JP2817378B2 - Sealed lead-acid battery - Google Patents

Sealed lead-acid battery

Info

Publication number
JP2817378B2
JP2817378B2 JP2221685A JP22168590A JP2817378B2 JP 2817378 B2 JP2817378 B2 JP 2817378B2 JP 2221685 A JP2221685 A JP 2221685A JP 22168590 A JP22168590 A JP 22168590A JP 2817378 B2 JP2817378 B2 JP 2817378B2
Authority
JP
Japan
Prior art keywords
electrode plate
positive electrode
battery
sealed lead
acid battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2221685A
Other languages
Japanese (ja)
Other versions
JPH04104476A (en
Inventor
勝夫 笠井
繁 笹部
健二郎 岸本
潔 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Corp filed Critical Yuasa Corp
Priority to JP2221685A priority Critical patent/JP2817378B2/en
Publication of JPH04104476A publication Critical patent/JPH04104476A/en
Application granted granted Critical
Publication of JP2817378B2 publication Critical patent/JP2817378B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、密閉形鉛蓄電池に関するものであり、特に
その高率放電性能の改良に関するもにである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sealed lead-acid battery, and more particularly to an improvement in its high-rate discharge performance.

従来技術とその問題点 密閉形鉛蓄電池の放電容量は、その極板群構成と電池
中の硫酸量により決定される。多くの場合、電池内の硫
酸量が多いほど、また極板表面が大きいほど、放電容量
は大きくなる。特に高率放電を行なう時にこの傾向は顕
著になる。
Prior art and its problems The discharge capacity of a sealed lead-acid battery is determined by its electrode group configuration and the amount of sulfuric acid in the battery. In many cases, the larger the amount of sulfuric acid in the battery and the larger the surface of the electrode plate, the larger the discharge capacity. This tendency becomes remarkable especially when high-rate discharge is performed.

従って、従来、同一寸法の電池において、その高率放
電容量を増加させるためには濃度の高い電解液を使う
か、または、極板枚数を増やす方法が採られてきた。
Therefore, conventionally, in a battery of the same size, a method of using a highly concentrated electrolytic solution or increasing the number of electrode plates has been adopted to increase the high rate discharge capacity.

しかし、電解液濃度をあまり高くすると電池寿命に悪
影響が現れる。また、負極板は、ある濃度以上の電解液
中では逆に容量が減少することが認められる。このた
め、電解液濃度を無制限に高めることはできず、電解液
濃度を高くする方法では顕著な容量増加は期待できな
い。
However, if the concentration of the electrolyte is too high, the life of the battery is adversely affected. Also, it is recognized that the capacity of the negative electrode plate decreases in an electrolytic solution having a certain concentration or more. For this reason, the electrolyte concentration cannot be increased without limit, and a remarkable increase in capacity cannot be expected by the method of increasing the electrolyte concentration.

一方、極板枚数を増やし、同一電流における極板上の
電流密度を小さくする方法は効果的であり、広く採用さ
れている。ところが、この方法では、極板群の体積に占
める隔離体の比率が増加し、正、負極板が薄くなり、ま
た活物質量が減少するので、電池の寿命に悪影響が現れ
る。更に、電池一個当たりの極板枚数が多くなれば、極
板製造工程及び電池組立において作業工数が多大とな
り、電池の製造コストが上昇するという問題点がある。
On the other hand, a method of increasing the number of electrode plates and reducing the current density on the electrode plates at the same current is effective and widely adopted. However, in this method, the ratio of the separator in the volume of the electrode plate group increases, the positive and negative electrode plates become thinner, and the amount of the active material decreases, which adversely affects the life of the battery. Furthermore, when the number of electrode plates per battery increases, the number of steps required in the electrode plate manufacturing process and battery assembly increases, and there is a problem that the battery manufacturing cost increases.

発明の目的 本発明は、上記問題点を解消したもので、密閉形鉛蓄
電池の寿命を短かくすることなく、また、製造工程を煩
雑にすることなく、高率放電容量の大きな密閉形鉛蓄電
池を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and does not shorten the life of a sealed lead-acid battery and does not complicate the manufacturing process. The purpose is to provide.

