃で20%一方
向に延伸したのち二軸延伸ポリプロピレンフィルムを剥
離して、複屈折性フィルムを得た。
Example 6 A biaxially stretched polypropylene film was bonded to both sides of a 35 μm-thick polyester film via an acrylic weak adhesive, and the laminate was stretched in one direction at 150 ° C. by 20%. Thereafter, the biaxially stretched polypropylene film was peeled off to obtain a birefringent film.

【0038】実施例7 厚さ50μmのポリアリレートフィルムの両面に、二軸
延伸ポリアミドフィルムをアクリル系の弱粘着型粘着剤
を介して接着し、その積層体を160℃で10%一方向
に延伸したのち二軸延伸ポリアミドフィルムを剥離し
て、複屈折性フィルムを得た。
Example 7 A biaxially stretched polyamide film was adhered to both sides of a polyarylate film having a thickness of 50 μm via an acrylic weak adhesive, and the laminate was stretched in one direction at 160 ° C. by 10%. After that, the biaxially stretched polyamide film was peeled off to obtain a birefringent film.

【0039】実施例8 厚さ50μmのポリイミドフィルムの両面に、二軸延伸
ポリエステルフィルムをアクリル系の弱粘着型粘着剤を
介して接着し、その積層体を160℃で10%一方向に
延伸したのち二軸延伸ポリエステルフィルムを剥離し
て、複屈折性フィルムを得た。
Example 8 A biaxially stretched polyester film was adhered to both sides of a polyimide film having a thickness of 50 μm via an acrylic weak adhesive, and the laminate was uniaxially stretched at 160 ° C. by 10%. Thereafter, the biaxially stretched polyester film was peeled off to obtain a birefringent film.

【0040】比較例1 厚さ50μmのポリカーボネートフィルムを160℃で
15%一方向に延伸して複屈折性フィルムを得た。
Comparative Example 1 A polycarbonate film having a thickness of 50 μm was unidirectionally stretched at 160 ° C. for 15% to obtain a birefringent film.

【0041】比較例2 二軸延伸ポリエステルフィルムに代えて、未延伸のポリ
エステルフィルムを用いたほかは実施例1に準じて複屈
折性フィルムを得た。
Comparative Example 2 A birefringent film was obtained in the same manner as in Example 1 except that an unstretched polyester film was used instead of the biaxially stretched polyester film.

【0042】比較例3 厚さ80μmのポリスチレンフィルムを120℃で40
%一方向に延伸して複屈折性フィルムを得た。
Comparative Example 3 A polystyrene film having a thickness of 80 μm was treated at 40 ° C. for 40 hours.
% In one direction to obtain a birefringent film.

【0043】上記の実施例1〜8、比較例1〜3で得た
複屈折性フィルムは、面内の位相差〔(nx−ny)d〕
が400nm(波長633nm)となるように形成したもの
であり、そのnx、ny、nz、Nzを表1に示した。な
お、実施例3及び比較例3ではnyが延伸方向であり、
他はnxが延伸方向である。
The above Examples 1-8, a birefringent film obtained in Comparative Examples 1 to 3, the phase difference in the plane [(n x -n y) d]
There is obtained by forming so that the 400 nm (wavelength 633 nm), showed that n x, n y, n z , a N z in Table 1. Note that in Example 3 and Comparative Example 3, ny is the stretching direction,
In other cases, nx is the stretching direction.

【0044】[0044]

【表1】 [Table 1]

【0045】評価試験 位相差の変化 実施例1〜6、比較例1〜3で得た複屈折フィルムをそ
のまま位相差板として用い、遅相軸又は進相軸に基づい
て45度傾斜させた場合の位相差を測定した。なお、水
平(傾斜角0度)の場合の値は、前記したとおり400
nmである。
Evaluation Test Change in phase difference When the birefringent films obtained in Examples 1 to 6 and Comparative Examples 1 to 3 were used as they were as retardation plates, and were tilted at 45 degrees on the slow axis or fast axis. Was measured. The value in the case of horizontal (inclination angle 0 degree) is 400 as described above.
nm.

