JP2009058963A - Method of manufacturing retardation plate - Google Patents

Method of manufacturing retardation plate Download PDF

Info

Publication number
JP2009058963A
JP2009058963A JP2008262465A JP2008262465A JP2009058963A JP 2009058963 A JP2009058963 A JP 2009058963A JP 2008262465 A JP2008262465 A JP 2008262465A JP 2008262465 A JP2008262465 A JP 2008262465A JP 2009058963 A JP2009058963 A JP 2009058963A
Authority
JP
Japan
Prior art keywords
film
thermoplastic resin
heat
resin film
retardation plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008262465A
Other languages
Japanese (ja)
Inventor
Kazuyoshi Tsuchimoto
一喜 土本
Hiroyuki Yoshimi
裕之 吉見
Seiji Kondo
誠司 近藤
Takashi Shoda
位守 正田
Shinichi Sasaki
伸一 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2008262465A priority Critical patent/JP2009058963A/en
Publication of JP2009058963A publication Critical patent/JP2009058963A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method capable of efficiently and stably manufacturing a retardation plate excellent in heat resistance. <P>SOLUTION: In the method of manufacturing the retardation plate, a heat shrinkable film is adhered to one surface or both surfaces of a thermoplastic resin film so that the maximum heat shrinking direction becomes a crossed angle of within 90±5° with respect to the width direction or the length direction of the thermoplastic resin film, whereby the thermoplastic resin film is shrunk under the action of heat-shrinking force of 0.03 kg/mm<SP>2</SP>or more by the heat shrinkable film. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、液晶セルの光学補償による視角特性の改善に好適な位相差板の製造方法に関する。   The present invention relates to a method of manufacturing a retardation plate suitable for improving viewing angle characteristics by optical compensation of a liquid crystal cell.

従来、液晶による複屈折で視角の変化によりコントラスト等の光学特性が変化することを補償して視角特性を改善することなどを目的に用いうる位相差板としては、ポリスチレン等の負の複屈折特性を示す熱可塑性樹脂、すなわち延伸方向と直交する方向に屈折率が増大する性質を示す負の複屈折特性を示す熱可塑性樹脂からなるフィルムを二軸延伸したものが知られていた。しかしながら得られる位相差板が耐熱性に乏しく、液晶表示装置等の形成に用いうる耐熱性を示すものを得ることが困難な問題点があった。
特開平9−318815号公報
Conventional retardation plates that can be used for the purpose of improving viewing angle characteristics by compensating for changes in optical characteristics such as contrast due to changes in viewing angle due to liquid crystal birefringence are negative birefringence characteristics such as polystyrene. In other words, a biaxially stretched film made of a thermoplastic resin exhibiting a negative birefringence characteristic exhibiting a property of increasing the refractive index in a direction orthogonal to the stretching direction has been known. However, the obtained retardation plate has poor heat resistance, and there is a problem that it is difficult to obtain a plate exhibiting heat resistance that can be used for forming a liquid crystal display device or the like.
JP-A-9-318815

本発明は、耐熱性に優れる位相差板を安定に効率よく製造できる方法の開発を課題とする。   An object of the present invention is to develop a method capable of stably and efficiently producing a retardation plate having excellent heat resistance.

本発明は、熱可塑性樹脂フィルムの片面又は両面に熱収縮性フィルムをその最大加熱収縮方向が熱可塑性樹脂フィルムの幅方向又は長さ方向に対し90±5度以内の交差角となるように接着し、その熱収縮性フィルムによる0.03kg/mm以上の加熱収縮力の作用下に前記熱可塑性樹脂フィルムを収縮させることを特徴とする位相差板の製造方法を提供するものである。 In the present invention, a heat-shrinkable film is bonded to one side or both sides of a thermoplastic resin film so that the maximum heat-shrink direction is an intersection angle within 90 ± 5 degrees with respect to the width direction or length direction of the thermoplastic resin film. Then, the present invention provides a method for producing a retardation plate, wherein the thermoplastic resin film is shrunk under the action of a heat shrinkage force of 0.03 kg / mm 2 or more by the heat shrinkable film.

本発明によれば、耐熱性に優れて、液晶セルの複屈折に基づく視角による表示特性の変化を高度に補償でき、広い視角範囲でコントラスト等の視認性に優れる液晶表示装置を形成できる位相差板を安定に効率よく得ることができ、連続製造することも可能である。   According to the present invention, the phase difference is excellent in heat resistance, can highly compensate for changes in display characteristics due to viewing angles based on the birefringence of the liquid crystal cell, and can form a liquid crystal display device having excellent visibility such as contrast in a wide viewing angle range. The plate can be obtained stably and efficiently, and can be continuously produced.