即ち、本発明の主要な目的は、限定された寸法の中で
高率放電容量が良好な密閉形鉛蓄電池を提供することで
あり、そのため極板群の構成を与えることである。
That is, a main object of the present invention is to provide a sealed lead-acid battery having a good high-rate discharge capacity within a limited size, and therefore to provide a configuration of an electrode group.

発明の構成 密閉形鉛蓄電池の容量は、正極板片面電流密度が0.1A
/dm2程度の低率放電の場合には、主に電池内の全硫酸量
によって決定される。一方、同電流密度が10A/dm2程度
の高率放電の場合には、主に正極板の微孔内に保持され
る硫酸量によって決定される。
The capacity of the sealed lead-acid battery is such that the current density on one side of the positive electrode plate is 0.1 A.
In the case of a low rate discharge of about / dm 2, it is mainly determined by the total amount of sulfuric acid in the battery. On the other hand, in the case of high-rate discharge at the same current density of about 10 A / dm 2, it is determined mainly by the amount of sulfuric acid retained in the fine pores of the positive electrode plate.

従って、同一の極板群の寸法内で、極板枚数を変えず
に高率放電の容量を増加させる為には、正極板に保持さ
れる硫酸量を増やす必要がある。このためには、正極活
物質の多孔度を高めると共に、正極板を厚くする必要が
ある。しかし、正極板を厚くすると、電解液の拡散が悪
くなるため、無制限に正極板を厚くすることはできな
い。
Therefore, in order to increase the high-rate discharge capacity without changing the number of electrode plates within the same electrode group size, it is necessary to increase the amount of sulfuric acid retained on the positive electrode plate. For this purpose, it is necessary to increase the porosity of the positive electrode active material and increase the thickness of the positive electrode plate. However, when the thickness of the positive electrode plate is increased, the diffusion of the electrolytic solution is deteriorated. Therefore, the thickness of the positive electrode plate cannot be increased without limitation.

一方、負極板は通常、正極と同等以上の容量を与えら
れるように設計されている。負極の容量は、金属活物質
量と共に、高率放電時には硫酸の負極板内への拡散速度
によって左右される。負極板の微孔の孔径は、一般的に
正極板のそれよりも大きく、硫酸が拡散しやすい構造に
なっている。しかし、電流密度が大きくなると拡散によ
る硫酸の供給だけでは不足となるため、予め負極板に保
持される硫酸量を正極板のそれに対してある比率以上と
する必要がある。
On the other hand, the negative electrode plate is usually designed so as to provide a capacity equal to or greater than that of the positive electrode. The capacity of the negative electrode depends on the diffusion rate of sulfuric acid into the negative electrode plate during high-rate discharge, together with the amount of the metal active material. The diameter of the fine pores of the negative electrode plate is generally larger than that of the positive electrode plate, and the structure is such that sulfuric acid is easily diffused. However, when the current density is increased, the supply of sulfuric acid by diffusion alone becomes insufficient. Therefore, the amount of sulfuric acid held on the negative electrode plate must be set to a certain ratio or more in advance with respect to that of the positive electrode plate.

本発明は、以上の通り、上記正極板内及び負極板内に
保持させる電解液量を規定したものである。
As described above, the present invention specifies the amount of the electrolyte to be held in the positive electrode plate and the negative electrode plate.

本発明は、二酸化鉛を主成分とする多孔性の正極板
と、金属鉛を主成分とする多孔性の負極板と、微細なガ
ラス繊維又は微細な高分子繊維又は微細なシリカ粉末を
主成分とする隔離体により構成される極板群の中に、ほ
とんど全ての電解液を保持させる構造の密閉形鉛蓄電池
において、該極板群の厚みをT、該極板群を構成する正
極板の幅をW、該正極板の高さをHとした時、W×H×
Tで表される該極板群の体積の20%以上に相当する体積
の電解液を正極板の中に保持させる密閉形鉛蓄電池であ
る。
The present invention provides a porous positive electrode plate containing lead dioxide as a main component, a porous negative electrode plate containing metal lead as a main component, and fine glass fibers or fine polymer fibers or fine silica powder as main components. In a sealed lead-acid battery having a structure in which almost all of the electrolyte is held in the electrode group constituted by the separator, the thickness of the electrode group is set to T, and the thickness of the positive electrode plate constituting the electrode group is set to T. When the width is W and the height of the positive electrode plate is H, W × H ×
This is a sealed lead-acid battery in which an electrolyte of a volume corresponding to 20% or more of the volume of the electrode group represented by T is held in the positive electrode plate.