【0046】前記の結果を表2に示した。The results are shown in Table 2.

【表2】 [Table 2]

【0047】表2より、Nzが0.5の実施例1の場
合、傾斜角が45度以下の範囲においていずれの方向か
らみても位相差がほぼ一定(約400nm)であることが
わかる。
As can be seen from Table 2, in the case of Example 1 in which Nz is 0.5, the phase difference is almost constant (about 400 nm) in any direction within the range of the inclination angle of 45 degrees or less.

【0048】視野角 実施例1〜6、又は比較例1〜3で得た位相差板とポリ
ビニルアルコール系偏光板との積層体からなる楕円偏光
板を、STN型液晶セルの両側に接着して表示装置を形
成し、左−右(水平)方向と上−下(垂直)方向につい
て、着色が認められず、かつコントラスト比が10:1
以上である範囲を調べた。
Viewing Angle An elliptically polarizing plate composed of a laminate of the retardation plate obtained in Examples 1 to 6 or Comparative Examples 1 to 3 and a polyvinyl alcohol-based polarizing plate was adhered to both sides of an STN type liquid crystal cell. A display device is formed. No coloring is observed in the left-right (horizontal) direction and the up-down (vertical) direction, and the contrast ratio is 10: 1.
The above range was examined.

【0049】前記の結果を表3に示した。The results are shown in Table 3.

【表3】 [Table 3]

【0050】[0050]

【発明の効果】本発明によれば、屈折率差が大きくて、
種々の屈折率を有する複屈折性フィルムが得られる。ま
た種々の樹脂を用いて大判体も容易に製造することがで
きる。さらに視角変化による位相差の変化が少ない位相
差板を得ることができる。加えてそれを用いて広い視角
範囲にわたり着色を防止してコントラストに優れる白黒
表示が達成され、視認性に優れる液晶表示装置を得るこ
とができる。
According to the present invention, the refractive index difference is large,
Birefringent films having various refractive indices are obtained. Also, large-sized bodies can be easily manufactured using various resins. Further, it is possible to obtain a retardation plate in which a change in a phase difference due to a change in a viewing angle is small. In addition, it can be used to prevent coloring over a wide viewing angle range, achieve black-and-white display with excellent contrast, and obtain a liquid crystal display device with excellent visibility.

【図面の簡単な説明】[Brief description of the drawings]

【図1】位相差板を例示した断面図。FIG. 1 is a cross-sectional view illustrating a retardation plate.

【図2】他の位相差板を例示した断面図。FIG. 2 is a sectional view illustrating another retardation plate.

【図3】楕円偏光板を例示した断面図。FIG. 3 is a cross-sectional view illustrating an elliptically polarizing plate.

【図4】液晶表示装置を例示した断面図。FIG. 4 is a cross-sectional view illustrating a liquid crystal display device.

【図5】他の液晶表示装置を例示した断面図。FIG. 5 is a cross-sectional view illustrating another liquid crystal display device.

【符号の説明】[Explanation of symbols]

1:複屈折性フィルム 2:接着層 3:位相差板 4:偏光板 5:楕円偏光板 6:液晶セル 1: birefringent film 2: adhesive layer 3: retardation plate 4: polarizing plate 5: elliptically polarizing plate 6: liquid crystal cell

フロントページの続き (72)発明者 大須賀 達也 大阪府茨木市下穂積1丁目1番2号 日 東電工株式会社内 (56)参考文献 特開 平2−160204(JP,A) 特開 平2−191904(JP,A) 特開 平3−24502(JP,A) 特開 平3−23405(JP,A) 特開 平3−23406(JP,A) 特開 平4−139402(JP,A) (58)調査した分野(Int.Cl.6,DB名) G02B 5/30Continuation of front page (72) Inventor Tatsuya Osuka 1-1-2 Shimohozumi, Ibaraki-shi, Osaka Nitto Denko Corporation (56) References JP-A-2-160204 (JP, A) JP-A-2- 191904 (JP, A) JP-A-3-24502 (JP, A) JP-A-3-23405 (JP, A) JP-A-3-23406 (JP, A) JP-A-4-139402 (JP, A) (58) Field surveyed (Int.Cl. 6 , DB name) G02B 5/30

