JP2857889B2 - Liquid crystal display - Google Patents

Liquid crystal display

Info

Publication number
JP2857889B2
JP2857889B2 JP1236493A JP23649389A JP2857889B2 JP 2857889 B2 JP2857889 B2 JP 2857889B2 JP 1236493 A JP1236493 A JP 1236493A JP 23649389 A JP23649389 A JP 23649389A JP 2857889 B2 JP2857889 B2 JP 2857889B2
Authority
JP
Japan
Prior art keywords
film
liquid crystal
crystal display
retardation
display device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1236493A
Other languages
Japanese (ja)
Other versions
JPH02256023A (en
Inventor
公平 荒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to DE68923929T priority Critical patent/DE68923929T2/en
Priority to US07/431,500 priority patent/US5189538A/en
Priority to EP89120403A priority patent/EP0367288B1/en
Publication of JPH02256023A publication Critical patent/JPH02256023A/en
Application granted granted Critical
Publication of JP2857889B2 publication Critical patent/JP2857889B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はネマテイツク液晶、コレステレツク液晶又は
スメクテイツクを使つた液晶表示装置に関するものであ
る。
Description: TECHNICAL FIELD The present invention relates to a liquid crystal display device using a nematic liquid crystal, a cholesteric liquid crystal, or a smectic liquid crystal.

〔従来の技術〕[Conventional technology]

液晶表示装置は、低電圧、低消費電力でIC回路への直
結が可能であること、表示機能が多様であること、高生
産性軽量化が可能であること等の多くの特長を有し、そ
の用途は拡大してきた。
Liquid crystal display devices have many features, such as being able to connect directly to IC circuits with low voltage and low power consumption, having various display functions, and being able to achieve high productivity and light weight. Its uses have expanded.

しかし、一方で表示品位が劣ることが制約となつて用
途拡大が遅れている分野も存在している。ネマテイツク
液晶又はコレステリツク液晶を使つて液晶表示における
最も大きな問題は表示画面の着色と視角が狭いというと
ころにある。
However, on the other hand, there is also a field where the expansion of applications has been delayed due to poor display quality. The biggest problems in liquid crystal display using nematic liquid crystal or cholesteric liquid crystal are that the display screen is colored and the viewing angle is narrow.

着色という問題に関しては、着色を除去することが液
晶デイスプレイのカラー表示化の必要条件できることは
もちろんのこと、白黒表示化に対しても強いニーズがあ
り、液晶二枚重ね方式が考案されている。しかし液晶二
枚重ねに伴う高コスト化を解消するため一枚の高分子フ
イルムを延伸して複屈折性を付与した位相差フイルムの
利用が注目を集め始めている。
Regarding the problem of coloring, there is a strong need for black and white display, as well as removal of coloring can be a necessary condition for color display of a liquid crystal display, and a two-layer liquid crystal system has been devised. However, the use of a retardation film having a birefringence property obtained by stretching a single polymer film has begun to attract attention in order to eliminate the cost increase associated with two liquid crystal layers.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

しかしながら、この位相差フイルムにおいては液晶デ
イスプレイの面に垂直な方向については着色の除去がほ
ぼ達成できるものの斜めからデイスプレイを見た場合に
は、わずかな角度変化による着色や画面の表示内容が消
失するという視角特性の問題点が顕在化し位相差フイル
ム利用に関する重大な課題となつている。
However, in this retardation film, coloring can be almost completely removed in a direction perpendicular to the surface of the liquid crystal display, but when the display is viewed from an oblique direction, coloring due to a slight change in angle and display contents on the screen disappear. The problem of the viewing angle characteristic has become apparent and has become a serious problem regarding the use of a phase difference film.

〔課題を解決するための手段〕[Means for solving the problem]

本発明は上記位相差フイルムの問題点を除去し、新規
な液晶表示装置を提供するために研究を重ねた結果完成
されたものである。本発明は上記問題点の原因がフイル
ムの複屈折値と厚みの積として定義されるレターデーシ
ヨンの視角依存性にあることに着眼し、視角変化に伴う
フイルム内の光路長と複屈折値が反比例の関係になる複
数枚のフイルム構成にすることによつてレターデーシヨ
ンの視角依存性がなくなるという推論のもとに検討を重
ねた結果、フイルムの法線方向に実質的に光軸又は光線
軸を有すると共に負の固有屈折値を有する光透過性のフ
ィルムと正の固有複屈折値を有すると共に光透過性を有
する一軸延伸高分子フイルムを液晶セルと偏光板の間に
挿入することにより液晶表示装置における視角依存性を
ほぼ完全に除去し得ることを突き止め本発明の完成に至
つたものである。即ち、本発明は、下記の特徴を有する
液晶表示装置にある。
The present invention has been completed as a result of repeated studies to eliminate the problems of the above retardation film and to provide a novel liquid crystal display device. The present invention focuses on that the cause of the above problem is the viewing angle dependency of the retardation defined as the product of the film's birefringence value and thickness, and the optical path length and the birefringence value in the film due to the change in viewing angle are As a result of repeated studies based on the presumption that the viewing angle dependence of the retardation is eliminated by using a plurality of films in an inversely proportional relationship, the optical axis or the light beam is substantially in the normal direction of the film. A liquid crystal display device comprising a light transmissive film having an axis and a negative intrinsic refraction value and a uniaxially stretched polymer film having a positive intrinsic birefringence value and light transmissivity inserted between a liquid crystal cell and a polarizing plate. It has been found that the viewing angle dependency in the above can be almost completely removed, and the present invention has been completed. That is, the present invention resides in a liquid crystal display device having the following features.

(1) フィルムの法線方向を基準として周囲45゜以内
に少なくとも1本の光軸もしくは光線軸を有するか、又
はフィルムの法線方向の屈折率をηTH、長手方向の屈折
率をηMD、幅方向の屈折率をηTDとしたとき の条件を満たすかのいずれかである、少なくとも1枚の
負の固有屈折率を有する光透過性のフィルム(A)と、
正の固有複屈折値を有すると共に光透過性を有する少な
くとも一枚の一軸延伸高分子フィルム(B)とを液晶セ
ルと偏光板との間に挿入してなる液晶表示装置。
(1) It has at least one optical axis or ray axis within 45 ° around the normal direction of the film, or has a refractive index in the normal direction of the film of η TH and a refractive index in the longitudinal direction of η MD. , When the refractive index in the width direction is η TD At least one light-transmissive film (A) having a negative intrinsic refractive index,
A liquid crystal display device comprising at least one uniaxially stretched polymer film (B) having a positive intrinsic birefringence value and having light transmittance inserted between a liquid crystal cell and a polarizing plate.