更に、本発明は、上記密閉形鉛蓄電池において、正極
板内に保持される電解液の体積の75%以上に相当する体
積の電解液を、負極板内に保持させたものである。
Further, the present invention provides the above sealed lead-acid battery, wherein a volume of the electrolyte corresponding to 75% or more of the volume of the electrolyte held in the positive electrode plate is held in the negative electrode plate.

更に本発明は、上記密閉形鉛蓄電池において、正極板
の厚みを、5.8mm以下にしたものである 実施例 極板群の寸法が同一の場合、その密閉形鉛蓄電池の高
率放電容量は、電解液の極板群内の分布状態及び極
板の厚みにより決定される。以下、三つの実験データを
基に本発明の実施例を説明する。
Further, the present invention provides the above sealed lead-acid battery, wherein the thickness of the positive electrode plate is set to 5.8 mm or less.Example When the dimensions of the electrode plate group are the same, the high-rate discharge capacity of the sealed lead-acid battery is: It is determined by the distribution of the electrolyte in the electrode group and the thickness of the electrode. Hereinafter, examples of the present invention will be described based on three experimental data.

先づ、第1表に正極板、負極板及びセパレータで構成
され、極板群の寸法が異なる現行の3種類の密閉形鉛蓄
電池A、B、Cの極板群構造を示す。
First, Table 1 shows the current three types of electrode plate group structures of the sealed lead-acid batteries A, B, and C, which are composed of a positive electrode plate, a negative electrode plate, and a separator, and have different electrode plate sizes.

次に、上記電池A、B、Cの極板群の高さ(H)と巾
(W)を変えることなく、正、負極板の厚み、活物質外
比及びセパレータの厚みを変更して、それぞれ電池を試
作した。
Next, without changing the height (H) and width (W) of the electrode group of the batteries A, B, and C, the thickness of the positive electrode, the thickness of the negative electrode plate, the active material external ratio, and the thickness of the separator were changed. Each battery was prototyped.

(実施例1) 上記の極板群の構成を変えた複数の電池を用いて、正
極板の単位表面積当たりの電流が一定になるように放電
々流をそれぞれの電池に対して定め、容量試験を行なっ
た。但し、用いた電池の構成は、正極板に保持される電
解液の体積に対する負極板に保持される電解液の比を0.
8以上として、正極板の厚さを3.40mmから5.00mmとし
た。また、電池の寿命を考えて正極活物質の外比を3.10
から3.35の範囲とした。
(Example 1) Using a plurality of batteries in which the configuration of the above-mentioned electrode group was changed, a discharge current was determined for each battery so that the current per unit surface area of the positive electrode plate was constant, and a capacity test was performed. Was performed. However, the configuration of the battery used is such that the ratio of the electrolyte held on the negative electrode plate to the volume of the electrolyte held on the positive electrode plate is 0.
The thickness was set to 8 or more, and the thickness of the positive electrode plate was changed from 3.40 mm to 5.00 mm. Also, considering the life of the battery, the external ratio of the positive electrode active material should be 3.10
To 3.35.

第1図は、正極に保持される電解液の体積と極板群の
体積(H×W×T)の比tと、各電流密度i(A/dm2
での電池の容量を極板群の体積で除した数値との関係図
である。なお、正極に保持される電解液の体積には、電
池解体直後の正極板の総重量と、正極板を水洗・乾燥し
た後の総重量との差を、電解液比重で除した数値を当て
はめた。
FIG. 1 shows the ratio t of the volume of the electrolyte held by the positive electrode to the volume of the electrode plate group (H × W × T), and the current density i (A / dm 2 ).
FIG. 6 is a relationship diagram with a numerical value obtained by dividing the capacity of the battery in FIG. The volume of the electrolyte held in the positive electrode is calculated by dividing the difference between the total weight of the positive electrode plate immediately after disassembly of the battery and the total weight of the positive electrode plate after washing and drying by the electrolyte specific gravity. Was.