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 樹脂フィルムを延伸処理する際に、その
樹脂フィルムの片面又は両面に収縮性フィルムを接着し
て積層体を形成し、その積層体を加熱延伸処理して前記
樹脂フィルムの延伸方向と直交する方向の収縮力を付与
することを特徴とする複屈折性フィルムの製造方法。
When a resin film is stretched, a shrinkable film is adhered to one or both surfaces of the resin film to form a laminate, and the laminate is heated and stretched to stretch the resin film. A method for producing a birefringent film, characterized by applying a contraction force in a direction perpendicular to the film.
【請求項2】 収縮性フィルムの延伸方向と直交する方
向への収縮率が樹脂フィルムのそれよりも5%以上大き
いものである請求項1に記載の製造方法。
2. The method according to claim 1, wherein the shrinkage ratio of the shrinkable film in a direction perpendicular to the stretching direction is at least 5% larger than that of the resin film.
【請求項3】 ィルムの平面方向に配向した分子群
と、厚さ方向に配向した分子群が混在してなる複屈折性
フィルムを形成する請求項1に記載の製造方法
3. A process according to claim 1 to form a group of molecules oriented in the planar direction of the off Irumu, the birefringent film oriented molecules groups ing mixed in the thickness direction.
【請求項4】 平面の直交軸方向と板の厚さ方向にお
ける屈折率をそれぞれn、n、nとした場合に、
>nとして0<(n−n)/(n−n
<1である位相差板を得るための複屈折性フィルムを形
成する請求項1に記載の製造方法
Wherein the refractive index in the thickness direction of the orthogonal axis direction and the plate of the plate plane respectively n x, n y, in case of a n z,
as n x> n y 0 <( n x -n z) / (n x -n y)
<Form birefringent film for obtaining a 1 der Ru phase difference plate
The production method according to claim 1, wherein
【請求項5】 厚さをdとした場合に、100nm<
(n−n)d<1000nmである請求項4に記載
の位相差板を得るための複屈折性フィルムを形成する請
求項1に記載の製造方法
5. When the thickness is d, 100 nm <
(N x -n y) d <請forming a birefringent film for obtaining a phase difference plate of claim 4 wherein 1000nm
The method according to claim 1 .
JP3304046A 1990-10-24 1991-10-23 Method for producing birefringent film Expired - Lifetime JP2818983B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3304046A JP2818983B2 (en) 1990-10-24 1991-10-23 Method for producing birefringent film

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP28664690 1990-10-24
JP2-286646 1990-10-24
JP3-287174 1991-10-07
JP28717491 1991-10-07
JP3304046A JP2818983B2 (en) 1990-10-24 1991-10-23 Method for producing birefringent film

Publications (2)

Publication Number Publication Date
JPH05157911A JPH05157911A (en) 1993-06-25
JP2818983B2 true JP2818983B2 (en) 1998-10-30

Family

ID=27337282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3304046A Expired - Lifetime JP2818983B2 (en) 1990-10-24 1991-10-23 Method for producing birefringent film

Country Status (1)