本発明による位相差板の製造方法は、熱可塑性樹脂フィルムの片面又は両面に熱収縮性フィルムをその最大加熱収縮方向が熱可塑性樹脂フィルムの幅方向又は長さ方向に対し90±5度以内の交差角となるように接着し、その熱収縮性フィルムによる0.03kg/mm以上の加熱収縮力の作用下に前記熱可塑性樹脂フィルムを収縮させるものである。 In the method for producing a retardation plate according to the present invention, a heat-shrinkable film is provided on one side or both sides of a thermoplastic resin film, and the maximum heat-shrink direction is within 90 ± 5 degrees with respect to the width direction or length direction of the thermoplastic resin film. The thermoplastic resin film is bonded so as to have an intersection angle, and the thermoplastic resin film is contracted under the action of a heat contraction force of 0.03 kg / mm 2 or more by the heat-shrinkable film.

前記方法による好ましい位相差板は、面内の主屈折率をnx、ny、厚さ方向の主屈折率をnzとしたとき、式:(nx+ny)/2<nzを満足し、かつ縦又は横方向の一方を基準とした遅相軸又は進相軸の方位角が0±5度以内又は90±5度以内のものである。   A preferable retardation plate according to the above method satisfies the formula: (nx + ny) / 2 <nz, where nx, ny is the main refractive index in the plane, and nz is the main refractive index in the thickness direction, and vertical or horizontal. The azimuth angle of the slow axis or the fast axis relative to one of the directions is within 0 ± 5 degrees or within 90 ± 5 degrees.

処理対象のフィルムとしては、1種又は2種以上の適宜な熱可塑性樹脂からなるものを用いうる。耐熱性に優れる位相差板を得る点よりは延伸方向の屈折率が高くなる正の複屈折特性を示す熱可塑性樹脂からなるものが好ましく用いられる。   As a film to be processed, a film made of one or more appropriate thermoplastic resins can be used. What consists of a thermoplastic resin which shows the positive birefringence characteristic from which the refractive index of an extending | stretching direction becomes high is preferably used from the point which obtains the phase difference plate excellent in heat resistance.

ちなみに前記した正の複屈折特性を示す熱可塑性樹脂の例としては、ポリカーボネート、ポリビニルアルコール、セルロース系樹脂、ポリエチレンテレフタレートやポリエチレンナフタレートの如きポリエステル、ポリアリレート、ポリイミド、ノルボルネン系樹脂、ポリスルホン、ポリエーテルスルホン、ポリプロピレンの如きポリオレフィンなどがあげられる。   Incidentally, examples of the thermoplastic resin exhibiting the above-mentioned positive birefringence characteristics include polycarbonate, polyvinyl alcohol, cellulose resin, polyester such as polyethylene terephthalate and polyethylene naphthalate, polyarylate, polyimide, norbornene resin, polysulfone, and polyether. Examples thereof include polyolefins such as sulfone and polypropylene.

就中、非晶質で耐熱性に優れ、透明性に優れる、特に光透過率が75%以上、就中80%以上、特に85%以上のフィルムを形成しうる熱可塑性樹脂が好ましく用いうる。熱可塑性樹脂フィルムは、例えば流延法等のキャスティング法や、押出法などの適宜な方式で形成したものであってよい。キャスティング法等の溶液製膜法が厚さムラや配向歪ムラ等の少ないフィルムを得る点などより好ましい。   In particular, a thermoplastic resin that can form a film that is amorphous, excellent in heat resistance, and excellent in transparency, particularly capable of forming a film having a light transmittance of 75% or more, particularly 80% or more, particularly 85% or more can be preferably used. The thermoplastic resin film may be formed by an appropriate method such as a casting method such as a casting method or an extrusion method. A solution casting method such as a casting method is more preferable in that a film with less thickness unevenness, orientation strain unevenness and the like is obtained.

熱可塑性樹脂フィルムの厚さは、目的とする位相差などにより適宜に決定しうるが、一般には5〜500μm、就中10〜400μm、特に20〜300μmの厚さとされる。位相差は、屈折率差(△n)と光路長(L)の積(△n×L)として求めることができる。   The thickness of the thermoplastic resin film can be appropriately determined depending on the target retardation or the like, but is generally 5 to 500 μm, especially 10 to 400 μm, and particularly 20 to 300 μm. The phase difference can be obtained as the product (Δn × L) of the refractive index difference (Δn) and the optical path length (L).

熱可塑性樹脂フィルムは、バッチ処理等による単品毎の位相差板の製造を目的に所定サイズに成形したものであってもよいし、連続処理による位相差板の連続製造を目的に長尺のフィルムとしたものであってもよい。位相差板の製造効率等の点よりは長尺フィルムが好ましく用いうる。なお処理対象の熱可塑性樹脂フィルムは、無配向のものであってもよいし、予め一軸延伸等の適宜な配向処理を施した配向フィルムであってもよい。   The thermoplastic resin film may be formed into a predetermined size for the purpose of manufacturing a single retardation plate by batch processing or the like, or a long film for the purpose of continuous manufacturing of a retardation plate by continuous processing It may be what. A long film can be preferably used from the viewpoint of production efficiency of the retardation plate. The thermoplastic resin film to be treated may be non-oriented or may be an oriented film that has been subjected to appropriate orientation treatment such as uniaxial stretching in advance.