この第1図において、ある電流密度iにおけるt値と
容量密度の関係を示す曲線は多数の電池の試験結果をグ
ラフ上にプロットした点の、t値が0.100から0.285迄の
範囲でのt値を変数とする2次の回帰曲線である。
In FIG. 1, a curve showing the relationship between the t value and the capacity density at a certain current density i is the t value of a point where the test results of many batteries are plotted on a graph when the t value is in the range of 0.100 to 0.285. Is a quadratic regression curve with 変 数 as a variable.

なお、この曲線を基に計算される2次回帰からのズレ
の標準偏差は、実施例のすべての電流密度iの値に対し
て、そのi値での容量密度の平均値に対して1.2%未満
であった。
The standard deviation of the deviation from the quadratic regression calculated based on this curve is 1.2% with respect to the average value of the capacitance density at all the current density i values in the example. Was less than.

第1図において、電流密度iのそれぞれの値に対して
描かれる2次曲線の傾きを見ると、t=0.20付近で曲線
の傾きの割合が急速に変わっていることがわかる。第2
図は回帰曲線の傾きの変化を示す図であり、横軸にt、
縦軸に次の式で示す数値zをとり、(t、z)をプロッ
トしたものである。
In FIG. 1, the slope of the quadratic curve drawn for each value of the current density i shows that the ratio of the slope of the curve changes rapidly around t = 0.20. Second
The figure shows the change in the slope of the regression curve.
The numerical value z represented by the following equation is plotted on the vertical axis, and (t, z) is plotted.

即ち、zは微小区間における回帰曲線の傾きの比を表
わすものである。第2図から明らかな如く、t=0.21付
近でzで急激に減少し始める。
That is, z represents the ratio of the slope of the regression curve in the minute section. As can be seen from FIG. 2, it begins to decrease sharply at z near t = 0.21.

従って、正極板の電流密度iが7.85A/dm2以上の場
合、t<0.21の領域ではtの増加に伴ない容量密度が増
加し、t=0.20付近を境に容量密度の増加は小さくなる
か、ほとんど無くなることがわかる。
Therefore, when the current density i of the positive electrode plate is 7.85 A / dm 2 or more, in the region of t <0.21, the capacity density increases as t increases, and the increase in capacity density decreases near t = 0.20. Or almost disappear.

ところで現行の密閉形鉛蓄電池ではtは大きくてせい
ぜい0.175であり、例えばt=0.21である本実施例の密
閉形鉛蓄電池の容量密度は、現行品に比べて11〜14%増
加している。第2表に電流密度におけるt値に対する容
量密度の比較を示す。
By the way, in the current sealed lead-acid battery, t is at most 0.175 at most, and for example, the capacity density of the sealed lead-acid battery of the present embodiment in which t = 0.21 is increased by 11 to 14% as compared with the current product. Table 2 shows a comparison of the capacitance density with respect to the t value in the current density.

第2表から明らかな如く、t>0.20とすれば高率放電
での容量密度を増加させることができる。
As is clear from Table 2, when t> 0.20, the capacity density at high rate discharge can be increased.

即ち、極板群の体積(W×H×T)の体積の20%以上
に相当する体積の電解液を正極板の中に保持させること
により、高率放電での容量密度を増加させることができ
る。
That is, it is possible to increase the capacity density in high-rate discharge by holding a volume of the electrolytic solution corresponding to 20% or more of the volume (W × H × T) of the electrode plate group in the positive electrode plate. it can.

(実施例2) 次に電池の負極板の影響を与える。正極板の電解液保
持量(体積)に対する負極板の電解液保持量(体積)の
比率rを0.65から1.15まで変化させるように負極板活物
質外比と負極板厚みを変えて密閉形鉛蓄電池を試作し
た。これらの試作電池の正極板とt値は全て同一とし、
電解液はそれぞれの電池の極板群に過不足なく吸収され
る量を注入した。前記3機種の電池A・B・Cのそれぞ
れのrと容量密度との関係を第3表に示す。なお、容量
密度は、r=0.90の容量密度を100とした指数で表し
た。また、t=0.215、i=11.78の条件で実験を行なっ
た。
(Example 2) Next, the influence of the negative electrode plate of the battery is exerted. A sealed lead-acid battery by changing the external ratio of the negative electrode plate active material and the thickness of the negative electrode plate so that the ratio r of the amount of electrolyte solution retained (volume) of the negative electrode plate to the amount of electrolyte solution retained (volume) of the positive electrode plate varies from 0.65 to 1.15 Was prototyped. The positive electrode plate of these prototype batteries and the t value are all the same,
The electrolyte solution was injected into the electrode group of each battery in such an amount that it could be absorbed without excess or deficiency. Table 3 shows the relationship between r and capacity density of each of the three types of batteries A, B, and C. The capacity density was represented by an index with the capacity density of r = 0.90 as 100. An experiment was performed under the conditions of t = 0.215 and i = 11.78.