Country Link
JP (1) JP2818983B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007100117A1 (en) 2006-02-28 2007-09-07 Teijin Limited Layered polarization film, phase difference film, and liquid crystal display device
US7410680B2 (en) 2003-08-28 2008-08-12 Nippon Kayaku Kabushiki Kaisha Retardation film made by using cellulose derivatives
WO2013018651A1 (en) 2011-07-29 2013-02-07 東ソー株式会社 Resin composition, optical compensation film using same, and method for producing optical compensation film
US8545970B2 (en) 2006-09-05 2013-10-01 Tosoh Corporation Optical compensation film and retardation film
WO2014013982A1 (en) 2012-07-20 2014-01-23 東ソー株式会社 (diisopropyl fumarate)-(cinnamic acid derivative) copolymer, and phase difference film produced using same
WO2014196552A1 (en) 2013-06-07 2014-12-11 東ソー株式会社 Resin composition, optical compensation film employing same, and production method for same
US9266988B2 (en) 2010-07-06 2016-02-23 Tosoh Corporation Fumaric acid diester based resin for retardation film and retardation film comprising the same
KR20170067747A (en) 2014-10-15 2017-06-16 도소 가부시키가이샤 Resin composition and optical compensation film using same
JP2018070686A (en) * 2016-10-25 2018-05-10 東ソー株式会社 Resin composition and optical compensation film using the same
WO2018105561A1 (en) 2016-12-07 2018-06-14 東ソー株式会社 Copolymer and optical film using same
KR20180118621A (en) 2016-02-29 2018-10-31 니폰 제온 가부시키가이샤 Stretched film, method for producing the same, circular polarizer, and display device
US10126478B2 (en) 2014-10-15 2018-11-13 Tosoh Corporation Resin composition and optical compensation film using same
KR20190096996A (en) 2016-12-28 2019-08-20 니폰 제온 가부시키가이샤 Retardation film, its manufacturing method, polarizing plate, and display apparatus
US11067731B2 (en) 2015-02-26 2021-07-20 Zeon Corporation Transfer body for optical film, optical film, organic electroluminescent display device, and method for manufacturing optical film
WO2022210589A1 (en) 2021-03-30 2022-10-06 東ソー株式会社 Fumaric acid diester resin, film and polarizing plate
JP2023024447A (en) * 2015-10-15 2023-02-16 日本ゼオン株式会社 Retardation film and method for manufacturing the same
WO2023090353A1 (en) 2021-11-18 2023-05-25 東ソー株式会社 Optical film and polarizing plate

Families Citing this family (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3325973B2 (en) * 1993-10-22 2002-09-17 富士写真フイルム株式会社 Optical anisotropic element and liquid crystal display element using the same
US5986734A (en) 1994-04-04 1999-11-16 Rockwell International Corporation Organic polymer O-plate compensator for improved gray scale performance in twisted nematic liquid crystal displays
TW327208B (en) 1994-11-10 1998-02-21 Sumitomo Chemical Co Optically anisotropic film and process for producing the same and liquid crystal display device
JP3431763B2 (en) * 1996-06-18 2003-07-28 シャープ株式会社 Liquid crystal display
EP1087286A4 (en) 1998-06-08 2007-10-17 Kaneka Corp Resistor film touch panel used for liquid crystal display and liquid crystal display with the same
DE69932826T2 (en) * 1998-06-18 2006-12-14 Kaneka Corp. TRANSPARENT TOUCH PANEL AND LIQUID CRYSTAL DISPLAY WITH A TRANSPARENT TOUCH PANEL
ATE312371T1 (en) 1998-08-04 2005-12-15 Kaneka Corp LIQUID CRYSTAL DISPLAY DEVICE WITH TOUCH SCREEN
JP4367868B2 (en) * 1999-01-11 2009-11-18 日東電工株式会社 Retardation plate continuous manufacturing method, optical member, and liquid crystal display device
JP4303827B2 (en) * 1999-04-21 2009-07-29 日東電工株式会社 Production method of retardation plate
JP5191447B2 (en) * 1999-12-16 2013-05-08 富士フイルム株式会社 Retardation plate, method for manufacturing the same, circularly polarizing plate using the same, half-wave plate, and reflective liquid crystal display device
JP2001290026A (en) * 2000-04-04 2001-10-19 Nitto Denko Corp Method for manufacturing optical polarizing plate and liquid crystal display device provided with optical polarizing plate
JP3898416B2 (en) * 2000-04-04 2007-03-28 日東電工株式会社 Manufacturing method of polarizing plate
JP2002040255A (en) * 2000-07-31 2002-02-06 Nitto Denko Corp Polarizing plate and liquid crystal display device using the same
JP4566385B2 (en) * 2000-10-30 2010-10-20 日東電工株式会社 Polarizer
JP4566384B2 (en) * 2000-10-30 2010-10-20 日東電工株式会社 Polarizer
JP2005031621A (en) 2003-06-16 2005-02-03 Nitto Denko Corp Optical film, polarizing optical film and image display apparatus
JP3727638B2 (en) 2003-06-16 2005-12-14 日東電工株式会社 Laminated optical film, elliptically polarizing plate, and image display device
JP2005274725A (en) 2004-03-23 2005-10-06 Nippon Zeon Co Ltd Optical laminate, optical element, and liquid crystal display device
JP2005300722A (en) * 2004-04-08 2005-10-27 Toray Ind Inc Optical polymer film
US8354148B2 (en) 2004-05-18 2013-01-15 Fujifilm Corporation Optical compensation polarizing plate, image display unit and liquid crystal display unit
US7722935B2 (en) 2004-07-16 2010-05-25 Nitto Denko Corporation Retardation film, use of said retardation film, and novel modified polymer
JP3841306B2 (en) 2004-08-05 2006-11-01 日東電工株式会社 Method for producing retardation film
JP2006091836A (en) 2004-08-26 2006-04-06 Nitto Denko Corp Retardation film and method of producing the same, and optical film, liquid crystal panel, and liquid crystal display apparatus all using the retardation film
JP4853920B2 (en) * 2004-09-29 2012-01-11 日東電工株式会社 Liquid crystal panel and liquid crystal display device
JP3985969B2 (en) 2004-09-29 2007-10-03 日東電工株式会社 Liquid crystal panel and liquid crystal display device
JP3851918B2 (en) 2004-10-22 2006-11-29 日東電工株式会社 Liquid crystal panel and liquid crystal display device
JP3851919B2 (en) 2004-12-20 2006-11-29 日東電工株式会社 Liquid crystal panel and liquid crystal display device
EP1850155B1 (en) 2005-02-08 2012-11-14 Nippon Oil Corporation Homeotropically oriented liquid-crystal film, optical film comprising the same, and image display
WO2007023988A1 (en) 2005-08-22 2007-03-01 Fujifilm Corporation Transparent polymer film and method for producing it, and retardation film, polarizer and liquid crystal display device comprising the film
JP2007219478A (en) * 2006-01-18 2007-08-30 Nitto Denko Corp Manufacturing method of optical film, optical film, liquid crystal panel and liquid crystal display device
WO2007100025A1 (en) 2006-02-22 2007-09-07 Fujifilm Corporation Transparent polymer film and method for producing it, and retardation film, polarizer and liquid crystal display device comprising the film
US7569261B2 (en) 2006-05-18 2009-08-04 Fujifilm Corporation Cellulose acylate film and method for producing same, and retardation film, polarizing plate and liquid crystal display device comprising the film
US7955666B2 (en) 2006-05-18 2011-06-07 Fujifilm Corporation Cellulose acylate film and method for producing same, and retardation film, polarizing plate and liquid crystal display device comprising the film
JP4931531B2 (en) * 2006-09-25 2012-05-16 富士フイルム株式会社 Optical compensation film, method for producing the same, polarizing plate, and liquid crystal display device
JP5049705B2 (en) * 2006-11-16 2012-10-17 富士フイルム株式会社 Transparent film, polarizing plate, and liquid crystal display device
KR20090080133A (en) 2006-11-17 2009-07-23 니폰 오일 코포레이션 (신 니혼 세키유 가부시키 가이샤) Elliptic polarizing plate and vertically aligned liquid crystal display using the same