熱可塑性樹脂フィルムの片面又は両面に接着する熱収縮性フィルムは、その加熱による収縮力を熱可塑性樹脂フィルムに伝達してその収縮力の作用下に熱可塑性樹脂フィルムを幅方向(TD)又は長さ方向(MD)あるいはその両方向に収縮させてその位相差特性、特に厚さ方向の屈折率を制御することなどを目的とする。   A heat-shrinkable film that adheres to one or both surfaces of a thermoplastic resin film transmits a shrinkage force due to the heating to the thermoplastic resin film, and the thermoplastic resin film is subjected to the shrinkage force in the width direction (TD) or long. The purpose is to control the phase difference characteristic, particularly the refractive index in the thickness direction, by shrinking in the longitudinal direction (MD) or both directions.

従って熱収縮性フィルムとしては、加熱処理にて収縮性を示す適宜なものを用いることができ、特に限定はない。一般には収縮力の伝達性などの点より熱可塑性樹脂フィルムの処理温度よりも低温で熱収縮を開始する一軸や二軸等による熱可塑性樹脂の延伸フィルムなどが用いられる。その場合、熱可塑性樹脂の種類や延伸倍率等の延伸条件などを変えることにより熱収縮力に相違をもたせることができる。   Therefore, as the heat-shrinkable film, an appropriate film that exhibits shrinkage by heat treatment can be used, and there is no particular limitation. In general, a stretched film of a thermoplastic resin such as uniaxial or biaxial that starts thermal shrinkage at a temperature lower than the processing temperature of the thermoplastic resin film is used from the standpoint of transmission of shrinkage force. In that case, the thermal shrinkage force can be made different by changing the stretching conditions such as the kind of the thermoplastic resin and the stretching ratio.

ちなみに前記の熱収縮性フィルムを形成する熱可塑性樹脂としては、例えばポリ塩化ビニルやポリエチレン、ポリプロピレンやポリエステル、ポリスチレンやポリアミドなどがあげられる。なお前記において熱可塑性樹脂フィルムの収縮処理の精度等の点よりは、熱可塑性樹脂フィルムのガラス転移温度付近、就中その±20℃の範囲内にて加熱収縮性を示す熱収縮性フィルムが好ましく用いられる。   Incidentally, examples of the thermoplastic resin forming the heat-shrinkable film include polyvinyl chloride, polyethylene, polypropylene, polyester, polystyrene, and polyamide. In the above, from the viewpoint of the accuracy of the shrinkage treatment of the thermoplastic resin film, a heat-shrinkable film exhibiting heat-shrinkability in the vicinity of the glass transition temperature of the thermoplastic resin film, especially within the range of ± 20 ° C. is preferable. Used.

熱収縮性フィルムと熱可塑性樹脂フィルムの接着には接着剤を用いうる。就中、熱収縮性フィルムの加熱収縮時におけるその収縮力の伝達性や、収縮処理後における熱可塑性樹脂フィルムの処理物、すなわち得られた位相差板よりの収縮後の熱収縮性フィルムの分離性などの点より粘着剤が好ましく用いられる。   An adhesive may be used for bonding the heat-shrinkable film and the thermoplastic resin film. In particular, the heat transfer property of heat-shrinkable film during heat shrinkage, and the shrinkage of the heat-shrinkable film after shrinkage from the processed thermoplastic resin film after shrinkage treatment, that is, the obtained retardation plate An adhesive is preferably used from the viewpoint of properties.

前記の粘着剤としては、例えばアクリル系やシリコーン系、ポリエステル系やポリウレタン系、ポリエーテル系やゴム系などの適宜なものを用いることができ、特に限定はない。熱収縮性フィルムの加熱収縮処理で接着力が可及的に上昇しにくい粘着層を形成するものが好ましく用いられる。   As said adhesive, appropriate things, such as an acrylic type, a silicone type, a polyester type, a polyurethane type, a polyether type, and a rubber type, can be used, for example, There is no limitation in particular. What forms the adhesion layer in which the adhesive force hardly increases as much as possible by the heat shrink treatment of the heat shrinkable film is preferably used.

上記の粘着層は、熱可塑性樹脂フィルムと熱収縮性フィルムの接着時にその一方又は両方の接着面に付設することもできるが、形成された位相差板と熱収縮性フィルムの分離時にその熱収縮性フィルムに粘着層が随伴した状態で分離できることが製造効率等の点より好ましいことから、予め熱収縮性フィルムに粘着層を付設したものとして用いることが好ましい。   The pressure-sensitive adhesive layer can be attached to one or both of the adhesive surfaces when the thermoplastic resin film and the heat-shrinkable film are bonded, but when the formed retardation plate and the heat-shrinkable film are separated, the heat-shrinkable layer is attached. Since it is preferable from the viewpoint of production efficiency and the like that the adhesive film can be separated with the adhesive layer accompanied, the heat-shrinkable film is preferably used as the adhesive layer previously attached.

熱収縮性フィルムへの粘着層の付設は、粘着剤を熱収縮性フィルムに塗工して乾燥処理する方式などにても行いうるが、その乾燥処理等による熱収縮性フィルムの収縮特性の変化を防止する点などよりは、セパレータ上に設けた粘着層を熱収縮性フィルムに移着する方式などが好ましい。   Attaching the adhesive layer to the heat-shrinkable film can be done by applying a pressure-sensitive adhesive to the heat-shrinkable film and drying it, but the shrinkage characteristics of the heat-shrinkable film change due to the drying process. A method of transferring the pressure-sensitive adhesive layer provided on the separator to the heat-shrinkable film is preferable from the viewpoint of preventing the above.

前記の場合、セパレータはそのまま接着して熱収縮性フィルムを実用に供するまでの間、粘着層の汚染等を防止する保護カバーとして利用することもできる。粘着層を付設する熱収縮性フィルム面には、粘着層との密着力の向上を目的としたコロナ処理等の適宜な表面処理を施すことができる。   In the above case, the separator can be used as a protective cover for preventing the adhesive layer from being contaminated until the separator is adhered as it is and the heat-shrinkable film is put to practical use. The heat-shrinkable film surface to which the adhesive layer is attached can be subjected to an appropriate surface treatment such as corona treatment for the purpose of improving the adhesion with the adhesive layer.

本発明において熱収縮性フィルムは、熱可塑性樹脂フィルムを収縮処理する際に0.03kg/mm以上の加熱収縮力が作用するように、熱可塑性樹脂フィルムの片面又は両面に1枚又は2枚以上の適宜な数が接着される。その加熱収縮力の作用が0.03kg/mm未満では、熱可塑性樹脂フィルムを収縮(面内方向)させる力に乏しく、厚さ方向の屈折率の制御等による目的とした位相差特性を有する位相差板を安定して得ることができない。 In the present invention, one or two heat-shrinkable films are provided on one or both sides of the thermoplastic resin film so that a heat shrinkage force of 0.03 kg / mm 2 or more acts when the thermoplastic resin film is shrunk. The appropriate number of the above is adhered. If the action of the heat shrinkage force is less than 0.03 kg / mm 2, the force for shrinking the thermoplastic resin film (in-plane direction) is poor, and it has the desired retardation characteristics by controlling the refractive index in the thickness direction. A retardation plate cannot be obtained stably.

目的とする位相差特性の安定した付与の点より好ましい前記した熱収縮性フィルムの接着状態は、0.04kg/mm以上、就中0.05kg/mm以上の加熱収縮力が作用するようにしたものである。一方、当該加熱収縮力の上限については特に限定はない。一般には処理時の操作性などの点より5kg/mm以下、就中1kg/mm以下、特に0.5kg/mm以下とされる。 Stable adhesion state of the preferred aforementioned heat-shrinkable film from the point of application of the retardation characteristics of interest, 0.04 kg / mm 2 or more, so that especially 0.05 kg / mm 2 or more heat shrinking force acts It is a thing. On the other hand, there is no particular limitation on the upper limit of the heating shrinkage force. In general, it is 5 kg / mm 2 or less, especially 1 kg / mm 2 or less, particularly 0.5 kg / mm 2 or less in terms of operability during processing.

また前記において熱可塑性樹脂フィルムへの熱収縮性フィルムの接着に際しては、熱収縮性フィルムによる最大加熱収縮方向が熱可塑性樹脂フィルムの幅方向又は長さ方向に対して90±5度以内の交差角となるように接着される。これにより、収縮による配向角の変動を抑制して用いた熱可塑性樹脂フィルムにおける元の配向角を良好に維持した位相差板を得ることができる。   In the above, when the heat-shrinkable film is bonded to the thermoplastic resin film, the maximum heat shrinkage direction by the heat-shrinkable film is within 90 ± 5 degrees with respect to the width direction or length direction of the thermoplastic resin film. Glued to become Thereby, the phase difference plate which maintained the original orientation angle favorably in the thermoplastic resin film used suppressing the fluctuation | variation of the orientation angle by shrinkage | contraction can be obtained.

前記の配向角は、熱可塑性樹脂フィルム又は位相差板の縦又は横方向の一方を基準とした遅相軸又は進相軸の方位角として定義される。特に熱可塑性樹脂フィルムの場合には、幅(横)方向を基準とした遅相軸の方位角として定義される。従って前記した収縮による配向角の変動の抑制は、配向角の一定性に優れてそのバラツキが少ない位相差板を得ることを意味する。ちなみに配向角のバラツキが大きい位相差板では、それを位相差板と組合せて液晶セルに適用した場合にコントラストに乏しい液晶表示装置となる不具合などが発生する。   The orientation angle is defined as the azimuth angle of the slow axis or the fast axis based on one of the longitudinal direction and the lateral direction of the thermoplastic resin film or the retardation film. Particularly in the case of a thermoplastic resin film, it is defined as the azimuth angle of the slow axis with reference to the width (lateral) direction. Therefore, the suppression of the change in the orientation angle due to the shrinkage described above means that a retardation plate having excellent orientation angle uniformity and little variation is obtained. Incidentally, in the case of a phase difference plate having a large variation in the orientation angle, when it is applied to a liquid crystal cell in combination with the phase difference plate, a problem such as a liquid crystal display device with poor contrast occurs.

なお上記において熱収縮性フィルムを熱可塑性樹脂フィルムの両面に接着する場合や片面に複層を接着する場合、その表裏面や上下層における熱収縮性フィルムは、同じものであってもよいし、熱収縮率等の熱収縮特性が相違するものなどであってもよい。   In addition, when adhering the heat-shrinkable film on both sides of the thermoplastic resin film or adhering a multilayer on one side, the heat-shrinkable film on the front and back surfaces and the upper and lower layers may be the same, Those having different heat shrinkage characteristics such as heat shrinkage ratio may be used.

熱可塑性樹脂フィルムに接着した熱収縮性フィルムの加熱収縮処理は、ロール延伸機やテンターや二軸延伸機等の適宜な延伸機を介して行うことができる。その処理温度は、上記したように熱可塑性樹脂フィルムのガラス転移温度の近傍、就中その±20℃の範囲内、特にガラス転移温度以上で行うことが処理操作の制御性などの点より好ましい。   The heat-shrinkage treatment of the heat-shrinkable film adhered to the thermoplastic resin film can be performed via an appropriate stretching machine such as a roll stretching machine, a tenter, or a biaxial stretching machine. As described above, the treatment temperature is preferably in the vicinity of the glass transition temperature of the thermoplastic resin film, in particular within the range of ± 20 ° C., particularly above the glass transition temperature, from the viewpoint of controllability of the treatment operation.

また加熱による熱収縮性フィルムの収縮力の作用下に熱可塑性樹脂フィルムに与える収縮処理は、上記したように熱可塑性樹脂フィルムの幅方向と長さ方向のいずれか一方であってもよいし、両方であってもよく、形成目的の位相差板に応じて適宜に決定することができる。   Further, the shrinkage treatment given to the thermoplastic resin film under the action of the shrinkage force of the heat-shrinkable film by heating may be either the width direction or the length direction of the thermoplastic resin film as described above, Both may be sufficient and can be determined as appropriate according to the retardation plate to be formed.

前記した幅方向又は長さ方向の収縮処理方向の制御は、熱収縮性フィルムにおける幅方向と長さ方向の収縮率の相違を介して行うことができる。すなわち例えば、長さ方向(幅方向)よりも幅方向(長さ方向)の収縮率が大きい熱収縮性フィルムを用いることにより、その幅方向(長さ方向)に対応した方向に熱可塑性樹脂フィルムを収縮処理することができる。   The above-described shrinkage treatment direction in the width direction or the length direction can be controlled through the difference in shrinkage ratio between the width direction and the length direction in the heat-shrinkable film. That is, for example, by using a heat-shrinkable film having a larger shrinkage rate in the width direction (length direction) than in the length direction (width direction), a thermoplastic resin film in a direction corresponding to the width direction (length direction). Can be shrunk.

なお前記において幅方向と長さ方向のいずれか一方に収縮処理を与える場合、他方の方向には延伸処理を与えることもできる。また熱収縮性フィルムの収縮力の作用下に熱可塑性樹脂フィルムに与える収縮処理は、2回又は3回以上の工程に分けて行うこともできる。   In the above description, when the shrinkage treatment is applied to one of the width direction and the length direction, a stretching treatment can be applied to the other direction. Further, the shrinkage treatment applied to the thermoplastic resin film under the action of the shrinkage force of the heat-shrinkable film can be performed in two or three or more steps.

熱可塑性樹脂フィルムに対する必要な収縮処理を終えると、形成された位相差板より収縮処理後の熱収縮性フィルムが剥離されてそれらが分離される。得られた位相差板は、そのまま実用に共することもできるし、それにさらに延伸処理等を加えて位相差特性を調節したものとして実用に共することもできる。   When the necessary shrinkage treatment for the thermoplastic resin film is completed, the heat-shrinkable film after the shrinkage treatment is peeled off from the formed retardation plate and separated. The obtained retardation plate can be used practically as it is, or it can be used practically as a phase-adjustment characteristic is adjusted by adding a stretching process or the like.

本発明による製造方法は、各種の用途に応じた位相差特性を有する種々の位相差板の形成に好ましく適用することができる。就中、厚さ方向の屈折率を制御しうる点より、TN型やSTN型等の複屈折を示す液晶セルを用いたTFT型やMIM型等の種々の表示装置における視野角の拡大やコントラストの向上などを目的とした複屈折による位相差の補償などに好適な位相差板の形成に有利に適用しうる。   The production method according to the present invention can be preferably applied to the formation of various retardation films having retardation characteristics according to various applications. In particular, since the refractive index in the thickness direction can be controlled, the viewing angle and contrast of various display devices such as TFT type and MIM type using liquid crystal cells exhibiting birefringence such as TN type and STN type are increased. The present invention can be advantageously applied to the formation of a retardation plate suitable for compensation of retardation due to birefringence for the purpose of improving the above.

前記した位相差の補償に好ましく用いうる位相差板は、面内の主屈折率をnx、ny、厚さ方向の主屈折率をnzとしたとき、式:(nx+ny)/2<nzを満足し、かつ配向角(縦又は横方向の一方を基準とした遅相軸又は進相軸の方位角)が0±5度以内又は90±5度以内のものである。   The retardation plate that can be preferably used for the above-described retardation compensation satisfies the formula: (nx + ny) / 2 <nz, where in-plane main refractive index is nx, ny and thickness direction main refractive index is nz. In addition, the orientation angle (the azimuth angle of the slow axis or the fast axis with respect to one of the vertical and horizontal directions) is within 0 ± 5 degrees or within 90 ± 5 degrees.

また複屈折による位相差と配向軸(前記配向角)のバラツキが可及的に小さく、就中そのフィルム面に垂直な(正面方向の)透過光における位相差のバラツキが10nm以下、就中8nm以下、特に5nm以下で、配向軸のバラツキが8度以内、就中5度以内、特に3度以内である位相差板が位相差の補償に好ましく用いることができる。   Further, the variation in retardation and orientation axis (the orientation angle) due to birefringence is as small as possible, and in particular, the variation in retardation in transmitted light perpendicular to the film surface (in the front direction) is 10 nm or less, especially 8 nm. Hereinafter, a retardation plate having an alignment axis variation of 8 degrees or less, particularly 5 degrees or less, and particularly 3 degrees or less, particularly 5 nm or less, can be preferably used for phase difference compensation.

実施例1
ベルト流延法による厚さ65μmの長尺ポリエステルフィルムの両面に、加熱収縮力が0.11kg/mmの延伸ポリエステルフィルムをそれに付設したアクリル系粘着層を介して1枚づつ最大加熱収縮方向が長尺ポリエステルフィルムの長さ方向に対し88度の交差角となるように接着した後(反時計方向を正方向、以下同じ)、それをテンターを介し160℃で幅方向に9%の収縮処理を施して延伸ポリエステルフィルムを剥離し、厚さ71μmの位相差板を連続して得た。
Example 1
On both sides of the long polyester film having a thickness of 65μm by the belt casting method, via an acrylic adhesive layer was attached to it stretched polyester film of the heat shrinking force is 0.11 kg / mm 2 is one by one maximum heating shrinkage direction After bonding so that the crossing angle is 88 degrees with respect to the length direction of the long polyester film (the counterclockwise direction is the positive direction, the same shall apply hereinafter), it is contracted by 9% in the width direction at 160 ° C. via a tenter. The stretched polyester film was peeled off to obtain a 71 μm thick retardation plate continuously.

実施例2
ベルト流延法による厚さ65μmの長尺ポリカーボネートフィルムの両面に、加熱収縮力が0.07kg/mmの延伸ポリプロピレンフィルムをそれに付設したアクリル系粘着層を介して1枚づつ最大加熱収縮方向が長尺ポリカーボネートフィルムの幅方向に対し93度の交差角となるように接着した後、それを155℃のロール延伸機を介しロール速比0.96倍にて長さ方向に4%の収縮処理を施して延伸ポリプロピレンフィルムを剥離し、厚さ77μmの位相差板を連続して得た。
Example 2
On both sides of the long polycarbonate film having a thickness of 65μm by the belt casting method, via an acrylic adhesive layer was attached to it a stretched polypropylene film of the heat shrinking force is 0.07 kg / mm 2 is one by one maximum heating shrinkage direction After bonding so that the crossing angle is 93 degrees with respect to the width direction of the long polycarbonate film, it is contracted by 4% in the length direction at a roll speed ratio of 0.96 times through a roll stretching machine at 155 ° C. The stretched polypropylene film was peeled off to obtain a retardation plate having a thickness of 77 μm continuously.

実施例3
ベルト流延法による厚さ70μmの長尺ポリエステルフィルムの両面に、加熱収縮力が0.03kg/mmの延伸ポリスチレンフィルムをそれに付設したアクリル系粘着層を介して1枚づつ最大加熱収縮方向が長尺ポリエステルフィルムの幅方向に対し91度の交差角となるように接着した後、それをロール延伸機とテンターを介して150℃で長さ方向に4%、幅方向に5%の収縮処理を施して延伸ポリスチレンフィルムを剥離し、厚さ75μmの位相差板を連続して得た。
Example 3
On both sides of the long polyester film having a thickness of 70μm by the belt casting method, via an acrylic adhesive layer was attached to it stretched polystyrene film of heat shrinkage force is 0.03 kg / mm 2 is one by one maximum heating shrinkage direction After adhering to the crossing angle of 91 degrees with respect to the width direction of the long polyester film, it is subjected to shrinkage treatment of 4% in the length direction and 5% in the width direction at 150 ° C. through a roll stretching machine and a tenter. The stretched polystyrene film was peeled off to obtain a 75 μm thick retardation plate continuously.