(2) フイルム(A)が負の固有複屈折値を有するフ
ィルムであって、それを構成する高分子が実質的に面配
向してなるフイルムであることを特徴とする前記(1)
記載の液晶表示装置。
(2) The film (A) wherein the film (A) is a film having a negative intrinsic birefringence value, and the polymer constituting the film is substantially plane-oriented.
The liquid crystal display device as described in the above.

(3) フイルム(A)が負の固有複屈折値を有する二
軸配向フイルムであることを特徴とする前記(1)〜
(2)記載の液晶表示装置。
(3) The film (A), wherein the film (A) is a biaxially oriented film having a negative intrinsic birefringence value.
The liquid crystal display device according to (2).

(4) フイルム(A)が負の固有複屈折値を有する一
軸配向フイルム2枚をその配向方向を互いに直交させる
ように組合せたフイルムであることを特徴とする前記
(1)〜(2)記載の液相表示装置。
(4) The film according to (1) to (2), wherein the film (A) is a film in which two uniaxially oriented films having a negative intrinsic birefringence value are combined so that their orientation directions are orthogonal to each other. Liquid phase display device.

(5) フイルム(A)が負の固有複屈折値を有する高
分子溶液成膜フイルムであることを特徴とする前記
(1)〜(2)記載の液晶表示装置。
(5) The liquid crystal display device according to (1) or (2), wherein the film (A) is a polymer solution film having a negative intrinsic birefringence value.

(6) フイルム(A)が負の固有複屈折値を有し、液
晶分子が面配向してなることを特徴とする前記(1)〜
(2)記載の液晶表示装置。
(6) The film according to (1) to (1), wherein the film (A) has a negative intrinsic birefringence value and liquid crystal molecules are plane-aligned.
The liquid crystal display device according to (2).

(7) フイルム(A)がポリスチレン系重合体又はア
クリル酸エステル系重合体から形成されたものであるこ
とを特徴とする前記(1)〜(5)記載の液晶表示装
置。
(7) The liquid crystal display device according to (1) to (5), wherein the film (A) is formed from a polystyrene-based polymer or an acrylate-based polymer.

(8) フイルム(A)が正の固有複屈折値を有し、分
子がフイルム面の法線方向に実質的に配向してなること
を特徴とする前記(1)記載の液晶表示装置。
(8) The liquid crystal display device according to the above (1), wherein the film (A) has a positive intrinsic birefringence value, and molecules are substantially oriented in a normal direction of the film surface.

(9) フイルム(A)が正の固有複屈折値を有し、液
晶分子がフイルム面の法線方向に実質的に配向してなる
ことを特徴とする前記(1)及び(8)記載の液晶表示
装置。
(9) The film according to (1) or (8), wherein the film (A) has a positive intrinsic birefringence value, and the liquid crystal molecules are substantially oriented in the normal direction of the film surface. Liquid crystal display.

(10) フイルム(A)の少くとも一枚が液晶表示装置
に使用される偏光板の液晶セル側に予め保護フイルムと
して配設されていることを特徴とする前記(1)〜
(9)記載の液晶表示装置。
(10) At least one of the films (A) is provided in advance as a protective film on a liquid crystal cell side of a polarizing plate used in a liquid crystal display device.
The liquid crystal display device according to (9).

に関する。About.

一般に正の固有複屈折値を有する高分子フイルムを一
軸延伸した複屈折フイルム又は負の固有複屈折値を有す
るフイルムであつても配向によつて形態複屈折が大き
く、結果的に正の複屈折を有するフイルムにおいては、
入射ビームが延伸方向に直交する面を通る場合、複屈折
値は入射角にあまり依存せず一定に近い値をとるか又は
増大する。従つて正の固有複屈折値を有する高分子一軸
延伸フイルムにおいては、入射角とフイルム面に対する
法線との為す角度が増大することによるフイルム内の光
路増大に伴つてレターデーシヨンが一層増大し、視角が
狭くなつてしまう。又、入射ビームを法線方向から延伸
軸方向に傾けて入射した場合、延伸軸に直交する断面に
おいて分子配列がランダム化するため入射ビームと法線
との為す角度の増大に伴つて複屈折値が急激に減少す
る。又、この場合、斜入射角度増大に伴うフイルム内の
光路増大によつてもレターデーシヨンの急激な減少を避
けれないことにより視角が狭くなる。
In general, even birefringent films obtained by uniaxially stretching a polymer film having a positive intrinsic birefringence value or films having a negative intrinsic birefringence value have large morphological birefringence depending on the orientation, and consequently positive birefringence. In the film having
When the incident beam passes through a plane orthogonal to the stretching direction, the birefringence value takes a value close to constant or increases independently of the angle of incidence. Therefore, in a polymer uniaxially stretched film having a positive intrinsic birefringence value, the retardation further increases with an increase in the optical path in the film due to an increase in the angle between the incident angle and the normal to the film surface. The viewing angle becomes narrow. Also, when the incident beam is inclined from the normal direction to the stretching axis direction, the molecular arrangement is randomized in the cross section perpendicular to the stretching axis, so that the birefringence value increases with the increase in the angle between the incident beam and the normal. Decreases sharply. Further, in this case, the viewing angle is narrowed because a sharp decrease in the retardation cannot be avoided even if the optical path in the film increases with an increase in the oblique incident angle.