US8435432B2 (en) 2007-02-21 2013-05-07 Fujifilm Corporation Production method for transparent polymer film and transparent polymer film produced according to the method, retardation film, polarizer, and liquid crystal display device
US8203676B2 (en) 2007-06-01 2012-06-19 Teijin Limited Retardation film, laminated polarizing film, and liquid crystal display device
JP5092585B2 (en) * 2007-06-29 2012-12-05 住友化学株式会社 Method for producing retardation film precursor and method for producing retardation film
JP2009031631A (en) 2007-07-30 2009-02-12 Fujifilm Corp Transparent polymer film manufacturing method, transparent polymer film manufactured by the method, phase difference film, polarizing plate, and liquid crystal display device
JP2009075533A (en) 2007-08-31 2009-04-09 Nippon Oil Corp Elliptic polarization plate and liquid crystal display device
JP2009092992A (en) 2007-10-10 2009-04-30 Nippon Oil Corp Method of manufacturing optical film
KR101247819B1 (en) 2007-12-12 2013-03-26 미쓰비시 가가꾸 가부시키가이샤 Process for production of polycarbonate and moldings of polycarbonate
JP5104374B2 (en) 2008-02-14 2012-12-19 日本ゼオン株式会社 Production method of retardation plate
JP5104373B2 (en) 2008-02-14 2012-12-19 日本ゼオン株式会社 Production method of retardation plate
JP5104439B2 (en) 2008-03-18 2012-12-19 日本ゼオン株式会社 Retardation plate
JP2009300760A (en) 2008-06-13 2009-12-24 Nippon Oil Corp Elliptical light polarization plate and vertically oriented type liquid crystal display using the same
KR101133895B1 (en) 2008-09-29 2012-04-09 니폰 제온 가부시키가이샤 Optical film and liquid crystal display
JP2009058963A (en) * 2008-10-09 2009-03-19 Nitto Denko Corp Method of manufacturing retardation plate
US8900656B2 (en) 2009-06-19 2014-12-02 Nitto Denko Corporation Method for producing optical film, optical film, and image display
TWI393914B (en) * 2009-06-19 2013-04-21 Nitto Denko Corp An optical film manufacturing method, an optical film, a publishing film, and an image display device
WO2011018945A1 (en) 2009-08-13 2011-02-17 日本ゼオン株式会社 Wave plate, method for producing same, and liquid crystal display device
JP5448264B2 (en) 2009-11-19 2014-03-19 三菱化学株式会社 Polycarbonate resin film and transparent film
JP4936487B2 (en) * 2010-07-15 2012-05-23 日東電工株式会社 Polarizer
JP4936486B2 (en) * 2010-07-15 2012-05-23 日東電工株式会社 Polarizer
CN103210326B (en) 2010-09-07 2015-07-15 日本瑞翁株式会社 Phase difference plate manufacturing method, phase difference plate, and liquid crystal display device
JP2015138162A (en) * 2014-01-23 2015-07-30 住友化学株式会社 Optical anisotropic film
KR101719056B1 (en) 2014-09-30 2017-03-22 주식회사 엘지화학 Preparing method for the optical film, optical film by the same method, polarizing plate and liquid crystal display comprising the same
KR102043492B1 (en) 2016-05-02 2019-11-11 주식회사 엘지화학 Preparing method for the optical film, optical mamber and optical film by the same method, polarizing plate and liquid crystal display comprising the same
JP6693346B2 (en) * 2016-08-31 2020-05-13 三菱ケミカル株式会社 Laminated film with controlled thickness retardation (Rth) and method for producing the same
JP6915713B2 (en) * 2016-08-31 2021-08-04 三菱ケミカル株式会社 Laminated film with controlled thickness retardation (Rth) and its manufacturing method
WO2018123983A1 (en) 2016-12-26 2018-07-05 富士フイルム株式会社 Phase difference membrane, optical film, and display device
JP7120227B2 (en) 2017-05-31 2022-08-17 日本ゼオン株式会社 Manufacturing method of retardation film
CN115629437A (en) 2017-05-31 2023-01-20 日本瑞翁株式会社 Retardation film and method for producing same
JP7120226B2 (en) 2017-05-31 2022-08-17 日本ゼオン株式会社 Manufacturing method of retardation film
JP7258475B2 (en) * 2018-05-23 2023-04-17 日東電工株式会社 Polarizing plate with surface protective film
KR102207386B1 (en) 2018-09-18 2021-01-25 주식회사 엘지화학 Manufacturing method of retardation film, retardation film, polarizing plate comprising same and liquid crystal display device comprising same
KR102382167B1 (en) 2018-11-16 2022-04-01 주식회사 엘지화학 Retardation film, manufacturing method of same, polarizing plate comprising same and liquid crystal display device comprising same
KR102504354B1 (en) 2019-01-11 2023-02-28 주식회사 엘지화학 Method for manufacturing retardation film
KR20210011220A (en) 2019-07-22 2021-02-01 주식회사 엘지화학 Retardation film
JP2022056553A (en) * 2020-09-30 2022-04-11 日東電工株式会社 Retardation film, retardation layer-attached polarizing plate, and image display device
JP2023035652A (en) 2021-09-01 2023-03-13 日東電工株式会社 Polarizing plate with retardation layer and image display device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02191904A (en) * 1988-09-26 1990-07-27 Fuji Photo Film Co Ltd Phase difference film and its production
JPH02120805A (en) * 1988-10-31 1990-05-08 Nitto Denko Corp Production of elliptically polarizing plate
JP2612196B2 (en) * 1988-12-14 1997-05-21 富士写真フイルム株式会社 Phase difference film and method of manufacturing the same
JPH0323405A (en) * 1989-06-20 1991-01-31 Kuraray Co Ltd Production of phase difference plate
JPH0323406A (en) * 1989-06-20 1991-01-31 Kuraray Co Ltd Production of phase difference plate
JP2809712B2 (en) * 1989-06-22 1998-10-15 株式会社クラレ Phase difference plate

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7410680B2 (en) 2003-08-28 2008-08-12 Nippon Kayaku Kabushiki Kaisha Retardation film made by using cellulose derivatives
US8111459B2 (en) 2006-02-28 2012-02-07 Teijin Limited Laminated polarizing film, phase retardation film, and liquid crystal display device
WO2007100117A1 (en) 2006-02-28 2007-09-07 Teijin Limited Layered polarization film, phase difference film, and liquid crystal display device
US8545970B2 (en) 2006-09-05 2013-10-01 Tosoh Corporation Optical compensation film and retardation film
US9266988B2 (en) 2010-07-06 2016-02-23 Tosoh Corporation Fumaric acid diester based resin for retardation film and retardation film comprising the same
US9370901B2 (en) 2011-07-29 2016-06-21 Tosoh Corporation Resin composition, optical compensation film using the same and production method of optical compensation film
KR20140047684A (en) 2011-07-29 2014-04-22 도소 가부시키가이샤 Resin composition, optical compensation film using same, and method for producing optical compensation film
WO2013018651A1 (en) 2011-07-29 2013-02-07 東ソー株式会社 Resin composition, optical compensation film using same, and method for producing optical compensation film
US9321870B2 (en) 2012-07-20 2016-04-26 Tosoh Corporation Diisopropyl fumarate-cinnamic acid derivative copolymer and retardation film using the same
KR20150036107A (en) 2012-07-20 2015-04-07 도소 가부시키가이샤 (diisopropyl fumarate)-(cinnamic acid derivative) copolymer, and phase difference film produced using same
WO2014013982A1 (en) 2012-07-20 2014-01-23 東ソー株式会社 (diisopropyl fumarate)-(cinnamic acid derivative) copolymer, and phase difference film produced using same
KR20160015239A (en) 2013-06-07 2016-02-12 도소 가부시키가이샤 Resin composition, optical compensation film employing same, and production method for same
US9932488B2 (en) 2013-06-07 2018-04-03 Tosoh Corporation Resin composition, optical compensation film using same, and production method for same
WO2014196552A1 (en) 2013-06-07 2014-12-11 東ソー株式会社 Resin composition, optical compensation film employing same, and production method for same
KR20170067747A (en) 2014-10-15 2017-06-16 도소 가부시키가이샤 Resin composition and optical compensation film using same
US10126478B2 (en) 2014-10-15 2018-11-13 Tosoh Corporation Resin composition and optical compensation film using same
US11067731B2 (en) 2015-02-26 2021-07-20 Zeon Corporation Transfer body for optical film, optical film, organic electroluminescent display device, and method for manufacturing optical film
JP2023024447A (en) * 2015-10-15 2023-02-16 日本ゼオン株式会社 Retardation film and method for manufacturing the same
KR20180118621A (en) 2016-02-29 2018-10-31 니폰 제온 가부시키가이샤 Stretched film, method for producing the same, circular polarizer, and display device
JP2018070686A (en) * 2016-10-25 2018-05-10 東ソー株式会社 Resin composition and optical compensation film using the same
WO2018105561A1 (en) 2016-12-07 2018-06-14 東ソー株式会社 Copolymer and optical film using same
US11225540B2 (en) 2016-12-07 2022-01-18 Tosoh Corporation Copolymer and optical film using same
KR20190096996A (en) 2016-12-28 2019-08-20 니폰 제온 가부시키가이샤 Retardation film, its manufacturing method, polarizing plate, and display apparatus
WO2022210589A1 (en) 2021-03-30 2022-10-06 東ソー株式会社 Fumaric acid diester resin, film and polarizing plate
KR20230163431A (en) 2021-03-30 2023-11-30 도소 가부시키가이샤 Fumaric acid diester-based resin, film, and polarizer
WO2023090353A1 (en) 2021-11-18 2023-05-25 東ソー株式会社 Optical film and polarizing plate

Also Published As

Publication number Publication date
JPH05157911A (en) 1993-06-25

Similar Documents

Publication Publication Date Title
JP2818983B2 (en) Method for producing birefringent film
US5245456A (en) Birefringent film with nx &gt;nz &gt;ny, process for producing the same, retardation film, elliptically polarizing plate, and liquid crystal display
JP3165168B2 (en) Polarizing plate and liquid crystal display
JP2003121642A (en) Wide viewing angle polarizing plate and liquid crystal display device
WO1992022835A1 (en) Phase difference elemental film, phase difference plate and liquid crystal display
JPH0527119A (en) Phase difference plate and elliptical polarizing plate and liquid crystal display device
US5888634A (en) Phase retarder film
JP2009075533A (en) Elliptic polarization plate and liquid crystal display device
JPH09325216A (en) Wide viewing angle polarizer plate
JP3004782B2 (en) Polarizing plate and liquid crystal display
JP2002090542A (en) Optical sheet, polarizing plate and liquid crystal display device
JP2002090531A (en) Optical sheet, polarizing plate and liquid crystal display device
JP2001147323A (en) Laminated phase difference plate, elliptically polarizing plate and liquid crystal display device
JP2003015134A (en) Liquid crystal display device
JP3165175B2 (en) Polarizing plate and liquid crystal display
JPH04113301A (en) New optical sheet and liquid crystal display device using same sheet
JP3609563B2 (en) Wide-field polarizing plate
JPH11125716A (en) Phase difference plate, its production, elliptical polarizing plate and liquid crystal display device
JP3313408B2 (en) Retardation film, retardation plate, and liquid crystal display device using the same
JP3327410B2 (en) Polarizing plate and liquid crystal display
JPH04311903A (en) Phase difference plate and liquid crystal display
JPH0442202A (en) Laminate phase difference plate, elliptical polarizing plate, liquid crystal panel, and display device
JP2000056131A (en) Phase difference plate, laminated polarizing plate and liquid crystal display device
JPH09318815A (en) Production of optical film, laminated polarizing plate and liquid crystal display device
JPH09318816A (en) Optical film, its production, laminated polarizing plate and liquid crystal display device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 14