第3表及び第3図から明らかな如く、r値が0.70から
0.80の間で容量の増加の割合が急に小さくない、r≧0.
85では電池容量に大きな変化はない。逆にr<0.70では
rの減少に伴い電池容量も低下しており、負極によって
電池容量が制限されることを示している。
As is clear from Table 3 and FIG. 3, the r value is from 0.70.
The rate of increase in capacity between 0.80 is not suddenly small, r ≧ 0.
In 85, there is no big change in battery capacity. Conversely, when r <0.70, the battery capacity also decreases with the decrease in r, indicating that the battery capacity is limited by the negative electrode.

従って、高率放電においては、正極板の電解液保持量
に対する負極板の電解液保持量の比率が0.75程度、ある
いはそれ以上なければ、正極の容量を十分に活用できな
いことがわかる。
Therefore, in the high rate discharge, it is understood that the capacity of the positive electrode cannot be fully utilized unless the ratio of the amount of electrolyte held in the negative electrode plate to the amount of electrolyte held in the positive electrode plate is about 0.75 or more.

以上の実施例1及び2から、高率放電時の容量密度を
向上させるためには、極板群の体積の20%以上に相当す
る体積の電解液を正極板の中に保持させると共に、正極
板内に保持される電解液の体積の75%以上に相当する体
積の電解液を、負極板内に保持させた構造の極板群とし
なければならないことが明らかになった。
From the above Examples 1 and 2, in order to improve the capacity density at the time of high-rate discharge, an electrolyte solution having a volume corresponding to 20% or more of the volume of the electrode plate group was held in the positive electrode plate, It became clear that a volume of the electrolytic solution corresponding to 75% or more of the volume of the electrolytic solution held in the plate had to be used as an electrode group having a structure held in the negative electrode plate.

(実施例3) 一般に密閉形鉛蓄電池は、極板内部の活物質に電解液
中の硫酸根やプロトンが供給されて放電を持続するの
で、これらの物質の拡散が不足すると電池容量の限界と
なる。電解液成分の供給は、放電反応の場所が極板表面
から離れているほど緩やかになるので、正極板の厚みを
2倍にしても、その容量は2倍にはならない。その影響
を定量的に把握するために、現行の前記密閉形鉛蓄電池
Aを基に、t値及びr値を変えずに、正極板及びその他
の極板群構成部品の厚みだけを変えた複数の電池を試作
し、正極板厚みと容量密度の関係を調べた。その結果を
第4表に示す。
(Example 3) In general, in a sealed lead-acid battery, the active material in the electrode plate is supplied with sulfate and proton in the electrolytic solution to sustain the discharge. Therefore, if the diffusion of these materials is insufficient, the capacity of the battery is limited. Become. The supply of the electrolyte component becomes gentler as the location of the discharge reaction becomes farther from the surface of the electrode plate. Therefore, even if the thickness of the positive electrode plate is doubled, the capacity does not double. In order to grasp the influence quantitatively, based on the current sealed lead-acid battery A, the thickness of the positive electrode plate and other electrode plate group components was changed without changing the t value and the r value. A battery was manufactured as a prototype, and the relationship between the positive electrode plate thickness and the capacity density was examined. Table 4 shows the results.

第4表から明らかな如く、確かに正極板が厚くなると
容量密度は小さくなるが、その程度は厚みが5.20mmから
5.80mmの間で変化し、5.80mm以上の厚い正極板を使用し
た電池では、容量密度が急に小さくなる。これらの結果
から、正極板の厚みを5.8mm以上すべきではないことが
わかる。
As is evident from Table 4, the capacity density certainly decreases as the thickness of the positive electrode plate increases.
The battery density varies between 5.80 mm, and the capacity density of the battery using a positive electrode plate of 5.80 mm or more suddenly decreases. These results indicate that the thickness of the positive electrode plate should not be 5.8 mm or more.

一方、極板を薄くしようとすると、現在の生産技術で
は限界があり、また電池の寿命を短くする可能性も出て
くる。しかし、これらの問題は、電池の電解液分布によ
るものではなく、将来の生産技術や格子体の合金の改良
等によって解決される問題であり、正極板の厚さの下限
は本発明において設定されない。
On the other hand, if an attempt is made to reduce the thickness of the electrode plate, there is a limit in the current production technology, and there is a possibility that the life of the battery is shortened. However, these problems are not due to the electrolytic solution distribution of the battery, but are problems to be solved by future production technology or improvement of the alloy of the lattice body, and the lower limit of the thickness of the positive electrode plate is not set in the present invention. .

以上、実施例1から実施例3をまとめるために、前記
密閉形鉛蓄電池Aについて、本発明に基づく改良品A1
現行品A2及び比較例としてその正極板厚みを5.8mm以上
とした電池A3、r値を0.75以下にした電池A4をそれぞれ
試作し、容量密度を測定した。その結果を第5表及び第
6表にに示す。
As described above, in order to summarize the first to third embodiments, the sealed lead-acid battery A is improved according to the present invention with an improved product A 1 ,
Its positive electrode plate 5.8mm or more thickness and the cell A 3, cell A 4 in which the r value of 0.75 or less prototype, respectively, were measured capacitance density as the current article A 2 and Comparative Example. The results are shown in Tables 5 and 6.

第5表及び第6表から明らかな如く、本発明による密
閉形鉛蓄電池は、高率放電時の極板群単位体積当たりの
容量が、現行品に比べて約20%増加しており、しかも、
その傾向は、電流密度が高くなるほど、しだいに顕著に
なってくる。
As is clear from Tables 5 and 6, the sealed lead-acid battery according to the present invention has a capacity per unit volume of the electrode plate group at the time of high rate discharge increased by about 20% compared with the current product, and ,
The tendency becomes more remarkable as the current density increases.

発明の効果 以上に述べた如く、本発明による密閉形鉛蓄電池は、
従来の電池に比べ、与えられた極板群の寸法(H、W、
T)内で極板枚数を増やすことなく、また、電解液濃度
を高くすることなく、高率放電容量を11%以上増加さ
せ、かつ、活物質の軟化による寿命の短縮を招くような
外比の小さい正極板活物質を使用せずに上記の利点を得
ることができる。これらの点で、本発明による密閉形鉛
蓄電池は、従来の電池より優れており、その工業的価値
は大きいものである。
Effect of the Invention As described above, the sealed lead-acid battery according to the present invention is:
Compared to conventional batteries, the dimensions (H, W,
In T), an external ratio that increases the high-rate discharge capacity by 11% or more without increasing the number of electrode plates and without increasing the concentration of the electrolyte and shortens the life due to softening of the active material. The above advantage can be obtained without using a positive electrode plate active material having a small value. In these respects, the sealed lead-acid battery according to the present invention is superior to conventional batteries, and has a great industrial value.

【図面の簡単な説明】[Brief description of the drawings]

第1図は正極に保持される電解液の体積と極板群の体積
の比tと、各電流密度iでの電池の容量密度との関係
図、第2図は回帰曲線の傾きの変化を示す図である。
FIG. 1 is a graph showing the relationship between the ratio t of the volume of the electrolyte held in the positive electrode to the volume of the electrode plate group and the capacity density of the battery at each current density i. FIG. 2 shows the change in the slope of the regression curve. FIG.

フロントページの続き (56)参考文献 特開 昭60−91572(JP,A) 実開 平2−102661(JP,U) (58)調査した分野(Int.Cl.6,DB名) H01M 10/06 - 10/12Continuation of the front page (56) References JP-A-60-91572 (JP, A) JP-A-2-102661 (JP, U) (58) Fields investigated (Int. Cl. 6 , DB name) H01M 10 / 06-10/12

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】二酸化鉛を主成分とする多孔性の正極板
と、金属鉛を主成分とする多孔性の負極板と、微細なガ
ラス繊維又は微細な高分子繊維又は微細なシリカ粉末を
主成分とする隔離体により構成される極板群の中に、ほ
とんど全ての電解液を保持させる構造の密閉形鉛蓄電池
において、該極板群の厚みをT、該極板群を構成する正
極板の幅をW、該正極板の高さをHとした時、W×H×
Tで表わされる該極板群の体積の20%以上に相当する体
積の電解液を正極板の中に保持させることを特徴とする
密閉形鉛蓄電池。
A porous positive electrode plate containing lead dioxide as a main component, a porous negative electrode plate containing metal lead as a main component, and fine glass fibers or fine polymer fibers or fine silica powder. In a sealed lead-acid battery having a structure in which almost all of the electrolyte is held in an electrode group composed of separators as components, the thickness of the electrode group is T, and the positive electrode plate constituting the electrode group Where W is the width and H is the height of the positive electrode plate, W × H ×
A sealed lead-acid battery in which an electrolyte of a volume corresponding to 20% or more of the volume of the electrode group represented by T is held in the positive electrode plate.
【請求項2】正極板内に保持される電解液の体積の75%
以上に相当する体積の電解液を、負極板内に保持させた
ことを特徴とする請求項1記載の密閉形鉛蓄電池。
2. 75% of the volume of the electrolyte held in the positive electrode plate
2. The sealed lead-acid battery according to claim 1, wherein an electrolytic solution having a volume corresponding to the above is held in the negative electrode plate.
【請求項3】正極板の厚みが、5.8mm以下であることを
特徴とする請求項1記載の密閉形鉛蓄電池。
3. The sealed lead-acid battery according to claim 1, wherein the thickness of the positive electrode plate is 5.8 mm or less.
JP2221685A 1990-08-22 1990-08-22 Sealed lead-acid battery Expired - Fee Related JP2817378B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2221685A JP2817378B2 (en) 1990-08-22 1990-08-22 Sealed lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2221685A JP2817378B2 (en) 1990-08-22 1990-08-22 Sealed lead-acid battery

Publications (2)

Publication Number Publication Date
JPH04104476A JPH04104476A (en) 1992-04-06
JP2817378B2 true JP2817378B2 (en) 1998-10-30

Family

ID=16770674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2221685A Expired - Fee Related JP2817378B2 (en) 1990-08-22 1990-08-22 Sealed lead-acid battery

Country Status (1)

Country Link
JP (1) JP2817378B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10522837B2 (en) 2013-11-29 2019-12-31 Gs Yuasa International Ltd. Lead-acid battery

Also Published As

Publication number Publication date
JPH04104476A (en) 1992-04-06

Similar Documents

Publication Publication Date Title
JP2817378B2 (en) Sealed lead-acid battery
JP3555177B2 (en) Sealed lead-acid battery
JPH08329975A (en) Sealed lead-acid battery
JPH10302783A (en) Sealed lead-acid battery and manufacture thereof
JP3042027B2 (en) Sealed lead-acid battery
JPH04296464A (en) Sealed-type lead-acid battery
JPH10247491A (en) Lead-acid battery and its manufacture
JPH02168574A (en) Sealed type lead storage battery
JP2762498B2 (en) Sealed lead-acid battery
JPH04196060A (en) Non-sintered plate
JP3000157B2 (en) Sealed lead-acid battery
JP3379129B2 (en) Sealed lead-acid battery
JPH06333549A (en) Glass mat for lead-acid battery
JP2004079198A (en) Lead accumulator
JP2926233B2 (en) Manufacturing method of alkaline secondary battery
JPH0729594A (en) Retainer type sealed lead-acid battery
JPH0212770A (en) Lead-acid battery
JP2000149932A (en) Lead-acid battery and its manufacture
JPH08115718A (en) Manufacture of lead-acid battery
JPH11354128A (en) Sealed lead-acid battery
JP3521459B2 (en) Clad electrode plate for lead-acid battery
JPH08298133A (en) Sealed lead acid battery
JPS60150562A (en) Lead storage battery
JP2002343360A (en) Control valve type lead storage battery
JPS62223989A (en) Manufacture of sealed lead-acid battery

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080821

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080821

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090821

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090821

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100821

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees