JPH07230007A - Production of phase difference film - Google Patents

Production of phase difference film

Info

Publication number
JPH07230007A
JPH07230007A JP6316691A JP31669194A JPH07230007A JP H07230007 A JPH07230007 A JP H07230007A JP 6316691 A JP6316691 A JP 6316691A JP 31669194 A JP31669194 A JP 31669194A JP H07230007 A JPH07230007 A JP H07230007A
Authority
JP
Japan
Prior art keywords
film
heat
shrinkable
uniaxially stretched
thermoplastic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6316691A
Other languages
Japanese (ja)
Other versions
JP3168850B2 (en
Inventor
Keiichi Mizuguchi
圭一 水口
Hideki Shimomura
秀樹 下村
Kazuaki Sakakura
和明 坂倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP31669194A priority Critical patent/JP3168850B2/en
Publication of JPH07230007A publication Critical patent/JPH07230007A/en
Application granted granted Critical
Publication of JP3168850B2 publication Critical patent/JP3168850B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a process for production which is easily dealable with a change of retardation and is efficient by sticking heat shrinkable films to a uniaxially stretched thermoplastic resin film and thermally shrinking these films. CONSTITUTION:The heat shrinkable films are stuck to one or both surfaces of the uniaxially stretched thermoplastic resin film and are heated in such a manner that the axial direction of the thermal shrinkage of these heat shrinkable films intersects orthogonally with the stretching axial direction of the uniaxially stretched thermoplastic resin film. The uniaxially stretched thermoplastic resin film, then, shrinks in the stretching axial direction and shrinks in the direction orthogonal with the stretching axial direction or its expansion is suppressed. The retardation ratio R40/R0 and/or retardation value of the uniaxially stretched thermoplastic resin film is thus changed. Where R40 denotes the retardation measured in the state of inclining the phase film at 40 deg. from horizontal and R0 denotes the retardation measured in the state of not inclining the film.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は位相差フィルムの製造方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a retardation film.

【0002】[0002]

【従来の技術および発明が解決しようとする課題】液晶
表示装置の視野角特性は、例えば液晶セル、偏光板と位
相差フィルムとを組み合わせたときの複屈折性の角度依
存性に大きく依存しており、これらの角度依存性が小さ
いほど好ましいことが知られている。また液晶表示装置
の構成によっては位相差フィルム自体の複屈折性すなわ
ちレターデーションの角度依存性が小さいものが要求さ
れる場合もある。
2. Description of the Related Art Viewing angle characteristics of a liquid crystal display device largely depend on the angle dependence of birefringence when a liquid crystal cell, a polarizing plate and a retardation film are combined. It is known that the smaller the angle dependence of these, the better. Depending on the structure of the liquid crystal display device, the retardation film itself may be required to have a small birefringence, that is, a retardation having a small angle dependency.

【0003】位相差フィルムのレターデーションの角度
依存性は、セナルモンコンペンセ−タ−を装備した偏光
顕微鏡において、正の固有複屈折性を有する熱可塑性樹
脂からなる位相差フィルムの場合には遅相軸を、また負
の固有複屈折性を有する熱可塑性樹脂からなる位相差フ
ィルムの場合には進相軸を、それぞれ回転軸として、位
相差フィルムを水平から40度傾斜させた状態で測定し
たレターデーション(R40)と、傾けない状態(水平状
態)で測定したレターデーション(R0 、本発明におい
て単にレターデーション値と言う場合はR0 を指す)と
のレターデーション比(R40/R0 )を用いて表され、
このレターデーション比が1に近いほど、位相差フィル
ム自体のレターデーションの角度依存性が小さいことに
なる。
The angle dependence of the retardation of retardation film is slow in the case of a retardation film made of a thermoplastic resin having a positive intrinsic birefringence in a polarizing microscope equipped with a Senarmont compensator. The retardation film was measured with the phase axis and, in the case of a retardation film made of a thermoplastic resin having a negative intrinsic birefringence, the fast axis as the axis of rotation, respectively, with the retardation film inclined from the horizontal by 40 degrees. retardation (R 40) and, tilted state without retardation measured in (horizontal state) (R 0, if referred to simply as the retardation value in the present invention refers to a R 0) and the retardation ratio (R 40 / R 0 ),
The closer this retardation ratio is to 1, the smaller the angle dependence of the retardation of the retardation film itself.

【0004】また液晶セル、偏光板と位相差フィルムと
を組み合わせたときの複屈折性の角度依存性を小さくす
るためには、使用する液晶セル、偏光板に応じて位相差
フィルムのR40/R0 の値を調節することが必要とな
る。
Further, in order to reduce the angle dependence of birefringence when a liquid crystal cell and a polarizing plate are combined with a retardation film, R 40 / of the retardation film is used depending on the liquid crystal cell and the polarizing plate to be used. It will be necessary to adjust the value of R 0 .

【0005】レターデーションの角度依存性が小さい位
相差フィルムの製造方法としては、フィルム面法線方向
に分子が配向しているフィルムを延伸する方法(特開平
2−160204号公報)、ポリマ−の液状物を電界の
印加下で成膜したフィルムを延伸する方法(特開平2−
285303号公報)等が知られているが、製造効率の
点で満足できるものとは言いがたい。また、樹脂フィル
ムに収縮性フィルムを接着してこれを加熱延伸処理する
方法(特開平5−157911号公報)も知られてお
り、この方法によれば製造効率の点についてはある程度
改善されている。
As a method for producing a retardation film having a small angle dependence of retardation, a method of stretching a film in which molecules are oriented in a direction normal to the film surface (JP-A-2-160204), a polymer A method for stretching a film formed by applying a liquid material under application of an electric field (JP-A-2-
No. 285303) is known, but it is hard to say that it is satisfactory in terms of manufacturing efficiency. There is also known a method of adhering a shrinkable film to a resin film and subjecting it to a heat-stretching treatment (Japanese Patent Laid-Open No. 157911/1993), which improves the production efficiency to some extent. .

【0006】しかしながら、近年液晶表示装置の適用分
野が拡大するに伴い、用途に合わせたレターデーション
値の異なる種々の位相差フィルムが要求される状況下で
は、かかる方法は必ずしも満足できるものではなく、要
求される位相差フィルムに合わせてそのレターデーショ
ン値を変えることを容易に行いうる位相差フィルムの製
造方法が望まれていた。
However, with the recent expansion of application fields of liquid crystal display devices, under the situation where various retardation films having different retardation values according to the use are required, such a method is not always satisfactory, There has been a demand for a method for producing a retardation film, which can easily change the retardation value according to the required retardation film.

【0007】また上記した如く液晶セル、偏光板と位相
差フィルムとを組み合わせたときの複屈折性の角度依存
性を小さくするために、位相差フィルムのR40/R0
要求される値に容易に調節できる位相差フィルムの製造
方法が望まれていた。
Further, in order to reduce the angle dependence of birefringence when a liquid crystal cell, a polarizing plate and a retardation film are combined as described above, R 40 / R 0 of the retardation film is set to a required value. A method for producing a retardation film that can be easily adjusted has been desired.

【0008】[0008]

【課題を解決するための手段】本発明の目的はR40/R
0 の値を容易に調節し得、レターデーションの変更にも
容易に対応可能でかつ製造効率のよい位相差フィルムの
製造方法を提供することにある。本発明の別の目的は、
角度依存性の低い位相差フィルムを効率良く製造する方
法で、かつそのレターデーションの変更にも容易に対応
可能な方法を提供することにある。これらのそして他の
目的は以下の記載から明らかとなる。
The object of the present invention is R 40 / R
It is an object of the present invention to provide a method for producing a retardation film, in which the value of 0 can be easily adjusted, the retardation can be easily changed, and the production efficiency is high. Another object of the present invention is to
It is an object of the present invention to provide a method for efficiently producing a retardation film having a low angle dependence, and a method capable of easily responding to changes in its retardation. These and other objects will be apparent from the description below.

【0009】本発明者らは位相差フィルムの製造方法に
つき検討を行った結果、一軸延伸された熱可塑性樹脂フ
ィルムに熱収縮性フィルムを特定方向に貼合し、これを
熱収縮させる方法が上記目的を達成することを見いだ
し、さらに検討を加えて本発明を完成するに至った。
The inventors of the present invention conducted a study on a method for producing a retardation film, and as a result, the method of laminating a uniaxially stretched thermoplastic resin film with a heat-shrinkable film in a specific direction and heat-shrinking the same was described above. It was found that the object was achieved, and further studies were conducted to complete the present invention.

【0010】即ち本発明は、一軸延伸された熱可塑性樹
脂フィルムの少なくとも片面に、熱収縮性フィルムを、
該熱収縮性フィルムの熱収縮軸方向が一軸延伸された熱
可塑性樹脂フィルムの延伸軸方向と直交するように貼合
し、熱収縮させた後、該熱収縮性フィルムを剥離除去す
ることを特徴とする位相差フィルムの製造方法、および
一軸延伸された熱可塑性樹脂フィルムの少なくとも片面
に、熱収縮性フィルムを、該熱収縮性フィルムの熱収縮
軸方向が一軸延伸された熱可塑性樹脂フィルムの延伸軸
方向と直交するように貼合し、該熱収縮性フィルムを熱
平衡化させることを特徴とする位相差フィルムの製造方
法に関するものである。
That is, according to the present invention, a heat-shrinkable film is provided on at least one surface of a uniaxially stretched thermoplastic resin film.
The heat-shrinkable film is laminated so that the heat-shrinkable axial direction is orthogonal to the uniaxially stretched thermoplastic resin film, and the heat-shrinkable film is peeled off after heat-shrinking. A method for producing a retardation film, and at least one surface of a uniaxially stretched thermoplastic resin film, a heat-shrinkable film, the heat-shrinkable film stretched uniaxially in the heat-shrinkable axial direction of the thermoplastic resin film The present invention relates to a method for producing a retardation film, which comprises laminating the heat-shrinkable film so as to be orthogonal to the axial direction and thermally equilibrating the heat-shrinkable film.

【0011】以下、本発明を詳細に説明する。一軸延伸
された熱可塑性樹脂フィルムの片面又は両面に、熱収縮
性フィルムを、該熱収縮性フィルムの熱収縮軸方向が一
軸延伸された熱可塑性樹脂フィルムの延伸軸方向と直交
するように貼合し加熱すると、一軸延伸された熱可塑性
樹脂フィルムはその延伸軸方向に収縮するとともに、該
延伸軸方向と直交する方向に収縮するか又はその膨張が
抑制され、一軸延伸された熱可塑性樹脂フィルムの前記
レターデーション比(R40/R0 )および/またはレタ
ーデーション値が変化する。
The present invention will be described in detail below. A heat-shrinkable film is attached to one side or both sides of the uniaxially stretched thermoplastic resin film so that the heat-shrinkable axial direction of the heat-shrinkable film is orthogonal to the stretched axial direction of the uniaxially stretched thermoplastic resin film. When heated, the uniaxially stretched thermoplastic resin film shrinks in the stretching axis direction, and shrinks in a direction orthogonal to the stretching axis direction or its expansion is suppressed, and the uniaxially stretched thermoplastic resin film The retardation ratio (R 40 / R 0 ) and / or the retardation value changes.

【0012】一軸延伸された熱可塑性樹脂フィルムにお
いて用いられる熱可塑性樹脂としては、正、負いずれの
固有複屈折特性を示す熱可塑性樹脂であってもよいが、
透明性等の光学特性に優れたものが好ましい。正の固有
複屈折特性を示す樹脂とは、延伸により延伸軸方向の屈
折率が増大するものであり、負の固有複屈折特性を示す
樹脂とは、延伸により延伸軸方向の屈折率が減少するも
のである。
The thermoplastic resin used in the uniaxially stretched thermoplastic resin film may be either a positive or negative intrinsic birefringent thermoplastic resin.
Those having excellent optical properties such as transparency are preferable. A resin exhibiting a positive intrinsic birefringence property is one in which the refractive index in the stretching axis direction is increased by stretching, and a resin exhibiting a negative intrinsic birefringence property is decreasing in the stretching axis direction by stretching. It is a thing.

【0013】正の固有複屈折特性を示す熱可塑性樹脂と
しては、例えば、ポリカ−ボネ−ト、ポリスルホン、ポ
リアリレ−ト、ポリエ−テルスルホン、ポリビニルアル
コ−ル、酢酸セルロ−ス等が挙げられ、負の固有複屈折
特性を示す熱可塑性樹脂としては、例えば、ポリスチレ
ン、スチレン・無水マレイン酸共重合体、ポリメチルメ
タクリレ−ト、ポリ−α−メチルスチレン、ポリビニル
ピリジン、ポリビニルナフタレン等が挙げられる。光学
特性の点でポリカ−ボネ−ト、ポリスルホン、ポリアリ
レ−ト、ポリスチレン等が好ましい。
Examples of the thermoplastic resin exhibiting a positive intrinsic birefringence include, for example, polycarbonate, polysulfone, polyarylate, polyethersulfone, polyvinyl alcohol, cellulose acetate and the like. Examples of the thermoplastic resin exhibiting the intrinsic birefringence property include polystyrene, styrene / maleic anhydride copolymer, polymethylmethacrylate, poly-α-methylstyrene, polyvinylpyridine, polyvinylnaphthalene, and the like. From the viewpoint of optical properties, polycarbonate, polysulfone, polyarylate, polystyrene and the like are preferable.

【0014】一軸延伸された熱可塑性樹脂フィルムは、
例えば、いわゆる溶剤キャスト法によって作製された熱
可塑性樹脂フィルムを、縦一軸延伸法、横一軸延伸法等
の方法で一軸延伸することにより得られる。延伸倍率は
例えば、1.2倍〜3倍程度である。
The uniaxially stretched thermoplastic resin film is
For example, it can be obtained by uniaxially stretching a thermoplastic resin film produced by a so-called solvent casting method by a method such as a longitudinal uniaxial stretching method or a lateral uniaxial stretching method. The draw ratio is, for example, about 1.2 to 3 times.

【0015】一軸延伸された熱可塑性樹脂フィルムの厚
みは例えば、20〜200μm程度、レターデーション
値(フィルムの複屈折率(△n)と厚み(d)の積)
は、例えば100nm〜1000nm程度である。
The thickness of the uniaxially stretched thermoplastic resin film is, for example, about 20 to 200 μm, and the retardation value (product of film birefringence (Δn) and thickness (d)).
Is, for example, about 100 nm to 1000 nm.

【0016】熱収縮性フィルムとは、一般にその軟化温
度またはガラス転移温度以上に加熱することにより収縮
する性質を有するフィルムを言う。このようなフィルム
としては、例えば、ロ−ル間延伸法等で延伸された一軸
延伸フィルムや、チュ−ブラ−法、テンタ−法等で延伸
された二軸延伸フィルムが挙げられ、具体的には例え
ば、ポリエステル、ポリプロピレン、ポリカ−ボネ−
ト、ポリスチレン、ポリスルホン、ポリアミド、ポリエ
チレン、酢酸セルロ−ス等の樹脂からなる、一軸延伸フ
ィルムや二軸延伸フィルムが挙げられる。
The heat-shrinkable film generally means a film having a property of shrinking when heated to a temperature higher than its softening temperature or glass transition temperature. Examples of such a film include a uniaxially stretched film stretched by a roll-to-roll stretching method and the like, and a biaxially stretched film stretched by a tuber method and a tenter method. Are, for example, polyester, polypropylene, polycarbonate
Examples thereof include a uniaxially stretched film and a biaxially stretched film made of a resin such as a polyester, polystyrene, polysulfone, polyamide, polyethylene, and cellulose acetate.

【0017】熱収縮性フィルムの熱収縮軸方向とは、フ
ィルムが熱収縮する方向のことをいう。熱収縮性一軸延
伸フィルムの場合、一軸延伸軸方向に熱収縮し、熱収縮
性二軸延伸フィルムの場合、各延伸軸方向にそれぞれ熱
収縮する。
The heat-shrinking axial direction of the heat-shrinkable film means the direction in which the film heat-shrinks. In the case of a heat-shrinkable uniaxially stretched film, heat shrinks in the uniaxially stretched axis direction, and in the case of a heat shrinkable biaxially stretched film, heat shrinks in each of the stretched axis directions.

【0018】熱収縮性フィルムの熱平衡に達するまで熱
収縮したときの長さの収縮率(本発明においてはこれを
「熱平衡収縮率」と表すことがある)は製造時の延伸条
件等により異なるが、例えばその軟化温度またはガラス
転移温度以上で且つ融点未満の温度(本発明においては
これを「熱収縮温度」と表わすことがある)において5
〜70%程度である。
The shrinkage ratio of the length of the heat-shrinkable film when it is heat-shrinked until it reaches thermal equilibrium (this may be referred to as "heat-equilibrium shrinkage ratio" in the present invention) depends on the stretching conditions at the time of production. , For example, at a temperature above its softening temperature or glass transition temperature and below its melting point (this may be referred to as "heat shrinkage temperature" in the present invention) 5
It is about 70%.

【0019】熱収縮性フィルムの厚みは例えば、20μ
m〜200μm程度である。
The thickness of the heat-shrinkable film is, for example, 20 μm.
It is about m to 200 μm.

【0020】熱収縮性フィルムとしては、熱収縮温度に
おける長さの熱平衡収縮率(熱収縮性を有する二軸延伸
フィルム場合においては少なくともいずれか一方の熱平
衡収縮率)が、一軸延伸された熱可塑性樹脂フィルムの
延伸軸方向のそれよりも大きいものが好ましい。
The heat-shrinkable film has a length of the heat-equilibrium shrinkage at the heat-shrinking temperature (in the case of a biaxially stretched film having heat-shrinkability, at least one of the heat-equilibrium shrinkage) is uniaxially stretched thermoplastic resin. It is preferably larger than that of the resin film in the stretching axis direction.

【0021】一軸延伸された熱可塑性樹脂フィルムと熱
収縮性フィルムとの貼合体は、該一軸延伸された熱可塑
性樹脂フィルムの片面又は両面に、該熱収縮性フィルム
を、該熱収縮性フィルムの熱収縮軸方向が一軸延伸され
た熱可塑性樹脂フィルムの延伸軸方向と直交するように
貼合することによって得られる(本発明においてはこの
貼合体を単に「貼合体」と表わすことがある)。その貼
合方法は例えば、それぞれのフィルム自体の粘着力やア
クリル系粘着剤等の粘着剤を用いることによって行うこ
とができる。そして、貼合にあたっては、例えば、加圧
式貼合ロ−ル、テ−ブルタイプ貼合機等を用いることが
できる。
A laminated body of a uniaxially stretched thermoplastic resin film and a heat-shrinkable film has the heat-shrinkable film on one or both sides of the uniaxially stretched thermoplastic resin film. It is obtained by bonding so that the direction of the heat shrinkage axis is orthogonal to the direction of the stretching axis of the uniaxially stretched thermoplastic resin film (in the present invention, this bonded body may be simply referred to as "bonded body"). The laminating method can be carried out, for example, by using the adhesive strength of each film itself or an adhesive such as an acrylic adhesive. Then, upon laminating, for example, a pressure laminating roll, a table type laminating machine or the like can be used.

【0022】貼合体を熱収縮させる温度は、貼合体が熱
収縮を開始する温度以上で且つ用いたフィルムの融点未
満であれば特に制限はなく、用いる一軸延伸された熱可
塑性樹脂フィルムにより適宜選択される。例えば一軸延
伸された熱可塑性樹脂フィルムとしてポリカーボネート
を用いる場合には通常、160〜230℃、熱可塑性樹
脂フィルムとしてポリスルホンを用いる場合には通常、
180〜250℃、熱可塑性樹脂フィルムとしてポリス
チレンを用いる場合には通常、80〜150℃である。
The temperature for heat-shrinking the bonded body is not particularly limited as long as it is higher than the temperature at which the bonded body starts heat shrinkage and lower than the melting point of the film used, and is appropriately selected depending on the uniaxially stretched thermoplastic resin film used. To be done. For example, when using polycarbonate as the uniaxially stretched thermoplastic resin film, it is usually 160 to 230 ° C, and when using polysulfone as the thermoplastic resin film, it is usually
180 to 250 ° C, usually 80 to 150 ° C when polystyrene is used as the thermoplastic resin film.

【0023】貼合体の熱収縮の程度はその目的とする位
相差フィルムにより適宜決めることができるが、通常は
一軸延伸された熱可塑性樹脂フィルムの延伸軸方向の長
さの収縮率、該延伸軸と直交する方向の長さの収縮率と
してそれぞれ元の長さの通常、20%程度以下、好まし
くは1〜10%である。一般的には一軸延伸された熱可
塑性樹脂フィルムの延伸軸方向の長さの収縮率および、
該延伸軸と直交する方向の長さの収縮率を併せた貼合体
の面積の収縮率によってR40/R0 の値はほぼ決まる。
正の固有複屈折特性を示す熱可塑性樹脂を用いる場合に
は貼合体の面積の収縮率を高くするほど得られる位相差
フィルムのR40/R0 の値は減少する傾向にある。負の
固有複屈折特性を示す熱可塑性樹脂の場合にはその逆で
ある。貼合体の面積の収縮率は通常、40%以下好まし
くは1〜20%である。
The degree of heat shrinkage of the bonded body can be appropriately determined depending on the intended retardation film, but usually, the shrinkage ratio of the length of the uniaxially stretched thermoplastic resin film in the stretch axis direction, the stretch axis. The shrinkage ratio of the length in the direction orthogonal to is usually about 20% or less of the original length, preferably 1 to 10%. Generally, the shrinkage ratio of the length of the uniaxially stretched thermoplastic resin film in the stretch axis direction, and
The value of R 40 / R 0 is almost determined by the shrinkage ratio of the area of the bonded body including the shrinkage ratio of the length in the direction orthogonal to the stretching axis.
When a thermoplastic resin exhibiting a positive intrinsic birefringence characteristic is used, the R 40 / R 0 value of the retardation film obtained tends to decrease as the area shrinkage of the bonded body increases. The opposite is true for a thermoplastic resin that exhibits negative intrinsic birefringence properties. The shrinkage rate of the area of the bonded body is usually 40% or less, preferably 1 to 20%.

【0024】従って、液晶セル、偏光板と位相差フィル
ムとを組み合わせたときの複屈折性の角度依存性を小さ
くするために、上記の方法によって位相差フィルムのR
40/R0 の値を例えば、0.95、1.00、1.05
等の任意の値に容易に調節することができる。その範囲
は通常0.9〜1.1である。
Therefore, in order to reduce the angle dependence of the birefringence when the liquid crystal cell, the polarizing plate and the retardation film are combined, the R of the retardation film is reduced by the above method.
The value of 40 / R 0 is , for example, 0.95, 1.00, 1.05
Can be easily adjusted to any value. The range is usually 0.9 to 1.1.