比較例1
ベルト流延法による厚さ65μmの長尺ポリエステルフィルムの両面に、加熱収縮力が0.01kg/mmの延伸ポリエステルフィルムをそれに付設したアクリル系粘着層を介して1枚づつ最大加熱収縮方向が長尺ポリエステルフィルムの長さ方向に対し88度の交差角となるように接着した後、それを155℃のロール延伸機を介しロール速比0.96倍にて長さ方向に収縮するように処理して延伸ポリエステルフィルムを剥離し、厚さ65μmの位相差板を連続して得た。
Comparative Example 1
On both sides of the long polyester film having a thickness of 65μm by the belt casting method, via an acrylic adhesive layer was attached to it stretched polyester film of the heat shrinking force is 0.01 kg / mm 2 is one by one maximum heating shrinkage direction After bonding so that the crossing angle is 88 degrees with respect to the length direction of the long polyester film, it is contracted in the length direction at a roll speed ratio of 0.96 times through a roll stretching machine at 155 ° C. The stretched polyester film was peeled off by treatment, and a retardation plate having a thickness of 65 μm was continuously obtained.

比較例2
延伸ポリプロピレンフィルムをその最大加熱収縮方向が長尺ポリカーボネートフィルムの幅方向に対し80度の交差角となるように接着したほかは実施例2に準じて厚さ77μmの位相差板を得た。
Comparative Example 2
A retardation plate having a thickness of 77 μm was obtained in the same manner as in Example 2 except that the stretched polypropylene film was bonded such that the maximum heat shrinkage direction was 80 ° with respect to the width direction of the long polycarbonate film.

評価試験
実施例、比較例で得た位相差板について、自動複屈折計(王子計測器社製、KOBRA−21ADH)にてnx、ny、nzを調べ、それより式:P=(nx+ny)/2−nzに基づいてP値を算出すると共に、配向角を調べた。なお配向角は、処理対象の長尺フィルムにおける長さ(縦)方向を基準(0度)として遅相軸との方位角に基づき、反時計方向を正方向とした。
Evaluation Test About the retardation plates obtained in Examples and Comparative Examples, nx, ny, and nz were examined with an automatic birefringence meter (manufactured by Oji Scientific Instruments, KOBRA-21ADH), and the formula: P = (nx + ny) / While calculating P value based on 2-nz, the orientation angle was investigated. The orientation angle of the long film to be treated was defined as the positive direction in the counterclockwise direction based on the azimuth angle with the slow axis with the length (longitudinal) direction as the reference (0 degree).

前記の結果を次表に示した。
nx ny nz P 値 配向角(度)
実施例1 1.5853 1.5836 1.5860 −0.0016 −1.6
実施例2 1.5848 1.5831 1.5871 −0.0032 −88.1
実施例3 1.5850 1.5838 1.5862 −0.0018 0.5
比較例1 1.5854 1.5853 1.5843 0.0010 88.5
比較例2 1.5848 1.5831 1.5871 −0.0032 79.5
The results are shown in the following table.
nx ny nz P value Orientation angle (degrees)
Example 1 1.5853 1.5836 1.5860 −0.0016 −1.6
Example 2 1.5848 1.5831 1.5871 −0.0032 −88.1
Example 3 1.5850 1.5838 1.5862 -0.0018 0.5
Comparative Example 1 1.5854 1.5853 1.5843 0.0010 88.5
Comparative Example 2 1.5848 1.5831 1.5871 -0.0032 79.5

前記において、比較例1では設定した収縮処理が達成されず目的としたP<0の特性を満足するものは得られなかった。また収縮処理過程ではロール間での張力が得られずフィルムが蛇行して走行安定性に乏しかった。比較例2においては配向角0±5度以内又は90±5度以内の特性を満足するものは得られなかった。   In Comparative Example 1, the set shrinkage treatment was not achieved, and the desired P <0 characteristic was not obtained. Also, during the shrinking process, no tension was obtained between the rolls, and the film meandered and the running stability was poor. In Comparative Example 2, those satisfying the characteristics with an orientation angle of 0 ± 5 degrees or 90 ± 5 degrees were not obtained.

前記の実施例で得た各位相差板をTN型液晶セルの両側に配置してその上に偏光板を置き、正面方向のコントラストと視角変化による表示特性を調べたところ、コントラストに優れて広い視角範囲で表示特性に変化はなく、視認性に優れる高表示品位の液晶表示装置であった。


特許出願人 日東電工株式会社
代 理 人 藤 本 勉
Each retardation plate obtained in the above example was placed on both sides of a TN type liquid crystal cell, and a polarizing plate was placed on it, and the display characteristics due to the contrast in the front direction and the change in viewing angle were examined. There was no change in display characteristics in the range, and the liquid crystal display device was of high display quality and excellent in visibility.