ところで本発明における面の垂直方向に光軸又は光線
軸を有するフイルム又は膜とは該面の垂直方向には複屈
折値がゼロ近傍即ちレターデーシヨンはほぼゼロであ
り、斜入射によつて複屈折性が発現し、且つレターデー
シヨンが変化するものであるが、本発明におけるフイル
ムは実質的に面の垂直方向に光軸又は光線軸を有するも
のであれば良い。より詳細には該面の法線方向から周囲
45゜以内に少くとも1つの光軸又は光線軸を有するもの
であれば良く、従つて垂直方向のレターデーシヨンがゼ
ロでないものも含まれる。又、仮りに光軸又は光線軸が
周囲45゜以内にない場合でもフイルムの面方向の屈折率
をηTH、フイルム長手方向の屈折率をηMD、フイルムの
幅方向の屈折率をηTDとしたとき の条件を満たす場合本発明の対象となる。さて、該フイ
ルムと正の固有複屈折値を有する一軸延伸フイルムの積
層体においては、入射単色光ビームを該フイルム面の法
線方向から一軸延伸フイルムの延伸軸に直交する方向に
傾けて斜入射した場合、斜入射のための光路増大に起因
するレターデーシヨンの増大を抑制し、一定に保つと共
に、法線方向から延伸方向への入射においては、レター
デーシヨンの急激な減少を防止し、一定に保つという驚
くべき効果があると共に、液晶表示装置に組み入れた場
合に視野角が大幅に拡大することが認められた。
By the way, in the present invention, a film or a film having an optical axis or a ray axis in the direction perpendicular to the surface means that the birefringence value is nearly zero in the direction perpendicular to the surface, that is, the retardation is almost zero, The film exhibits refraction and changes the retardation. The film in the present invention may be any film having an optical axis or a light axis substantially in a direction perpendicular to the surface. More specifically, from the direction normal to the surface
It is only necessary that the optical axis has at least one optical axis or ray axis within 45 °, and accordingly, those having a vertical retardation other than zero are also included. Even if the optical axis or ray axis is not within 45 ° of the circumference, the refractive index in the plane direction of the film is η TH , the refractive index in the longitudinal direction of the film is η MD , and the refractive index in the width direction of the film is η TD . When When the condition is satisfied, the object of the present invention is obtained. Now, in the laminate of the film and the uniaxially stretched film having a positive intrinsic birefringence value, the incident monochromatic light beam is obliquely incident by being inclined from the normal direction of the film surface in a direction perpendicular to the stretching axis of the uniaxially stretched film. In this case, the increase in the retardation due to the increase in the optical path for oblique incidence is suppressed and kept constant, and in the incidence from the normal direction to the stretching direction, a sharp decrease in the retardation is prevented. It has been found that there is a surprising effect of keeping the temperature constant, and that the viewing angle is greatly increased when incorporated in a liquid crystal display device.

更に詳細に説明すると、本発明はネマテイツク液晶、
コレステリツク液晶又はスメクテイツク液晶を使つた液
晶表示装置における液晶セルの複屈折性に起因する着色
現象をなくすと共に視野角、高コントラスト域の拡大を
可能とする液晶表示装置に関するものであり、正の固有
複屈折値を有すると共に光透過性を有する少くとも一枚
の一軸延伸フイルムによつて液晶セルの垂直方向におけ
るレターデーシヨンの補償を可能にする。又、斜入射に
おけるレターデーシヨンの補償は、該一軸延伸フイルム
とフイルムの法線方向に光軸又は光線軸を有するフイル
ムとの相乗的効果によつて補償するものである。これら
のフイルムの積層順序に関する相対的位置関係は特に制
限はなく、液晶セルと偏光板の間に配置されれば良い。
又、液晶セルのどちら側におかれても良いし、複数枚の
フイルムが液晶をはさむように配置されることも許され
る。又、正の固有複屈折値を有する一軸延伸フイルムと
負の固有複屈折値を有する法線方向に光軸又は光線軸を
有するフイルムの両方あるいは一方が偏光板の液晶サイ
ドの保護フイルムの代用として使用することで視野角拡
大の機能拡大と共に低コスト化を実現できる。
More specifically, the present invention relates to a nematic liquid crystal,
The present invention relates to a liquid crystal display device that uses a cholesteric liquid crystal or smectic liquid crystal and eliminates the coloring phenomenon caused by the birefringence of the liquid crystal cell and enables the viewing angle and the high contrast region to be expanded. Compensation of the retardation in the vertical direction of the liquid crystal cell is made possible by at least one uniaxially stretched film having a refractive value and a light transmitting property. The compensation of the retardation at oblique incidence is made by a synergistic effect of the uniaxially stretched film and the film having an optical axis or a light axis in the normal direction of the film. There is no particular limitation on the relative positional relationship regarding the order of lamination of these films, and they may be disposed between the liquid crystal cell and the polarizing plate.
It may be placed on either side of the liquid crystal cell, and a plurality of films may be arranged so as to sandwich the liquid crystal. In addition, a uniaxially stretched film having a positive intrinsic birefringence value and / or a film having an optical axis or a light axis in a normal direction having a negative intrinsic birefringence value are used as substitutes for the protective film on the liquid crystal side of the polarizing plate. By using this, it is possible to realize the function of expanding the viewing angle and to reduce the cost.

本発明におけるフイルムとは、一般的に考えられフイ
ルムだけでなくある基材に塗布された膜状物も含まれ
る。
The film in the present invention is generally considered, and includes not only a film but also a film-like material applied to a certain base material.

又、一軸延伸フイルムとは、純粋な一軸性フイルムだ
けでなく二軸性が付与されたものも含まれる。即ち分子
の配向に異方性があることにより複屈折性を有し、液晶
セルの少くとも垂直方向における位相差を補償する機能
を有するものを言う。従つてテンター法による横一軸延
伸、ロール間の周速の差を利用した縦一軸延伸、この場
合幅方向の収縮即ちネツキングを許す場合も、また制限
する場合も含まれる。更に二軸延伸において、直交する
方向の延伸倍率に差がある場合等延伸方法に全く制限が
ないが、好ましい方法は、ロール間の間隔/フイルム幅
の比を3以上、更に好ましくは5以上にとり10%以上の
ネツキングを許した縦一軸延伸又はランター法による横
一軸延伸である。ロール間の周速の差を利用する縦一軸
延伸においては偏光板に利用されるPVA(ポリビニルア
ルコール)の延伸等で知られているようにロール間の間
隔を狭くすると延伸ムラが生じやすくなる。又、ネツキ
ングを極端に制限することも法線方向に光軸を有するフ
イルムの補償効果を若干減じる可能性があるため最適の
態様ではない。
In addition, the uniaxially stretched film includes not only a pure uniaxial film but also a biaxially imparted film. That is, it refers to a compound having birefringence due to anisotropy in molecular orientation and having a function of compensating for at least a phase difference in a vertical direction of a liquid crystal cell. Therefore, horizontal uniaxial stretching by the tenter method, vertical uniaxial stretching using the difference in peripheral speed between rolls, and in this case, both cases where shrinkage in the width direction, ie, necking, are permitted and limited. Furthermore, in biaxial stretching, there is no limitation on the stretching method such as when there is a difference in the stretching ratio in the orthogonal direction, but a preferred method is to set the ratio of the distance between rolls / film width to 3 or more, more preferably 5 or more. This is longitudinal uniaxial stretching allowing 10% or more netting or horizontal uniaxial stretching by a lanta method. In longitudinal uniaxial stretching using a difference in peripheral speed between rolls, as is known in stretching of PVA (polyvinyl alcohol) used for a polarizing plate and the like, if the interval between rolls is reduced, stretching unevenness is likely to occur. Also, limiting the netting extremely is not an optimal mode because there is a possibility that the compensation effect of the film having the optical axis in the normal direction may be slightly reduced.

さて、液晶セルのレターデーシヨンを補償する正の固
有複屈折値を有する高分子フィルムは光の透過性が70%
以上であることが好ましく、他に特別な制約はないが、
とりわけポリカーボネート、ポリアリレート、ポリエチ
レンテレフタレート、ポリエーテルスルホン、ポリフエ
ニレンサルフアイド、ポリフエニレンオキサイド、ポリ
アリルスルホン、ポリアミドイミド、ポリイミド、ポリ
オレフイン、ポリアクリロニトリル、セルロース、ポリ
エステル等が好ましく、特にポリカーボネート系高分子
が好ましい。
A polymer film having a positive intrinsic birefringence value that compensates for the retardation of a liquid crystal cell has a light transmittance of 70%.
It is preferable that there is no special restriction,
Among them, polycarbonate, polyarylate, polyethylene terephthalate, polyethersulfone, polyphenylene sulfide, polyphenylene oxide, polyallylsulfone, polyamideimide, polyimide, polyolefin, polyacrylonitrile, cellulose, polyester, and the like are preferable, and polycarbonate-based polymers are particularly preferable. Is preferred.

ここで固有複屈折値が負であつてもその値が小さいた
めに延伸によつて形態複屈折が上まわり、結果的に正の
複屈折値を有する素材も含まれる。又、上記素材は単に
ホモポリマーだけでなく、コポリマー、それらの誘導
体、ブレンド物等も含まれる。
Here, even if the intrinsic birefringence value is negative, since the value is small, morphological birefringence is increased by stretching, and as a result, a material having a positive birefringence value is also included. Further, the above materials include not only homopolymers but also copolymers, derivatives thereof, blends and the like.

本発明における負の固有複屈折値を有するフィルムを
製造するための材料となる高分子としては、特に制約は
ないが、ポリスチレン系重合体、アクリル酸エステル系
重合体、メタアクリル酸エステル系重合体、アクリロニ
トリル系重合体及びメタアクリロニトリル系重合体が好
ましく、ポリスチレン系重合体のフィルムが2つの観点
即ち固有複屈折値の絶対値が大きいこと、透明性に優れ
ていることから最も好ましい。
The polymer used as a material for producing a film having a negative intrinsic birefringence value in the present invention is not particularly limited, but may be a polystyrene-based polymer, an acrylate-based polymer, or a methacrylate-based polymer. And acrylonitrile-based polymers and methacrylonitrile-based polymers are preferred. A polystyrene-based polymer film is most preferred because it has two viewpoints, namely, a large absolute value of intrinsic birefringence and excellent transparency.

ここでスチレン系重合体とは、スチレン、及びスチレ
ン誘導体のホモポリマー、スチレン及びスチレン誘導体
とのコポリマー、ブレンド物である。
Here, the styrene polymer is a homopolymer of styrene and a styrene derivative, a copolymer and a blend of styrene and a styrene derivative.

スチレン誘導体とは例えばα−メチルスチレン、o−
メチルスチレン、p−メチルスチレン、p−クロロスチ
レン、p−フエニルスチレン、2,5−ジクロロスチレン
等が挙げられる。スチレン及びスチレン誘導体(以下ST
と略す)とのコポリマー、ブレンド物は、STと良好な成
膜性、透明性、耐水性、耐熱性、クリヤーカツト性、作
業性を有するものであれば特に限定されるものではない
が、例えば、コポリマーとしては、ST/アクリロニトリ
ル、ST/メタアクリロニトリル、ST/メタアクリル酸メチ
ル、ST/メタアクリル酸エチル、ST/α−クロルアクリロ
ニトリル、ST/アクリル酸メチル、ST/アクリル酸エチ
ル、ST/アクリル酸ブチル、ST/アクリル酸、ST/メタア
クリル酸、ST/ブタジエン、ST/イソプレン、ST/無水マ
レイン酸、ST/酢酸ビニル、コポリマー及びスチレン/
スチレン誘導体コポリマー等が、挙げられる。勿論、以
上に挙げた二元コポリマー以外に三元以上のコポリマー
も使用することが出来る。また、ブレンド物は上記のス
チレンホモポリマー、スチレン誘導体ホモポリマー及び
スチレン及びスチレン誘導体コポリマー間のブレンドは
勿論として、スチレン及びスチレン誘導体からなるポリ
マー(以下PSTと略す)と、PSTとを含まないポリマーと
のブレンドも使用できる。これらのブレンドは一例とし
てPST/ブチルセルロース、PST/クマロン樹脂がある。
Styrene derivatives include, for example, α-methylstyrene, o-
Examples include methylstyrene, p-methylstyrene, p-chlorostyrene, p-phenylstyrene, 2,5-dichlorostyrene and the like. Styrene and styrene derivatives (hereinafter ST)
Abbreviated to), ST is not particularly limited as long as it has good film forming property, transparency, water resistance, heat resistance, clear cut property, workability with ST. , As copolymers, ST / acrylonitrile, ST / methacrylonitrile, ST / methyl methacrylate, ST / ethyl methacrylate, ST / α-chloroacrylonitrile, ST / methyl acrylate, ST / ethyl acrylate, ST / acryl Butyl acid, ST / acrylic acid, ST / methacrylic acid, ST / butadiene, ST / isoprene, ST / maleic anhydride, ST / vinyl acetate, copolymer and styrene /
Styrene derivative copolymers and the like can be mentioned. Of course, tertiary or higher copolymers can be used in addition to the above-mentioned binary copolymers. In addition, the blended product includes not only the above-mentioned styrene homopolymer, styrene derivative homopolymer and a blend between styrene and styrene derivative copolymer, but also a polymer composed of styrene and styrene derivative (hereinafter abbreviated as PST) and a polymer not containing PST. Can also be used. These blends are, by way of example, PST / butyl cellulose, PST / coumarone resin.

又、本発明でいうところのフィルムの面配向とは、フ
イルム面を面に対して垂直な方向から見た場合の分子配
列が1/2(3cos2θ−1)で定義される配向パラメーター
でゼロ近傍をとり、フイルムのカツト面方向から見た場
合に配向パラメーターがゼロより大きいフイルムを意味
する。
The plane orientation of the film as referred to in the present invention is an orientation parameter in which the molecular arrangement when the film plane is viewed from a direction perpendicular to the plane is defined by 1/2 (3 cos 2 θ-1). A film having a value near zero and having an orientation parameter larger than zero when viewed from the direction of the cut surface of the film.

これら面配向は二軸延伸過程での厚み収縮、あるいは
溶液製膜における溶媒蒸発過程での厚み収縮において起
こるものである。これらのフイルムは実質的にフイルム
の法線方向に光軸を有し、液晶表示の視野角拡大の機能
を有する。またこれらと同等の機能は負の固有複屈折値
を有する一軸延伸フイルム2枚を直交させても得られる
ことが分かつた。この場合該一軸延伸フイルムは常に重
ねられて使われる必要はなく、該2枚の一軸延伸フイル
ムの間に正の固有複屈折値を有する一軸延伸フイルムを
挿入するなど配置についての制限はない。上記態様の中
で溶媒蒸発によつて厚み収縮を起こし面配向を得た負の
固有複屈折値を有するフイルムは強制的な延伸と異な
り、フィルムを構成する高分子の面配向が均一であり光
学的ムラを生じないという点で最も優れている。
These plane orientations are caused by the thickness shrinkage in the biaxial stretching process or the thickness shrinkage in the solvent evaporation process in the solution casting. These films have an optical axis substantially in the normal direction of the film, and have a function of expanding the viewing angle of a liquid crystal display. It was also found that a function equivalent to these can be obtained by orthogonally crossing two uniaxially stretched films having a negative intrinsic birefringence value. In this case, the uniaxially stretched films need not always be used in a stacked state, and there is no restriction on the arrangement such as inserting a uniaxially stretched film having a positive intrinsic birefringence value between the two uniaxially stretched films. In the above embodiment, the film having a negative intrinsic birefringence value in which the thickness is shrunk by solvent evaporation to obtain the plane orientation is different from the forced stretching, and the plane orientation of the polymer constituting the film is uniform, It is the most excellent in that it does not cause a target unevenness.

実質的にフイルムの法線方向に光軸又は光線軸を示す
ようにフイルムは正の固有複屈折値を有する分子をフイ
ルム面の法線方向に配向させることによつても得られ
る。配向の方法は、高分子フイルムの場合には溶融押し
出しによる製膜過程においてフイルム両サイドに電極を
設け高電圧を印加して配向させる。しかしこの方法にお
いては20MV/m以上の高電界が必要であり、場合によつて
は絶縁破壊が生じるケースもある。従つて好ましい方法
は液晶モノマーを配向させて後に固定する方法が得策で
ある。例えば紫外線、可視光線等で重合する化合物と液
晶性モノマーを混合し、電場の中で液晶モノマーの配向
を維持しつつ重合を進行させ固定する方法等が好まし
い。又、液晶性モノマーそのものが光重合性を有するも
のであつても構わない。
Films can also be obtained by orienting molecules having a positive intrinsic birefringence value in the direction normal to the film surface so as to exhibit an optical axis or ray axis substantially in the direction normal to the film. In the method of orientation, in the case of a polymer film, electrodes are provided on both sides of the film in the process of forming a film by melt extrusion, and a high voltage is applied to perform orientation. However, this method requires a high electric field of 20 MV / m or more, and in some cases, dielectric breakdown may occur. Therefore, a preferred method is to align the liquid crystal monomer and fix it later. For example, a method in which a compound polymerizable by ultraviolet light, visible light, or the like is mixed with a liquid crystal monomer, and polymerization is advanced and fixed while maintaining the orientation of the liquid crystal monomer in an electric field is preferable. Further, the liquid crystalline monomer itself may have photopolymerizability.

即ち本発明の思想はフイルムの法線方向に実質的に光
軸又は光線軸を有するものを縦一軸延伸フイルムと組み
合わせて利用するところにあるのであつてその具体的手
段に制約はない。
That is, the idea of the present invention resides in that a film having an optical axis or a light axis substantially in the normal direction of the film is used in combination with the longitudinally uniaxially stretched film, and the specific means is not limited.

〔実施例〕〔Example〕

以下実施例によつて本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail with reference to examples.

実施例1 ホスゲンとビスフエノールAの縮合により得られた分
子量8万、固有複屈折値0.104のポリカーボネートを二
塩化メチレンに溶解し10%溶液とした。該溶液をスチー
ルドラム上に流延し連続的に剥ぎとつて厚さ90μm、幅
500mmの透明なポリカーボネートフイルム(PCフイル
ム)を得た。該フイルムを170℃の温度条件テンターに
より33%延伸したところ厚さ68μm、レーターデーシヨ
ン560nmの位相差フイルムが得られた。
Example 1 Polycarbonate having a molecular weight of 80,000 and an intrinsic birefringence of 0.104, obtained by condensation of phosgene and bisphenol A, was dissolved in methylene dichloride to form a 10% solution. The solution was cast on a steel drum and continuously stripped to a thickness of 90 μm and a width of 90 μm.
A transparent polycarbonate film (PC film) of 500 mm was obtained. The film was stretched 33% by a tenter at a temperature of 170 ° C. to obtain a retardation film having a thickness of 68 μm and a ration of 560 nm.

該フイルムと大日本インキ(株)製ポリスチレン2軸
延伸フイルムGSS15(150μm)を重ね合わせレターデー
シヨンの視角依存性を波長632.8nmの単色光を使つて島
津製作所製複屈折計AEP−100で測定したところ表−1の
ようにレターデーシヨンがほとんど角度に依存しなくな
つた。また上記2枚のフイルムをSTN液晶セルと検光子
側の偏光板の間に介挿した場合、その介挿順序、重ね合
わせの相対角度にさほど関係なく、視角範囲が大幅に良
くなり50゜以上傾けても表示画面も明瞭に見ることがで
きた。
The film and a polystyrene biaxially stretched film GSS15 (150 μm) manufactured by Dainippon Ink Co., Ltd. were superimposed, and the viewing angle dependence of the retardation was measured using a monochromatic light having a wavelength of 632.8 nm using a birefringence meter AEP-100 manufactured by Shimadzu Corporation. As a result, the retardation became almost independent of the angle as shown in Table 1. Also, when the above two films are inserted between the STN liquid crystal cell and the polarizer on the analyzer side, the viewing angle range is greatly improved regardless of the order of insertion and the relative angle of superposition, and the film is tilted by 50 ° or more. And the display screen could be seen clearly.

屈折率をアツベの屈折計で測定したところ、ポリスチ
レンフイルムはηTH=1.555、ηMD=1.543、ηTD=1.54
2であり となつた。
When the refractive index was measured with an Atsube refractometer, the polystyrene film was found to have η TH = 1.555, η MD = 1.543, η TD = 1.54
2 And

比較例1 実施例−1におけるレターデーシヨン560nmのポリカ
ーボネートフイルムのレターデーシヨンの角度依存性を
実施例−1と同様の方法で測定した。又、液晶セルとの
組み合わせでは視野角は20゜以下であつた。また、ηTH
=1.574、ηMD=1.591、ηTD=1.582であり であつた。
Comparative Example 1 The angle dependence of the retardation of the polycarbonate film having a retardation of 560 nm in Example 1 was measured in the same manner as in Example 1. The viewing angle was 20 ° or less in combination with the liquid crystal cell. Also, η TH
= 1.574, η MD = 1.591, η TD = 1.582 It was.

比較例2 実施例1における二軸延伸GSS15の光学的特性を実施
例1と同様の方法で測定した。結果を表−1に示す。該
フイルムのみでは法線方向レターデーシヨンがゼロに近
いため液晶の位相差を補償するフイルムとしては利用で
きなかつた。
Comparative Example 2 The optical properties of the biaxially stretched GSS15 in Example 1 were measured in the same manner as in Example 1. The results are shown in Table 1. The film alone cannot be used as a film for compensating the phase difference of the liquid crystal because the normal direction retardation is close to zero.

実施例2 実施例−1で製膜したポリカーボネートフイルムをフ
イルム両サイドを固定せずに周速の異なるローラを利用
して170℃の温度下で延伸倍率29%の縦延伸を行つた。
Example 2 The polycarbonate film formed in Example 1 was subjected to longitudinal stretching at a temperature of 170 ° C. and a stretching ratio of 29% using rollers having different peripheral speeds without fixing both sides of the film.

このときロール間の間隔は5mでネツキング率は13%、
フイルム送り速度は2m/min、フイルム巻き取り速度は2.
6m/minであつた。
At this time, the interval between the rolls is 5m, the netting rate is 13%,
Film feed speed is 2m / min, film take-up speed is 2.
It was 6m / min.

得られたフイルムと三菱モンサント化成(株)製二軸
延伸ポリスチレンフイルムOPS−50を重ね合わせ、実施
例1と同様の方法レターデーシヨンを測定したところレ
ターデーシヨンの角度依存性は小さかつた。
The obtained film was superimposed on a biaxially oriented polystyrene film OPS-50 manufactured by Mitsubishi Monsanto Kasei Co., Ltd., and the retardation was measured in the same manner as in Example 1. As a result, the angle dependence of the retardation was small.

又、上記ポリカーボネートフイルムを検光子側偏光板
の液晶セル側の保護フイルムとして使い、ポリスチレン
の二軸延伸フイルムをSTN液晶セルと検光子の間に介挿
した場合、視野角が大幅に増大し50゜以上傾けても画面
を明瞭に見ることができた。
In addition, when the polycarbonate film is used as a protective film on the liquid crystal cell side of the analyzer-side polarizing plate, and a biaxially stretched polystyrene film is inserted between the STN liquid crystal cell and the analyzer, the viewing angle is greatly increased.て も The screen could be seen clearly even when tilted more than once.

なお、ポリスチレンフイルムのηTH=1.556、ηMD
1.543、ηTD=1.542であり であつた。
In addition, η TH of polystyrene film = 1.556, η MD =
1.543, η TD = 1.542 It was.

比較例3 実施例2で得たポリカーボネートフイルムのレターデ
ーシヨンの角度依存性を測定した結果を表−1に示す。
Comparative Example 3 Table 1 shows the results of measuring the angle dependence of the retardation of the polycarbonate film obtained in Example 2.

又、単独で位相差フイルムとして使つた場合視野角は
30゜以下であつた。
When used alone as a retardation film, the viewing angle is
It was less than 30 ゜.

比較例4 実施例2における二軸延伸ポリスチレンOPS−50の光
学特性を表−1に示す。該フイルムのみでは法線方向の
レターデーシヨンがゼロに近いため液晶の位相差を補償
するフイルムとしては利用できなかつた。
Comparative Example 4 Table 1 shows the optical characteristics of the biaxially oriented polystyrene OPS-50 in Example 2. With this film alone, the retardation in the normal direction was close to zero, so that it could not be used as a film for compensating the phase difference of the liquid crystal.

実施例3 電気化学(株)製ポリスチレン電化スチロールMW−1
をトルエンとMEK(メチルエチルケトン)の1:1混合溶媒
中に10wt%溶解し、実施例1のポリカーボネートフイル
ムと同様に溶液製膜し、厚さ100μmのポリスチレンフ
イルムを得た。該フイルム2枚と実施例2で得たポリカ
ーボネートを積層し液晶セルと検光子の間に介挿したと
ころ画像は鮮明で視野角も大幅に増大した。又、該ポリ
スチレンフイルムは2軸延伸せず溶媒蒸発過程における
厚み内縮による面配向形成のため複屈折の局所ムラに相
当するムラがほとんどなく品質の高い画質が得られた。
この場合も50゜傾けても画像は鮮明でフイルム積層体の
光学的特性も表−1のように良好であつた。
Example 3 Polystyrene electrified styrene MW-1 manufactured by Denki Kagaku KK
Was dissolved in a 1: 1 mixed solvent of toluene and MEK (methyl ethyl ketone), and a solution film was formed in the same manner as in the polycarbonate film of Example 1 to obtain a polystyrene film having a thickness of 100 μm. When the two films and the polycarbonate obtained in Example 2 were laminated and inserted between a liquid crystal cell and an analyzer, the image was clear and the viewing angle was greatly increased. Further, the polystyrene film was not biaxially stretched, and a plane orientation was formed by thickness shrinkage in the solvent evaporation process, so that there was almost no unevenness corresponding to local unevenness of birefringence, and high quality image was obtained.
Also in this case, the image was clear even at an inclination of 50 °, and the optical characteristics of the film laminate were good as shown in Table 1.

ポリスチレンフイルムのηTH=1.551、ηMD=1.548、
ηTD=1.548であり であつた。
Η TH of polystyrene film = 1.551, η MD = 1.548,
η TD = 1.548 It was.

比較例5 実施例3で得られたポリスチレンフイルムの光学的特
性を調べたところ表−1のようになつた。またこの場合
もポリスチレンフイルム単体ではSTN液晶セルの位相差
を補償することはできなかつた。
Comparative Example 5 When the optical characteristics of the polystyrene film obtained in Example 3 were examined, the results were as shown in Table 1. Also in this case, the polystyrene film alone could not compensate for the phase difference of the STN liquid crystal cell.

実施例4 実施例3で得たポリスチレンフイルムを120゜の温度
下で100%の縦一軸延伸を行つた。該フイルム2枚を直
交させSTN液晶セルと検光子の間に介挿した。又、実施
例1で得たポリカーボネートフイルムを液晶セルと偏光
子の間に介挿した。この場合にも鮮明画像が得られた。
又該ポリスチレンフイルム2枚を直交させたものと該ポ
リマーボネートを積層した光学的特性を表−1に示す。
Example 4 The polystyrene film obtained in Example 3 was subjected to 100% longitudinal uniaxial stretching at a temperature of 120 ° C. The two films were orthogonally inserted between the STN liquid crystal cell and the analyzer. Further, the polycarbonate film obtained in Example 1 was inserted between a liquid crystal cell and a polarizer. Also in this case, a clear image was obtained.
Table 1 shows the optical characteristics of the two polystyrene films crossed orthogonally and the polymer carbonate laminated.

ポリスチレンフイルムはηTH=1.553、ηMD=1.556、
ηTD=1.539であり であつた。
Polystyrene film has η TH = 1.553, η MD = 1.556,
η TD = 1.539 It was.

比較例6 実施例4で得たポリスチレン一軸延伸フイルム2枚を
直交した積層体の光学的特性を表−1に示す。又、該フ
イルム単体ではSTN液晶セルの着色を除去できず光学補
償フイルムとしては不適当であつた。
Comparative Example 6 Table 1 shows the optical characteristics of a laminate in which two uniaxially stretched polystyrene films obtained in Example 4 were crossed. In addition, the film alone could not remove the coloring of the STN liquid crystal cell, and was unsuitable as an optical compensation film.

実施例5 住友化学製ポリアリレートU−ポリマーAX−1500を二
塩化メチレンに溶解し8%溶液とした。該溶液をスチー
ルドラム上に流延し連続的に剥ぎとつて厚さ80μm、幅
500nmの透明なポリアリレートフイルムを得た。
Example 5 A polyarylate U-polymer AX-1500 manufactured by Sumitomo Chemical was dissolved in methylene dichloride to obtain an 8% solution. The solution was cast on a steel drum and continuously stripped to a thickness of 80 μm and a width of 80 μm.
A 500 nm transparent polyarylate film was obtained.

該フイルムを両サイドを固定せずに周速の異なるロー
ラを利用して195℃の温度下で延伸倍率35%の縦延伸を
行つた。このときネツキング率は11%であつた。又、ロ
ール間の間隔は3mでフイルム送り速度は4m/minであつ
た。得られたフイルムと実施例3で得たポリスチレンフ
イルム2枚と積層しSTN液晶セルと検光子の間に介挿し
た。視角範囲は大幅に改良され40゜以上傾けても表示画
面を明瞭に見ることができた。又、積層フイルムの光学
特性を表−1に示す。
The film was stretched at a draw ratio of 35% at a temperature of 195 ° C. using rollers having different peripheral speeds without fixing both sides of the film. At this time, the netting rate was 11%. The interval between the rolls was 3 m, and the film feed speed was 4 m / min. The obtained film and two polystyrene films obtained in Example 3 were laminated and interposed between the STN liquid crystal cell and the analyzer. The viewing angle range was greatly improved, and the display screen could be seen clearly even at an angle of 40 ° or more. Table 1 shows the optical characteristics of the laminated film.

比較例7 実施例5で得たポリアリレートフイルム単独を位相差
フイルムとして使用した場合視野角は30゜以下であつ
た。
Comparative Example 7 When the polyarylate film obtained in Example 5 alone was used as a retardation film, the viewing angle was 30 ° or less.

又、該フイルムの光学特性を表−1に示す。 Table 1 shows the optical characteristics of the film.

比較例8 実施例1〜5で使用したSTN液晶セル単体で画像表示
したところ、画面は赤紫色を示し視野角も狭く20゜以上
で画像は不鮮明となつた。
Comparative Example 8 When an image was displayed on the STN liquid crystal cell alone used in Examples 1 to 5, the screen was reddish purple, the viewing angle was narrow, and the image was unclear at 20 ° or more.

〔発明の効果〕 実質的にフイルム面の法線方向に光軸又は光線軸を有
するか の条件を満たすフイルムと正の固有複屈折値を有する一
軸延伸フイルムとの組み合せによつて一軸延伸フイルム
単独のレターデーシヨンの視角依存性を著しく改善する
と共にネマテイツク、コレステリツク又はスメクテイツ
ク液晶セルに位相差フイルムとして利用するとき視野角
が著しく改善する。
[Effect of the Invention] Whether the optical film or the optical axis is substantially in the normal direction of the film surface The combination of a film satisfying the above condition and a uniaxially stretched film having a positive intrinsic birefringence value significantly improves the viewing angle dependence of the retardation of the uniaxially stretched film alone, and provides a retardation to the nematic, cholesteric or smectic liquid crystal cell. The viewing angle is remarkably improved when used as a film.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】フィルムの法線方向を基準として周囲45゜
以内に少なくとも1本の光軸もしくは光線軸を有する
か、又はフィルムの法線方向の屈折率をηTH、長手方向
の屈折率をηMD、幅方向の屈折率をηTDとしたとき の条件を満たすかのいずれかである、少なくとも一枚の
負の固有屈折値を有する光透過性のフィルム(A)と、
正の固有複屈折値を有すると共に光透過性を有する少な
くとも一枚の一軸延伸高分子フィルム(B)とを液晶セ
ルと偏光板との間に挿入してなる液晶表示装置。
1. The film has at least one optical axis or ray axis within 45 ° around the normal direction of the film, or has a refractive index in the normal direction of the film of η TH and a refractive index in the longitudinal direction of the film. When η MD and the refractive index in the width direction are η TD At least one light transmissive film (A) having a negative intrinsic refraction value, which satisfies any of the following conditions:
A liquid crystal display device comprising at least one uniaxially stretched polymer film (B) having a positive intrinsic birefringence value and having light transmittance inserted between a liquid crystal cell and a polarizing plate.
【請求項2】フィルム(A)が、高分子が実質的に面配
向してなるフィルムである、請求項1に記載の液晶表示
装置。
2. The liquid crystal display device according to claim 1, wherein the film (A) is a film in which a polymer has a substantially plane orientation.
【請求項3】フィルム(A)が二軸配向されたフィルム
である、請求項1に記載の液晶表示装置。
3. The liquid crystal display device according to claim 1, wherein the film (A) is a biaxially oriented film.
JP1236493A 1988-11-04 1989-09-12 Liquid crystal display Expired - Lifetime JP2857889B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE68923929T DE68923929T2 (en) 1988-11-04 1989-11-03 Liquid crystal display.
US07/431,500 US5189538A (en) 1988-11-04 1989-11-03 Liquid crystal display having positive and negative birefringent compensator films
EP89120403A EP0367288B1 (en) 1988-11-04 1989-11-03 Liquid crystal display

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP27859288 1988-11-04
JP63-278592 1988-11-04
JP63-315743 1988-12-14
JP31574388 1988-12-14

Publications (2)

Publication Number Publication Date
JPH02256023A JPH02256023A (en) 1990-10-16
JP2857889B2 true JP2857889B2 (en) 1999-02-17

Family

ID=26552937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1236493A Expired - Lifetime JP2857889B2 (en) 1988-11-04 1989-09-12 Liquid crystal display

Country Status (1)

Country Link
JP (1) JP2857889B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110055562A (en) * 2008-08-22 2011-05-25 아크론 폴리머 시스템즈 Optical compensation films based on stretched polymer films
US9785011B2 (en) 2007-03-29 2017-10-10 Akron Polymer Systems Liquid crystal display having improved wavelength dispersion characteristics

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH087361Y2 (en) * 1989-01-30 1996-03-04 住友化学工業株式会社 Phase difference plate and liquid crystal display device
JP2811396B2 (en) * 1992-12-25 1998-10-15 富士写真フイルム株式会社 Liquid crystal display device using optical compensation sheet
JP3610403B2 (en) * 1994-11-10 2005-01-12 住友化学株式会社 Optical anisotropic film, method for manufacturing the same, and liquid crystal display device
JPH09101515A (en) * 1995-10-06 1997-04-15 Sharp Corp Liquid crystal display device
EP1103885B1 (en) * 1998-06-18 2006-08-16 Kaneka Corporation Transparent touch panel and liquid crystal display with transparent touch panel
JP2002156525A (en) * 2000-11-21 2002-05-31 Fuji Photo Film Co Ltd Optical retardation plate and method for manufacturing the same
JP4586326B2 (en) * 2002-10-11 2010-11-24 日本ゼオン株式会社 Optical laminate and method for producing the same
US7479309B2 (en) * 2003-07-31 2009-01-20 Nitto Denko Corporation Multi-layered compensation film using specified Tg material as a birefringent layer
WO2005019883A1 (en) * 2003-08-26 2005-03-03 Zeon Corporation Optically laminated material and manufacturing method thereof
WO2005050301A1 (en) 2003-11-21 2005-06-02 Zeon Corporation Liquid crystal display device
JP4882375B2 (en) 2003-11-21 2012-02-22 日本ゼオン株式会社 Liquid crystal display
JP2005274725A (en) 2004-03-23 2005-10-06 Nippon Zeon Co Ltd Optical laminate, optical element, and liquid crystal display device
JP4440817B2 (en) 2005-03-31 2010-03-24 富士フイルム株式会社 An optically anisotropic film, a brightness enhancement film, a laminated optical film, and an image display device using them.
KR100789617B1 (en) * 2005-09-13 2007-12-27 주식회사 엘지화학 Compensation film of negative c-type and method for preparing the same
EP2179311B1 (en) 2007-08-14 2015-09-16 LG Chem, Ltd. Optical film and method of manufacturing the same
JP6568687B2 (en) 2012-07-30 2019-08-28 デンカ株式会社 Copolymer for optical compensation film
JPWO2015019962A1 (en) 2013-08-09 2017-03-02 日産化学工業株式会社 Cured film forming composition, alignment material and retardation material
WO2015030004A1 (en) 2013-08-29 2015-03-05 日産化学工業株式会社 Cured-film-forming composition, alignment material, and phase difference material
KR102148213B1 (en) 2013-09-03 2020-08-26 덴카 주식회사 Optical film copolymer
WO2016031917A1 (en) 2014-08-28 2016-03-03 日産化学工業株式会社 Composition for forming cured film, alignment material, and retardation material
WO2016039337A1 (en) * 2014-09-08 2016-03-17 日産化学工業株式会社 Cured-film-forming composition, alignment material, and phase difference material
CN107207641B (en) 2015-02-10 2021-02-12 日产化学工业株式会社 Composition for forming cured film, alignment material, and phase difference material
CN107532006B (en) 2015-04-17 2021-06-25 日产化学工业株式会社 Thermosetting resin composition and vertically aligned retardation film
CN109416427B (en) 2016-06-30 2020-12-29 电化株式会社 Wide-view angle high-contrast optical compensation film
KR20190103295A (en) 2017-01-13 2019-09-04 닛산 가가쿠 가부시키가이샤 Cured film formation composition, orientation material, and phase difference material
KR20230062899A (en) 2017-02-22 2023-05-09 닛산 가가쿠 가부시키가이샤 Cured film-forming composition, alignment material, and phase difference material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9785011B2 (en) 2007-03-29 2017-10-10 Akron Polymer Systems Liquid crystal display having improved wavelength dispersion characteristics
KR20110055562A (en) * 2008-08-22 2011-05-25 아크론 폴리머 시스템즈 Optical compensation films based on stretched polymer films
KR101702672B1 (en) * 2008-08-22 2017-02-06 아크론 폴리머 시스템즈, 인코포레이티드 Optical compensation films based on stretched polymer films

Also Published As

Publication number Publication date
JPH02256023A (en) 1990-10-16

Similar Documents

Publication Publication Date Title
JP2857889B2 (en) Liquid crystal display
US5189538A (en) Liquid crystal display having positive and negative birefringent compensator films
EP0424951B1 (en) Liquid crystal display
KR100698004B1 (en) Liquid crystal panel and liquid crystal display apparatus
US5472538A (en) Process for producing phase retarder film
TWI440942B (en) Liquid-crystal display device
US5213852A (en) Phase difference film and liquid crystal display having the same
JP2001215332A (en) Optical retardation film and its continuous manufacturing method
CN112859421A (en) Polarizing plate with retardation layer and image display device
JP2005274725A (en) Optical laminate, optical element, and liquid crystal display device
JP2008090288A (en) Liquid crystal display device
JPH02191904A (en) Phase difference film and its production
KR20070092264A (en) Liquid crystal panel and liquid crystal display
JP2000111896A (en) Liquid crystal display with touch panel and touch panel
JPH03141303A (en) Film laminate
JP3313408B2 (en) Retardation film, retardation plate, and liquid crystal display device using the same
JP4433854B2 (en) Optical laminated body with improved viewing angle characteristics, optical element using the optical laminated body, and liquid crystal display device
JP2011095694A (en) Va-mode liquid crystal display device
JP2711915B2 (en) Liquid crystal display device and phase difference film
JPH06194646A (en) Tn type liquid crystal display element provided with optical compensation film
JPH03206422A (en) Liquid crystal display device
JP2008268786A (en) Combination polarizing plate
JPH0497322A (en) Liquid crystal display device
JP2000056131A (en) Phase difference plate, laminated polarizing plate and liquid crystal display device
JP3313406B2 (en) Retardation film, retardation plate and liquid crystal display

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071204

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071204

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081204

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081204

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091204

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091204

Year of fee payment: 11