【0025】得られる位相差フィルムのレタ−デ−ショ
ン値は、一軸延伸された熱可塑性樹脂フィルムのレター
デーション値や熱収縮性フィルムの貼合方向を調整する
ことにより、所望の値、例えば80nm〜1200nm
となるよう調節することができる。特に熱収縮性フィル
ムの貼合方向を調整することによって、あるレターデー
ション値の一軸延伸された熱可塑性樹脂フィルムから広
範囲のレターデーション値の位相差フィルムが任意にし
かも容易に得られる。また、例えば10nm程度の細か
い単位でレターデーション値を変えることも容易にでき
る。
The retardation value of the obtained retardation film is a desired value, for example, 80 nm by adjusting the retardation value of the uniaxially stretched thermoplastic resin film and the laminating direction of the heat-shrinkable film. ~ 1200nm
Can be adjusted to In particular, by adjusting the laminating direction of the heat-shrinkable film, a retardation film having a wide range of retardation values can be easily obtained arbitrarily from a uniaxially stretched thermoplastic resin film having a certain retardation value. Also, it is possible to easily change the retardation value in a fine unit of, for example, about 10 nm.

【0026】例えば熱収縮性フィルムを、該熱収縮性フ
ィルムの最大熱収縮軸方向(熱収縮性を有する一軸延伸
フィルムの場合は一軸延伸軸方向、熱収縮性二軸延伸フ
ィルムの場合は熱収縮率の大きい方の熱収縮軸方向)が
一軸延伸された熱可塑性樹脂フィルムの延伸軸方向と直
交するように貼合し、熱収縮させることにより、一軸延
伸された熱可塑性樹脂フィルムに比しレターデーション
値の増加した位相差フィルムが得られる。
For example, a heat-shrinkable film is treated with the maximum heat-shrinkable axial direction of the heat-shrinkable film (in the case of a uniaxially stretched film having heat shrinkability, a uniaxially stretched axial direction, and in the case of a heat shrinkable biaxially stretched film, a heat shrinkable film). The heat-shrinking axis (having the larger ratio) is laminated so that it is orthogonal to the stretching axis direction of the uniaxially stretched thermoplastic resin film, and heat-shrinked to form a letter as compared with the uniaxially stretched thermoplastic resin film. A retardation film having an increased foundation value can be obtained.

【0027】一方、熱収縮性二軸延伸フィルムの最大熱
収縮軸方向(熱収縮率の大きい方の熱収縮軸方向)が一
軸延伸された熱可塑性樹脂フィルムの延伸軸方向と平行
になるよう、すなわち熱収縮性フィルムの熱収縮率の小
さい方の熱収縮軸方向が一軸延伸された熱可塑性樹脂フ
ィルムの延伸軸方向に直交するよう貼合し、熱収縮させ
ることにより、一軸延伸された熱可塑性樹脂フィルムに
比しレターデーション値の減少した位相差フィルムが得
られる。
On the other hand, the maximum heat shrinkage axis direction of the heat shrinkable biaxially stretched film (the heat shrinkage axis direction having the larger heat shrinkage ratio) is parallel to the stretch axis direction of the uniaxially stretched thermoplastic resin film. That is, the heat-shrinkable film is laminated so that the heat-shrinkage axis having the smaller heat-shrinkage rate is orthogonal to the stretch axis direction of the uniaxially stretched thermoplastic resin film, and heat-shrinked to give the uniaxially stretched thermoplastic resin. A retardation film having a retardation value smaller than that of a resin film can be obtained.

【0028】一般に、貼合体の一軸延伸された熱可塑性
樹脂フィルムの延伸軸方向の長さの収縮率を大きくする
とレターデーション値は減少し、該延伸軸と直交する方
向の長さの収縮率を大きくするとレターデーション値は
増加する。従って、上記した熱収縮性を有するフィルム
の貼合方向の調整に、各方向(貼合体の一軸延伸された
熱可塑性樹脂フィルムの延伸軸方向および該延伸軸と直
交する方向)の長さの収縮率の調整を組み合わせること
により、さらに広範囲のレターデーション値の位相差フ
ィルムが得られる。例えばレターデーション値が300
nmの一軸延伸された熱可塑性樹脂フィルムから150
〜600nm程度のレターデーション値の位相差フィル
ムが得られ、レターデーション値が600nmの一軸延
伸された熱可塑性樹脂フィルムから300〜1200n
m程度のレターデーション値の位相差フィルムが得られ
る。
Generally, the retardation value decreases as the shrinkage rate of the uniaxially stretched thermoplastic resin film in the direction of the stretch axis increases, and the shrinkage rate of the length in the direction orthogonal to the stretch axis increases. The larger the value, the greater the retardation value. Therefore, for the adjustment of the laminating direction of the film having heat shrinkability described above, the shrinkage of the length in each direction (the stretching axial direction of the uniaxially stretched thermoplastic resin film of the laminated body and the direction orthogonal to the stretching axis) By combining the adjustment of the ratio, a retardation film having a retardation value in a wider range can be obtained. For example, the retardation value is 300
150 nm from a uniaxially stretched thermoplastic resin film
From a uniaxially stretched thermoplastic resin film having a retardation value of 600 nm to obtain a retardation film having a retardation value of about 600 nm to 300 n
A retardation film having a retardation value of about m can be obtained.

【0029】加熱時間は特に限定されるものではなく、
加熱温度、貼合体の厚み、必要な熱収縮率等により適宜
選択される。加熱は例えば、テンタ−、熱ロ−ル等を用
いることにより行うことができ、これらを用いる場合、
貼合体を連続的に熱収縮させることができる。
The heating time is not particularly limited,
It is appropriately selected depending on the heating temperature, the thickness of the bonded body, the required heat shrinkage ratio and the like. Heating can be performed, for example, by using a tenter, a heat roll, or the like. When using these,
The bonded body can be continuously heat-shrunk.

【0030】熱収縮させた後、熱収縮性フィルムは、通
常剥離除去され、位相差フィルムが得られるが、熱収縮
性フィルムを熱平衡収縮率に達するまで熱収縮させ(本
発明においてはこれを「熱平衡化させる」と言う)、熱
収縮性フィルムを光学的に透明な状態、例えばそのレタ
ーデーション値0〜10nm程度までした場合には、該
熱収縮性フィルムを剥離除去することなく、貼合体をそ
のまま位相差フィルムとすることもできる。
After heat-shrinking, the heat-shrinkable film is usually peeled and removed to obtain a retardation film. The heat-shrinkable film is heat-shrinked until the heat equilibrium shrinkage ratio is reached (in the present invention, this is When the heat-shrinkable film is in an optically transparent state, for example, when its retardation value is about 0 to 10 nm, the bonded body is obtained without peeling and removing the heat-shrinkable film. The retardation film can be used as it is.

【0031】熱平衡化させて貼合体を位相差フィルムと
する場合に用いられる熱収縮性フィルムとしては好まし
くは、位相差の発現しにくいもの、例えば酢酸セルロー
ス等を挙げることができる。
The heat-shrinkable film used when the bonded body is thermally equilibrated to form a retardation film is preferably a film which hardly causes retardation, such as cellulose acetate.

【0032】本発明方法によれば、得られる位相差フィ
ルムのレターデーション値やR40/R0 の値の調節が容
易なので、求めに応じてその変更を容易に行うことがで
き、工業的に有利に種々の位相差フィルムが得られる。
According to the method of the present invention, the retardation value and R 40 / R 0 value of the obtained retardation film can be easily adjusted, and therefore the change can be easily made according to the demand, which is industrially possible. Various retardation films are advantageously obtained.