Patent applicant Nitto Denko Corporation
Agent Tsutomu Fujimoto

Claims (3)

熱可塑性樹脂フィルムの片面又は両面に熱収縮性フィルムをその最大加熱収縮方向が熱可塑性樹脂フィルムの幅方向又は長さ方向に対し90±5度以内の交差角となるように接着し、その熱収縮性フィルムによる0.03kg/mm以上の加熱収縮力の作用下に前記熱可塑性樹脂フィルムを収縮させることを特徴とする位相差板の製造方法。 Adhere the heat-shrinkable film to one or both sides of the thermoplastic resin film so that the maximum heat shrinkage direction is an intersection angle within 90 ± 5 degrees with respect to the width direction or length direction of the thermoplastic resin film. A method for producing a retardation plate, comprising shrinking the thermoplastic resin film under the action of a heat shrinkage force of 0.03 kg / mm 2 or more by a shrinkable film. 請求項1において、熱可塑性樹脂フィルムに正の複屈折特性を示す熱可塑性樹脂からなる長尺フィルムを用いて位相差板を連続的に得る製造方法。   The manufacturing method according to claim 1, wherein a retardation film is continuously obtained by using a long film made of a thermoplastic resin exhibiting positive birefringence characteristics as the thermoplastic resin film. 請求項1又2において、熱可塑性樹脂フィルムを幅方向又は長さ方向あるいはその両方向に収縮させる位相差板の製造方法。   3. The method for producing a retardation plate according to claim 1, wherein the thermoplastic resin film is contracted in the width direction, the length direction, or both directions.
JP2008262465A 2008-10-09 2008-10-09 Method of manufacturing retardation plate Pending JP2009058963A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008262465A JP2009058963A (en) 2008-10-09 2008-10-09 Method of manufacturing retardation plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008262465A JP2009058963A (en) 2008-10-09 2008-10-09 Method of manufacturing retardation plate

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP11235006A Division JP2001059907A (en) 1999-08-23 1999-08-23 Phase difference sheet and production thereof

Publications (1)

Publication Number Publication Date
JP2009058963A true JP2009058963A (en) 2009-03-19

Family

ID=40554693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008262465A Pending JP2009058963A (en) 2008-10-09 2008-10-09 Method of manufacturing retardation plate

Country Status (1)

Country Link
JP (1) JP2009058963A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05157911A (en) * 1990-10-24 1993-06-25 Nitto Denko Corp Birefringent film and its manufacture, phase difference plate, elliptic polarizing plate and liquid crystal display device
JPH05323120A (en) * 1992-05-21 1993-12-07 Fuji Photo Film Co Ltd Production of double refraction film, phase shifter and liquid crystal display device
JPH11125716A (en) * 1997-10-20 1999-05-11 Nitto Denko Corp Phase difference plate, its production, elliptical polarizing plate and liquid crystal display device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05157911A (en) * 1990-10-24 1993-06-25 Nitto Denko Corp Birefringent film and its manufacture, phase difference plate, elliptic polarizing plate and liquid crystal display device
JPH05323120A (en) * 1992-05-21 1993-12-07 Fuji Photo Film Co Ltd Production of double refraction film, phase shifter and liquid crystal display device
JPH11125716A (en) * 1997-10-20 1999-05-11 Nitto Denko Corp Phase difference plate, its production, elliptical polarizing plate and liquid crystal display device

Similar Documents

Publication Publication Date Title
JP4790890B2 (en) Retardation film and continuous production method thereof
JP2003121641A (en) Laminated optical retardation film, polarizing member and liquid crystal display device
JP2004004150A (en) Laminated phase differential film and liquid crystal display device using the same
JP2003121642A (en) Wide viewing angle polarizing plate and liquid crystal display device
JP2000190385A (en) Manufacture of optical film, optical film and liquid crystal display
JP2008281667A (en) Method for producing retardation film
JP2009223163A (en) Retardation film
JP2018077522A (en) Polarizing plate, image display unit, and liquid crystal display
WO2015072486A1 (en) Method for producing retardation film
JP2010048889A (en) Method for producing retardation film
JPH0862422A (en) Phase difference film and its manufacture
JP2001059907A (en) Phase difference sheet and production thereof
JP4754510B2 (en) Manufacturing method of polarizer
JP2001147323A (en) Laminated phase difference plate, elliptically polarizing plate and liquid crystal display device
JP2008275812A (en) Retardation film with controlled refractive index in thickness direction and method for manufacturing film
JPH07230007A (en) Production of phase difference film
JP2001013324A (en) Production of phase difference plate
JP2009058963A (en) Method of manufacturing retardation plate
JP2000056131A (en) Phase difference plate, laminated polarizing plate and liquid crystal display device
JP4224390B2 (en) Method for producing birefringent film
JP2007017816A (en) Optical compensation film comprising thermoplastic norbornene-based resin
JP2006330650A (en) Phase difference film, polarizing plate with optical compensation, and manufacturing method thereof
JP2000162436A (en) Manufacturing method for phase difference film, optical member, and liquid crystal display device
JP2000304924A (en) Phase plate and its continuous manufacture
JP2000111732A (en) Production of three-dimensional double refractive film

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110315

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110712