【0033】[0033]

【実施例】以下実施例により本発明を詳細に説明する
が、本発明はこれらに限定されるものではない。なお、
40/R0 は、セナルモン型コンペンセ−タ−を装備し
た偏光顕微鏡(日本光学製)を用い、正の固有複屈折性
を有する熱可塑性樹脂からなる位相差フィルムの場合は
遅相軸を、又負の固有複屈折性を有する熱可塑性樹脂か
らなる位相差フィルムは進相軸をそれぞれ回転軸とし
て、位相差フィルムを水平から40度傾斜させた状態で
測定したレターデーション値(R40)と、傾けない状態
(水平状態)で測定したレターデーション値(R0 )を
測定し、その比(R40/R0)より算出した。
The present invention will be described in detail below with reference to examples, but the present invention is not limited to these. In addition,
R 40 / R 0 is a polarizing microscope (manufactured by Nippon Kogaku) equipped with a Senarmont type compensator, and in the case of a retardation film made of a thermoplastic resin having positive intrinsic birefringence, the slow axis is Further, the retardation film made of a thermoplastic resin having a negative intrinsic birefringence has a retardation value (R 40 ) measured in a state where the retardation film is tilted by 40 degrees from the horizontal with the fast axis as the rotation axis. The retardation value (R 0 ) measured without tilting (horizontal state) was measured and calculated from the ratio (R 40 / R 0 ).

【0034】また熱収縮性フィルムの熱収縮温度での熱
平衡収縮率(熱収縮性二軸延伸フィルムにおいては少な
くとも一方の延伸軸方向の熱平衡収縮率)は実施例1〜
12のいずれにおいても一軸延伸された熱可塑性樹脂フ
ィルムの延伸軸方向の熱平衡収縮率よりも大きかった。
Further, the thermal equilibrium shrinkage of the heat-shrinkable film at the heat-shrinking temperature (in the heat-shrinkable biaxially stretched film, the thermal equilibrium shrinkage in at least one stretching axis direction) is from Examples 1 to 1.
In each of No. 12, the thermal equilibrium shrinkage ratio in the direction of the stretching axis of the uniaxially stretched thermoplastic resin film was larger.

【0035】実施例1 溶剤キャスト法により製膜したポリカ−ボネ−トフィル
ムを、横一軸延伸法により幅方向に延伸して一軸延伸フ
ィルムを得た(厚さ60μm、R0 =430nm、R40
/R0 =1.11)。一軸延伸フィルムの両面に、熱収
縮性フィルム(二軸延伸ポリカ−ボネ−トフィルム、厚
さ約50μm)をアクリル系粘着剤を介し、熱収縮性フ
ィルムの最大熱収縮軸方向が一軸延伸フィルムの延伸軸
方向と直交するように貼合した後、貼合体を170℃の
加熱炉に導入し熱収縮させ(長さの収縮率:一軸延伸フ
ィルムの延伸軸と直交する方向4%、一軸延伸フィルム
の延伸軸方向2%)、熱収縮性フィルムを剥離除去して
ポリカ−ボネ−トからなる位相差フィルムを得た(厚さ
64μm、R0 =570nm、R40/R0 =0.9
6)。
Example 1 A polycarbonate film formed by a solvent casting method was stretched in the width direction by a lateral uniaxial stretching method to obtain a uniaxially stretched film (thickness 60 μm, R 0 = 430 nm, R 40
/ R 0 = 1.11). A heat-shrinkable film (biaxially-stretched polycarbonate film, thickness of about 50 μm) is placed on both sides of the uniaxially-stretched film via an acrylic adhesive, and the maximum heat-shrinkable axial direction of the heat-shrinkable film is stretched. After bonding so as to be orthogonal to the axial direction, the bonded body is introduced into a heating furnace at 170 ° C. and heat-shrinked (contraction rate of length: 4% in the direction orthogonal to the stretching axis of the uniaxially stretched film, The heat-shrinkable film was peeled and removed in a stretching axis direction (2%) to obtain a retardation film made of polycarbonate (thickness 64 μm, R 0 = 570 nm, R 40 / R 0 = 0.9).
6).

【0036】実施例2 実施例1で用いたのと同じ一軸延伸フィルムの片面に、
熱収縮性フィルム(二軸延伸ポリカ−ポネ−トフィル
ム、厚さ約50μm)をアクリル系粘着剤を介し、熱収
縮性フィルムの最大熱収縮軸方向が一軸延伸フィルムの
延伸軸方向と直交するように貼合した後、貼合体を16
5℃の加熱炉に導入し熱収縮させ(長さの収縮率:一軸
延伸フィルムの延伸軸と直交する方向2%、一軸延伸フ
ィルムの延伸軸方向1%)、熱収縮性フィルムを剥離除
去してポリカ−ボネ−トからなる位相差フィルムを得た
(厚さ62μm、R0 =540nm、R40/R0 =0.
99)。
Example 2 On one side of the same uniaxially stretched film used in Example 1,
A heat-shrinkable film (biaxially stretched polycarbonate film, thickness of about 50 μm) is placed through an acrylic adhesive so that the maximum heat-shrinkable axial direction of the heat-shrinkable film is orthogonal to the stretching axial direction of the uniaxially stretched film. After bonding to
It is introduced into a heating furnace at 5 ° C. to be heat-shrinked (length shrinkage: 2% in the direction orthogonal to the stretching axis of the uniaxially stretched film, 1% in the stretching axis direction of the uniaxially stretched film), and the heat-shrinkable film is peeled and removed. To obtain a retardation film made of polycarbonate (thickness 62 μm, R 0 = 540 nm, R 40 / R 0 = 0.
99).

【0037】実施例3 溶剤キャスト法により製膜したポリカ−ボネ−トフィル
ムを、横一軸延伸法により幅方向に延伸して一軸延伸フ
ィルムを得た(厚さ80μm、R0 =370nm、R40
/R0 =1.10)。一軸延伸フィルムの両面に、熱収
縮性フィルム(一軸延伸ポリカ−ボネ−トフィルム、厚
さ約50μm)をアクリル系粘着剤を介し、熱収縮性フ
ィルムの熱収縮軸方向が一軸延伸フィルムの延伸軸方向
と直交するように貼合した後、貼合体を165℃の加熱
炉に導入し熱収縮させ(長さの収縮率:一軸延伸フィル
ムの延伸軸と直交する方向4%、一軸延伸フィルムの延
伸軸方向0%)、熱収縮性フィルムを剥離除去してポリ
カ−ボネ−トからなる位相差フィルムを得た(厚さ83
μm、R0 =460nm、R40/R0 =1.03)。
Example 3 A polycarbonate film formed by the solvent casting method was stretched in the width direction by a lateral uniaxial stretching method to obtain a uniaxially stretched film (thickness 80 μm, R 0 = 370 nm, R 40).
/ R 0 = 1.10.). A heat-shrinkable film (uniaxially stretched polycarbonate film, thickness of about 50 μm) is provided on both sides of the uniaxially stretched film via an acrylic adhesive, and the heat shrinkable axial direction of the heat shrinkable film is the stretched axial direction of the uniaxially stretched film. After being bonded so as to be orthogonal to, the bonded body was introduced into a heating furnace at 165 ° C. and heat-shrinked (contraction rate of length: 4% in the direction orthogonal to the stretching axis of the uniaxially stretched film, stretching axis of the uniaxially stretched film). The heat-shrinkable film was peeled off to obtain a retardation film made of polycarbonate (thickness: 83%).
μm, R 0 = 460 nm, R 40 / R 0 = 1.03).

【0038】実施例4 溶剤キャスト法により製膜したポリカ−ボネ−トフィル
ムを、縦一軸延伸法により長手方向に延伸して一軸延伸
フィルムを得た(厚さ55μm、R0 =650nm、R
40/R0 =1.09)。一軸延伸フィルムの両面に、熱
収縮性フィルム(二軸延伸酢酸セルロ−スフィルム、厚
さ約50μm)をアクリル系粘着剤を介し、熱収縮性フ
ィルムの最大熱収縮軸方向が一軸延伸フィルムの延伸軸
方向と平行になるよう貼合した後、貼合体を180℃の
加熱炉に導入し熱収縮させ(長さの収縮率:一軸延伸フ
ィルムの延伸軸と直交する方向1%、一軸延伸フィルム
の延伸軸方向6%)、熱収縮性フィルムを剥離除去して
ポリカ−ボネ−トからなる位相差フィルムを得た(厚さ
59μm、R0 =360nm、R40/R0 =0.9
5)。
Example 4 A polycarbonate film formed by the solvent casting method was stretched in the longitudinal direction by a longitudinal uniaxial stretching method to obtain a uniaxially stretched film (thickness 55 μm, R 0 = 650 nm, R
40 / R 0 = 1.09). A heat-shrinkable film (biaxially stretched cellulose acetate film, thickness about 50 μm) is placed on both sides of the uniaxially stretched film via an acrylic adhesive, and the maximum heat shrinkable axial direction of the heat shrinkable film is stretched of the uniaxially stretched film. After laminating so as to be parallel to the axial direction, the laminated body is introduced into a heating furnace at 180 ° C. and thermally contracted (contraction rate of length: 1% in the direction orthogonal to the stretching axis of the uniaxially stretched film, The heat-shrinkable film was peeled and removed in the stretching axis direction (6%) to obtain a retardation film made of polycarbonate (thickness 59 μm, R 0 = 360 nm, R 40 / R 0 = 0.9).
5).

【0039】実施例5 溶剤キャスト法により製膜したポリカ−ボネ−トフィル
ムを、縦一軸延伸法により長手方向に延伸して一軸延伸
フィルムを得た(厚さ50μm、R0 =330nm、R
40/R0 =1.10)。一軸延伸フィルムの片面に、熱
収縮性フィルム(二軸延伸酢酸セルロ−スフィルム、厚
さ約50μm)をアクリル系粘着剤を介し、熱収縮性フ
ィルムの最大熱収縮軸方向が一軸延伸フィルムの延伸軸
方向と直交するように貼合した後、貼合体を180℃の
加熱炉に導入し熱収縮性フィルムを熱平衡化させ(長さ
の収縮率:一軸延伸フィルムの延伸軸と直交する方向3
%、一軸延伸フィルムの延伸軸方向1%)、光学的に透
明な二軸延伸酢酸セルロ−スフィルム(R0 =0nm)
で被覆されたポリカ−ボネ−トフィルムからなる位相差
フィルムを得た(厚さ130μm、R0 =430nm、
40/R0 =0.97)。
Example 5 A polycarbonate film formed by the solvent casting method was stretched in the longitudinal direction by a longitudinal uniaxial stretching method to obtain a uniaxially stretched film (thickness 50 μm, R 0 = 330 nm, R
40 / R0 = 1.10). On one side of the uniaxially stretched film, a heat-shrinkable film (biaxially stretched cellulose acetate film, thickness: about 50 μm) is stretched through the acrylic adhesive with the maximum heat-shrinkable axial direction of the uniaxially stretched film. After bonding so as to be orthogonal to the axial direction, the bonded body is introduced into a heating furnace at 180 ° C. to thermally equilibrate the heat-shrinkable film (shrinkage ratio of length: direction 3 orthogonal to the stretch axis of the uniaxially stretched film).
%, Uniaxially stretched film has a stretching axis direction of 1%), and an optically transparent biaxially stretched cellulose acetate film (R 0 = 0 nm).
A retardation film consisting of a polycarbonate film coated with (thickness 130 μm, R 0 = 430 nm,
R 40 / R 0 = 0.97) .

【0040】実施例6 溶剤キャスト法により製膜したポリスルホンフィルム
を、横一軸延伸法により幅方向に延伸して一軸延伸フィ
ルムを得た(厚さ60μm、R0 =350nm、R40
0 =1.10)。一軸延伸フィルムの両面に、熱収縮
性フィルム(二軸延伸ポリカ−ボネ−トフィルム、厚さ
約50μm)をアクリル系粘着剤を介し、熱収縮性フィ
ルムの最大熱収縮軸方向が一軸延伸フィルムの延伸軸方
向と直交するように貼合した後、貼合体を230℃の加
熱炉に導入し熱収縮させ(長さの収縮率:一軸延伸フィ
ルムの延伸軸と直交する方向2%、一軸延伸フィルムの
延伸軸方向1%)、熱収縮性フィルムを剥離除去してポ
リスルホンフィルムからなる位相差フィルムを得た(厚
さ62μm、R0 =450nm、R40/R0 =1.0
0)。
Example 6 A polysulfone film formed by a solvent casting method was stretched in the width direction by a lateral uniaxial stretching method to obtain a uniaxially stretched film (thickness 60 μm, R 0 = 350 nm, R 40 /).
R 0 = 1.10). A heat-shrinkable film (biaxially-stretched polycarbonate film, thickness of about 50 μm) is placed on both sides of the uniaxially-stretched film via an acrylic adhesive, and the maximum heat-shrinkable axial direction of the heat-shrinkable film is stretched. After bonding so as to be orthogonal to the axial direction, the bonded body is introduced into a heating furnace at 230 ° C. and heat-shrinked (contraction rate of length: 2% in the direction orthogonal to the stretching axis of the uniaxially stretched film, The heat-shrinkable film was peeled and removed in a stretching axis direction (1%) to obtain a retardation film made of a polysulfone film (thickness: 62 μm, R 0 = 450 nm, R 40 / R 0 = 1.0).
0).

【0041】実施例7 溶剤キャスト法により製膜したポリスルホンフィルム
を、縦一軸延伸法により長手方向に延伸して一軸延伸フ
ィルムを得た(厚さ60μm、R0 =700nm、R40
/R0 =1.09)。一軸延伸フィルムの両面に、熱収
縮性フィルム(二軸延伸ポリエステルフィルム、厚さ約
50μm)をアクリル系粘着剤を介し、熱収縮性フィル
ムの最大熱収縮軸方向が一軸延伸フィルムの延伸軸方向
と平行になるよう貼合した後、貼合体を235℃の加熱
炉に導入し熱収縮させ(長さの収縮率:一軸延伸フィル
ムの延伸軸と直交する方向0%、一軸延伸フィルムの延
伸軸方向6%)、熱収縮性フィルムを剥離除去してポリ
スルホンフィルムからなる位相差フィルムを得た(厚さ
62μm、R0 =380nm、R40/R0 =0.9
6)。
Example 7 The polysulfone film formed by the solvent casting method was stretched in the longitudinal direction by the longitudinal uniaxial stretching method to obtain a uniaxially stretched film (thickness 60 μm, R 0 = 700 nm, R 40).
/ R 0 = 1.09). A heat-shrinkable film (biaxially-stretched polyester film, thickness of about 50 μm) is provided on both sides of the uniaxially-stretched film via an acrylic adhesive, and the maximum heat-shrinkable axial direction of the heat-shrinkable film is the same as the stretching axis direction of the uniaxially-stretched film. After laminating in parallel, the laminated body is introduced into a heating furnace at 235 ° C. and heat-shrinked (contraction rate of length: 0% in the direction orthogonal to the stretching axis of the uniaxially stretched film, in the stretching axis direction of the uniaxially stretched film). 6%), the heat-shrinkable film was peeled and removed to obtain a retardation film made of a polysulfone film (thickness 62 μm, R 0 = 380 nm, R 40 / R 0 = 0.9).
6).

【0042】実施例8 溶剤キャスト法により製膜したポリスチレンフィルム
を、縦一軸延伸法により長手方向に延伸して一軸延伸フ
ィルムを得た(厚さ70μm、R0 =370nm、R40
/R0 =0.90)。一軸延伸フィルムの両面に、熱収
縮性フィルム(二軸延伸ポリスチレンフィルム、厚さ約
50μm)をアクリル系粘着剤を介し、熱収縮性フィル
ムの最大熱収縮軸方向が一軸延伸フィルムの延伸軸方向
と直交するように貼合した後、貼合体を95℃の加熱炉
に導入し熱収縮させ(長さの収縮率:一軸延伸フィルム
の延伸軸と直交する方向2%、一軸延伸フィルムの延伸
軸方向1%)、熱収縮性フィルムを剥離除去してポリス
チレンフィルムからなる位相差フィルムを得た(厚さ7
2μm、R0 =440nm、R40/R0 =1.00)。
Example 8 A polystyrene film formed by a solvent casting method was stretched in the longitudinal direction by a longitudinal uniaxial stretching method to obtain a uniaxially stretched film (thickness 70 μm, R 0 = 370 nm, R 40).
/ R 0 = 0.90). A heat-shrinkable film (biaxially-stretched polystyrene film, thickness: about 50 μm) is provided on both sides of the uniaxially-stretched film via an acrylic adhesive, and the maximum heat-shrinkable axial direction of the heat-shrinkable film is the same as the stretching axis direction of the uniaxially-stretched film. After laminating so as to be orthogonal to each other, the laminated body is introduced into a heating furnace at 95 ° C. and thermally contracted (contraction rate of length: 2% in the direction orthogonal to the stretching axis of the uniaxially stretched film, in the stretching axis direction of the uniaxially stretched film). 1%) and the heat-shrinkable film was peeled off to obtain a retardation film made of a polystyrene film (thickness 7).
2 μm, R 0 = 440 nm, R 40 / R 0 = 1.00).

【0043】比較例1 溶剤キャスト法により製膜したポリカ−ボネ−トフィル
ムを、縦一軸延伸法により長手方向に延伸して一軸延伸
フィルムを得た(厚さ55μm、R0 =650nm、R
40/R0 =1.09)。一軸延伸フィルムを180℃の
加熱炉に導入し熱収縮させ(一軸延伸フィルムの延伸軸
と直交する方向の長さの膨張率:3%、一軸延伸フィル
ムの延伸軸方向の長さの収縮率:6%)ポリカ−ボネ−
トからなる位相差フィルムを得た(厚さ56μm、R0
=350nm、R40/R0 =1.11)。
Comparative Example 1 A polycarbonate film formed by the solvent casting method was stretched in the longitudinal direction by a longitudinal uniaxial stretching method to obtain a uniaxially stretched film (thickness 55 μm, R 0 = 650 nm, R
40 / R 0 = 1.09). The uniaxially stretched film is introduced into a heating furnace at 180 ° C. and heat-shrinked (expansion rate of length of uniaxially stretched film in a direction orthogonal to the stretching axis: 3%, shrinkage rate of length of uniaxially stretched film in the stretching axis direction: 6%) Polycarbonate
To obtain a retardation film (thickness 56 μm, R 0
= 350nm, R 40 / R 0 = 1.11).

【0044】[0044]

【表1】 [Table 1]

【0045】実施例9〜10 貼合体の熱収縮を、表2に示す条件で行った以外は実施
例2と同様に処理を行い、位相差フィルムを得た。結果
を表2に示す。
Examples 9 to 10 A retardation film was obtained by performing the same treatment as in Example 2 except that the heat-shrinkage of the bonded body was performed under the conditions shown in Table 2. The results are shown in Table 2.

【0046】実施例11〜12 貼合体の熱収縮を、表3に示す条件で行った以外は実施
例4と同様に処理を行い、位相差フィルムを得た。結果
を表3に示す。
Examples 11 to 12 A retardation film was obtained by the same treatment as in Example 4 except that the heat-shrinkage of the bonded body was performed under the conditions shown in Table 3. The results are shown in Table 3.

【0047】[0047]

【表2】 *1:貼合体の一軸延伸軸と直交する方向の長さの熱収
縮率 *2:貼合体の一軸延伸軸方向の長さの熱収縮率
[Table 2] * 1: Thermal shrinkage of the length in the direction orthogonal to the uniaxial stretching axis of the bonded product * 2: Thermal shrinkage of the length in the uniaxial stretching axis direction of the bonded product

【0048】[0048]

【表3】 *1、*2:表2の規定と同じ[Table 3] * 1, * 2: Same as the rules in Table 2

【0049】[0049]

【発明の効果】本発明方法によれば、得られる位相差フ
ィルムのレターデーション値やR40/R0 の値の調節が
容易なので、求めに応じてその変更を容易に行うことが
でき、工業的に有利に種々の位相差フィルムが得られ
る。
According to the method of the present invention, it is easy to adjust the retardation value and R 40 / R 0 value of the retardation film to be obtained, so that it is possible to easily change the retardation value as required. Various retardation films can be obtained with advantage.

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 一軸延伸された熱可塑性樹脂フィルムの
少なくとも片面に、熱収縮性を有するフィルムを、該熱
収縮性フィルムの熱収縮軸方向が該一軸延伸された熱可
塑性樹脂フィルムの延伸軸方向と直交するように貼合
し、熱収縮させた後、該熱収縮性フィルムを剥離除去す
ることを特徴とする位相差フィルムの製造方法。
1. A uniaxially stretched thermoplastic resin film is provided with a heat-shrinkable film on at least one side, and the heat-shrinkable film has a heat-shrinkable axial direction in the uniaxially stretched thermoplastic resin film. A method for producing a retardation film, which comprises laminating the heat-shrinkable film so as to be orthogonal to the heat-shrinkable film, and then peeling off the heat-shrinkable film.
【請求項2】 一軸延伸された熱可塑性樹脂フィルムが
ポリカーボネート、ポリスルホン、ポリアリレートまた
はポリスチレンからなるものである請求項1記載の方
法。
2. The method according to claim 1, wherein the uniaxially stretched thermoplastic resin film is made of polycarbonate, polysulfone, polyarylate or polystyrene.
【請求項3】 熱収縮性フィルムが熱収縮性一軸延伸フ
ィルムまたは熱収縮性二軸延伸フィルムである請求項1
記載の方法。
3. The heat-shrinkable film is a heat-shrinkable uniaxially stretched film or a heat-shrinkable biaxially stretched film.
The method described.
【請求項4】 熱収縮性一軸延伸フィルムまたは熱収縮
性二軸延伸フィルムがポリエステル、ポリプロピレン、
ポリカーボネート、ポリスチレン、ポリスルホン、ポリ
アミド、ポリエチレンまたは酢酸セルロースの樹脂から
なるものである請求項3記載の方法。
4. The heat-shrinkable uniaxially stretched film or the heat-shrinkable biaxially stretched film is polyester, polypropylene,
The method according to claim 3, which comprises a resin of polycarbonate, polystyrene, polysulfone, polyamide, polyethylene or cellulose acetate.
【請求項5】 熱収縮性二軸延伸フィルムの熱収縮率の
大きい方の方向を一軸延伸された熱可塑性樹脂フィルム
の延伸方向と平行となるように貼合する請求項3記載の
方法。
5. The method according to claim 3, wherein the heat-shrinkable biaxially stretched film is laminated so that the direction in which the heat shrinkage is larger is parallel to the stretching direction of the uniaxially stretched thermoplastic resin film.
【請求項6】 熱収縮性一軸延伸フィルムの延伸方向ま
たは熱収縮性二軸延伸フィルムの熱収縮率の大きい方の
方向を、一軸延伸された熱可塑性樹脂フィルムの延伸方
向と直交するように貼合する請求項3記載の方法。
6. A laminate in which the direction of stretching of the heat-shrinkable uniaxially stretched film or the direction of the heat-shrinkable biaxially stretched film having the higher heat shrinkage is orthogonal to the direction of stretching of the uniaxially stretched thermoplastic resin film. The method according to claim 3, wherein
【請求項7】 一軸延伸された熱可塑性樹脂フィルムの
少なくとも片面に、熱収縮性を有するフィルムを、該熱
収縮性を有するフィルムの熱収縮軸方向が該一軸延伸さ
れた熱可塑性樹脂フィルムの延伸軸方向と直交するよう
に貼合し、該熱収縮性フィルムを熱平衡化させることを
特徴とする位相差フィルムの製造方法。
7. A uniaxially stretched thermoplastic resin film is provided with a heat-shrinkable film on at least one surface thereof, and the heat-shrinkable film has a heat-shrinkable axial direction in which the uniaxially stretched thermoplastic resin film is stretched. A method for producing a retardation film, which comprises laminating the heat-shrinkable film so that it is orthogonal to the axial direction, and heat-balancing the heat-shrinkable film.
【請求項8】 一軸延伸された熱可塑性樹脂フィルムが
ポリカーボネート、ポリスルホン、ポリアリレートまた
はポリスチレンからなるものである請求項7記載の方
法。
8. The method according to claim 7, wherein the uniaxially stretched thermoplastic resin film is made of polycarbonate, polysulfone, polyarylate or polystyrene.
【請求項9】 熱収縮性フィルムが熱収縮性一軸延伸フ
ィルムまたは熱収縮性二軸延伸フィルムである請求項7
記載の方法。
9. The heat-shrinkable film is a heat-shrinkable uniaxially stretched film or a heat-shrinkable biaxially stretched film.
The method described.
【請求項10】 熱収縮性一軸延伸フィルムまたは熱収縮
性二軸延伸フィルムが酢酸セルロースの樹脂からなるも
のである請求項9記載の方法。
10. The method according to claim 9, wherein the heat-shrinkable uniaxially stretched film or the heat-shrinkable biaxially stretched film is made of a cellulose acetate resin.
【請求項11】 熱収縮性二軸延伸フィルムの熱収縮率の
大きい方の方向を一軸延伸された熱可塑性樹脂フィルム
の延伸方向と平行となるように貼合する請求項9に記載
の方法。
11. The method according to claim 9, wherein the heat-shrinkable biaxially stretched film is laminated so that the direction in which the heat shrinkage is larger is parallel to the stretching direction of the uniaxially stretched thermoplastic resin film.
【請求項12】 熱収縮性一軸延伸フィルムの延伸方向ま
たは熱収縮性二軸延伸フィルムの熱収縮率の大きい方の
方向を、一軸延伸された熱可塑性樹脂フィルムの延伸方
向と直交するように貼合する請求項9記載の方法。
[Claim 12] A stretching direction of a heat-shrinkable uniaxially stretched film or a direction of a heat shrinkable biaxially stretched film having a larger heat shrinkage is attached so as to be orthogonal to a stretching direction of a uniaxially stretched thermoplastic resin film. 10. The method according to claim 9, which comprises combining.
JP31669194A 1993-12-22 1994-12-20 Method for producing retardation film Expired - Fee Related JP3168850B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31669194A JP3168850B2 (en) 1993-12-22 1994-12-20 Method for producing retardation film

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5-324530 1993-12-22
JP32453093 1993-12-22
JP31669194A JP3168850B2 (en) 1993-12-22 1994-12-20 Method for producing retardation film

Publications (2)

Publication Number Publication Date
JPH07230007A true JPH07230007A (en) 1995-08-29
JP3168850B2 JP3168850B2 (en) 2001-05-21

Family

ID=26568758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31669194A Expired - Fee Related JP3168850B2 (en) 1993-12-22 1994-12-20 Method for producing retardation film

Country Status (1)

Country Link
JP (1) JP3168850B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5875014A (en) * 1996-05-09 1999-02-23 Sumitomo Chemical Company, Limited Optically anisotropic film and liquid crystal display apparatus
JP2000206328A (en) * 1999-01-11 2000-07-28 Nitto Denko Corp Phase difference plate, its continuous manufacture, optical member and liquid crystal display device
JP2000304925A (en) * 1999-04-21 2000-11-02 Nitto Denko Corp Phase plate and its production
JP2002267840A (en) * 2001-03-08 2002-09-18 Fuji Photo Film Co Ltd Optical compensation sheet, polarizing plate, elliptically polarizing plate and liquid crystal display device
US7400371B2 (en) 2004-02-03 2008-07-15 Sumitomo Chemical Company, Limited Liquid crystal display having particular retardation plate
JP2010020287A (en) * 2008-06-11 2010-01-28 Sumitomo Chemical Co Ltd Method of manufacturing retardation film
US8203676B2 (en) 2007-06-01 2012-06-19 Teijin Limited Retardation film, laminated polarizing film, and liquid crystal display device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101379164B (en) 2006-02-10 2012-11-21 三菱化学株式会社 Phosphor, method for producing same, phosphor-containing composition, light-emitting device, image display, and illuminating device
EP1998196B9 (en) 2006-02-28 2014-12-31 Teijin Limited Layered polarization film, phase difference film, and liquid crystal display device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5875014A (en) * 1996-05-09 1999-02-23 Sumitomo Chemical Company, Limited Optically anisotropic film and liquid crystal display apparatus
JP2000206328A (en) * 1999-01-11 2000-07-28 Nitto Denko Corp Phase difference plate, its continuous manufacture, optical member and liquid crystal display device
JP2000304925A (en) * 1999-04-21 2000-11-02 Nitto Denko Corp Phase plate and its production
JP2002267840A (en) * 2001-03-08 2002-09-18 Fuji Photo Film Co Ltd Optical compensation sheet, polarizing plate, elliptically polarizing plate and liquid crystal display device
US7400371B2 (en) 2004-02-03 2008-07-15 Sumitomo Chemical Company, Limited Liquid crystal display having particular retardation plate
US8203676B2 (en) 2007-06-01 2012-06-19 Teijin Limited Retardation film, laminated polarizing film, and liquid crystal display device
JP2010020287A (en) * 2008-06-11 2010-01-28 Sumitomo Chemical Co Ltd Method of manufacturing retardation film

Also Published As

Publication number Publication date
JP3168850B2 (en) 2001-05-21

Similar Documents

Publication Publication Date Title
US5472538A (en) Process for producing phase retarder film
JP4790890B2 (en) Retardation film and continuous production method thereof
JP2818983B2 (en) Method for producing birefringent film
US5245456A (en) Birefringent film with nx >nz >ny, process for producing the same, retardation film, elliptically polarizing plate, and liquid crystal display
JP2857889B2 (en) Liquid crystal display
US5366682A (en) Process for producing phase retarder
EP0620457B1 (en) Process for producing phase retarder film
JPH07230007A (en) Production of phase difference film
JPH0862422A (en) Phase difference film and its manufacture
JPH04113301A (en) New optical sheet and liquid crystal display device using same sheet
JP2008275812A (en) Retardation film with controlled refractive index in thickness direction and method for manufacturing film
JP2001059907A (en) Phase difference sheet and production thereof
JPH11125716A (en) Phase difference plate, its production, elliptical polarizing plate and liquid crystal display device
JP2000231016A (en) Production of phase difference plate
JPH08146220A (en) Phase difference film
JP2001013324A (en) Production of phase difference plate
JP4367868B2 (en) Retardation plate continuous manufacturing method, optical member, and liquid crystal display device
JPH09318815A (en) Production of optical film, laminated polarizing plate and liquid crystal display device
JP4303827B2 (en) Production method of retardation plate
JP2000056131A (en) Phase difference plate, laminated polarizing plate and liquid crystal display device
JP3383359B2 (en) Method for manufacturing retardation film
JPS60162222A (en) Uniaxially oriented polyester film for liquid crystal display plate
JP2001147325A (en) Method of producing phase difference plate, optical member and liquid crystal display device
JP2000304924A (en) Phase plate and its continuous manufacture
JP2000162436A (en) Manufacturing method for phase difference film, optical member, and liquid crystal display device

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090316

Year of fee payment: 8

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D05

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090316

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100316

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110316

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120316

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130316

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130316

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140316

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees