JP3000157B2 - Sealed lead-acid battery - Google Patents

Sealed lead-acid battery

Info

Publication number
JP3000157B2
JP3000157B2 JP3283731A JP28373191A JP3000157B2 JP 3000157 B2 JP3000157 B2 JP 3000157B2 JP 3283731 A JP3283731 A JP 3283731A JP 28373191 A JP28373191 A JP 28373191A JP 3000157 B2 JP3000157 B2 JP 3000157B2
Authority
JP
Japan
Prior art keywords
electrode plate
battery
tube
tubes
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3283731A
Other languages
Japanese (ja)
Other versions
JPH0541242A (en
Inventor
塩見  正昭
中村  憲治
Original Assignee
日本電池株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電池株式会社 filed Critical 日本電池株式会社
Priority to JP3283731A priority Critical patent/JP3000157B2/en
Publication of JPH0541242A publication Critical patent/JPH0541242A/en
Application granted granted Critical
Publication of JP3000157B2 publication Critical patent/JP3000157B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は密閉形鉛蓄電池の改良に
関するもので、寿命性能の優れた密閉形鉛蓄電池を提供
することを目的とするものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a sealed lead-acid battery, and an object of the present invention is to provide a sealed lead-acid battery having excellent life performance.

【0002】[0002]

【従来の技術とその課題】従来、開放形の液式電池で
は、フォークリフト用のように深い放電が繰り返し行な
われる場合は、正極活物質をガラスあるいは合成樹脂の
繊維からなるチューブで包んだクラッド式正極板を使用
するのが一般的である。
2. Description of the Related Art Conventionally, in an open type liquid battery, when deep discharge is repeatedly performed as in a forklift, a clad type in which a cathode active material is wrapped in a tube made of glass or synthetic resin fibers. Generally, a positive electrode plate is used.

【0003】通常、正極板を放電すると、活物質のPb
2 が体積の大きなPbSO4 に変化するため、その形
状がサイクルの進行に伴って大きく変化する。そのた
め、深い放電を繰り返し行なうと正極活物質の結合力が
低下して次第に放電容量が低下する。
Usually, when the positive electrode plate is discharged, Pb of the active material is discharged.
Since O 2 changes to PbSO 4 having a large volume, its shape changes greatly as the cycle progresses. Therefore, when deep discharge is repeatedly performed, the bonding force of the positive electrode active material decreases, and the discharge capacity gradually decreases.

【0004】正極活物質をチューブで包んだクラッド式
極板は、活物質の膨張や脱落を抑えることができるの
で、活物質の結合力を長期間維持でき、サイクル寿命が
長いことが知られている。
It is known that a clad type electrode plate in which a cathode active material is wrapped in a tube can suppress the expansion and fall of the active material, can maintain the binding force of the active material for a long time, and have a long cycle life. I have.

【0005】上記の理由から、サイクル寿命性能の優れ
た密閉形鉛蓄電池を製作する場合においても同様に、正
極板にはクラッド式極板が採用されている。
[0005] For the above reasons, a clad type electrode plate is similarly employed as the positive electrode plate in the production of a sealed lead-acid battery having excellent cycle life performance.

【0006】電池を密閉化する方法としては、(1)微
細ガラス繊維からなり正・負極板形状に沿うセパレータ
を用いて、これらに電解液を含浸・保持させる、いわゆ
るリテーナ式にする、(2)電解液をコロイダルシリカ
などによりゲル化させる、いわゆるゲル式にする、
(3)顆粒状のシリカを極板間および極板群の周囲に充
填し、極板,セパレータおよび顆粒状シリカに電解液を
含浸,保持させる、いわゆる顆粒式にする、という方法
が一般的に知られているが、(1)は、セパレータの製
作コストが著しく高くなるため、実用化には至っていな
い。性能的には、(1)(2)(3) のいずれも液式電池に比べ
て放電容量が小さく、しかも寿命性能もかなり劣ってい
る。またペースト式の極板を使用した電池に比べ、性能
の低下する割合が大きく、クラッド式極板を使用した優
位性がいかされていなかった。これらの理由を明らかに
するため、ゲル式電池および顆粒式電池について種々の
試験を行なった結果、以下のことがわかった。
As a method for sealing a battery, (1) a so-called retainer type, in which a separator made of fine glass fibers along a positive / negative plate shape is used to impregnate and hold an electrolytic solution, (2) ) A so-called gel type in which the electrolyte is gelled with colloidal silica or the like;
(3) A method in which granular silica is filled between the electrode plates and around the electrode plate group, and the electrode plate, the separator, and the granular silica are impregnated with an electrolytic solution and held, that is, a so-called granular method is generally used. Although it is known, (1) has not been put to practical use because the production cost of the separator is extremely high. In terms of performance, each of (1), (2), and (3) has a smaller discharge capacity than the liquid-type battery, and has a considerably poor life performance. Further, compared with a battery using a paste-type electrode plate, the rate of performance degradation was large, and the superiority using a clad-type electrode plate was not exploited. In order to clarify these reasons, various tests were performed on the gel type battery and the granular type battery, and as a result, the following was found.

【0007】これらの密閉形鉛蓄電池では主に電解液を
ゲルあるいは顆粒状シリカに保持させているが、これら
の保持体中におけるH2 SO4 の移動速度は、液式電池
におけるそれに比べて著しく遅い。そのため電解液が活
物質内に入っていく速度は液式に比べると著しく遅い。
その結果、電池内では以下のような現象が生じている。
[0007] In these sealed lead-acid batteries, the electrolyte is mainly held by gel or granular silica. However, the moving speed of H 2 SO 4 in these holders is remarkably higher than that of the liquid type battery. slow. Therefore, the speed at which the electrolytic solution enters the active material is significantly lower than that of the liquid type.
As a result, the following phenomena occur in the battery.

【0008】密閉式では、クラッド式極板を用いる場
合、図2に示す要部断面図からわかるように、チューブ
とチューブが接している部分には電解液が極めて少なく
なっている。そのため、チューブが接している部分の活
物質には電解液の供給が少なくなり、放電量が低下す
る。このような正極板の断面の状態を観察すると、図3
Bに示すように放電生成物であるPbSO4 が偏在して
いる。
In the closed type, when a clad type electrode plate is used, the amount of the electrolytic solution is extremely small in the portions where the tubes are in contact with each other, as can be seen from the sectional view of the main part shown in FIG. Therefore, the supply of the electrolytic solution to the active material in the portion in contact with the tube is reduced, and the discharge amount is reduced. Observing the state of the cross section of such a positive electrode plate, FIG.
As shown in B, PbSO 4 which is a discharge product is unevenly distributed.

【0009】ここで図3はクラッド式極板の放電後にお
ける放電生成物(PbSO4 )の分布状態を比較した図
であり、Aは本発明による電池、Bは従来の密閉式電
池、そしてCは従来の液式電池である。
FIG. 3 is a diagram comparing the distribution of the discharge products (PbSO 4 ) after the discharge of the clad type electrode plate, wherein A is a battery according to the present invention, B is a conventional sealed battery, and C is a conventional battery. Is a conventional liquid battery.

【0010】一方、液式電池では電解液中のH2 SO4
は、密閉式電池にはない、対流によっても移動するた
め、H2 SO4 の移動はスムースに行なわれ、その結
果、チューブとチューブの接する部分は、H2 SO4
消費されてもそのほかの部分からすみやかに供給される
ので、図3Cに示すように正極板の放電はほぼ同心円状
に、均一に進行する。
On the other hand, in a liquid battery, H 2 SO 4
H 2 SO 4 moves smoothly by convection, which is not available in a sealed battery, so that the tube-to-tube contact portion is not affected by H 2 SO 4 even if H 2 SO 4 is consumed. Since the power is supplied promptly from the portion, the discharge of the positive electrode plate progresses uniformly and substantially concentrically as shown in FIG. 3C.

【0011】以上の結果から、密閉式の放電容量が液式
に比べて著しく少ないのは、H2 SO4 の移動速度が遅
いためであるが、クラッド式極板を用いた場合にペース
ト式の場合よりも液式に対する容量低下率が大きいの
は、クラッド式ではチューブの近接部が放電されにくい
ためである。また、その結果密閉式電池では放電しやす
い位置にある活物質に電流が集中するため、活物質が早
期に劣化して寿命性能が低下することがわかった。
From the above results, the reason why the closed type discharge capacity is significantly smaller than that of the liquid type is that the moving speed of H 2 SO 4 is slow. The reason why the capacity reduction rate in the liquid type is larger than that in the case is that in the clad type, the vicinity of the tube is hardly discharged. In addition, as a result, it was found that in the sealed battery, the current was concentrated on the active material at a position where discharge was easy, so that the active material deteriorated early and the life performance was reduced.

【0012】[0012]

【課題を解決するための手段】本発明はクラッド式密閉
鉛蓄電池において、サイクル寿命性能を向上させること
を目的とするもので、その要旨はクラッド式正極板のチ
ューブとチューブの間に、チューブの径、厚さ、多孔度
や極間距離の関数である、以下の式によって求まる隙間
を設けて、そこに電解液を保持させる事にある。
SUMMARY OF THE INVENTION An object of the present invention is to improve the cycle life performance of a clad type sealed lead-acid battery. The gist of the present invention is to provide a tube between tubes of a clad type positive electrode plate. A gap, which is a function of the diameter, thickness, porosity, and distance between the poles and is determined by the following equation, is provided to hold the electrolyte.

【0013】A=B×係数X×(1.1−0.1×E)
−2×C×D A:チューブ間の隙間(mm) B:チューブ内半径 (mm) C:チューブの厚さ (mm) D:チューブの多孔度(%)×0.01 E:極間距離(mm) X:0.29〜0.75
A = B × coefficient X × (1.1−0.1 × E)
−2 × C × D A: gap between tubes (mm) B: radius inside tube (mm) C: thickness of tube (mm) D: porosity of tube (%) × 0.01 E: distance between electrodes (Mm) X: 0.29 to 0.75

【0014】[0014]

【作用】チューブとチューブの間に適度な隙間を設け
て、そこに電解液を導き入れることにより、ゲル式およ
び顆粒式電池では図3Aに示すようにクラッド式極板が
均一に放電されるようになる。 その結果、実質的な電
流密度が従来よりも低下するので、活物質の劣化を遅ら
せることができ、サイクル寿命性能を向上させることが
できる。
By providing an appropriate gap between tubes and introducing an electrolytic solution into the tubes, a gel type and a granular type battery can uniformly discharge a clad type electrode plate as shown in FIG. 3A. become. As a result, the substantial current density is lower than before, so that the deterioration of the active material can be delayed, and the cycle life performance can be improved.

【0015】しかし実際には、同一のスペース内でチュ
ーブ間に隙間を設けるためには従来よりもチューブの本
数を少なくする必要があり、活物質量が少なくなるので
隙間量はある範囲に限定する必要がある。チューブ間の
隙間を設けるというのは、活物質近傍に電解液量を多く
確保するということであるので、チューブの径、厚さ、
多孔度などによっても同様の効果をもたらすことがで
き、これらの特性を変えると必要な隙間量も変わると考
えられる。また極間距離をかえると、活物質への電解液
の供給のされ方がかわるので、最適なチューブ間の隙間
量も変わると考えられる。
However, in practice, in order to provide a gap between tubes in the same space, it is necessary to reduce the number of tubes as compared with the prior art, and the amount of active material is reduced, so the gap amount is limited to a certain range. There is a need. Providing a gap between tubes means securing a large amount of electrolyte near the active material, so the diameter, thickness,
A similar effect can be obtained depending on the porosity and the like, and it is considered that the required gap amount also changes when these characteristics are changed. Also, if the distance between the electrodes is changed, the way of supplying the electrolytic solution to the active material is changed, and it is considered that the optimum gap between the tubes also changes.

【0016】[0016]

【実施例】以下、本発明の電池を図面を用いて説明す
る。 (実施例1)図1は本発明密閉形鉛蓄電池極板群の要部
横断面模式図であり、1はクラッド式正極板、2はペー
スト式負極板、3はセパレータ、4はゲル電解液、5は
チューブそして6は芯金である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The battery of the present invention will be described below with reference to the drawings. (Embodiment 1) FIG. 1 is a schematic cross-sectional view of a main part of a closed lead-acid battery electrode group according to the present invention, wherein 1 is a clad positive electrode plate, 2 is a paste negative electrode plate, 3 is a separator, and 4 is a gel electrolyte. 5 is a tube and 6 is a metal core.

【0017】まずPb−Ca−Sn系合金芯金と多孔度
70%のガラスチューブとを用いて以下の正極板を製作
し、正極板2枚と通常のペースト式負極板3枚と、パル
プセパレータとを用いて、1.0、および3.0mmの
極間距離を有する電池を組み立てた。これに希硫酸とゲ
ル化剤とを混合した電解液を注液した後、所定量の充電
を行なって、充電後の比重が1.30(20℃)になる
ように調製した。充電後は、常法にしたがって、安全弁
などを装着して、約65Ah(5HR)の電池を製作し
た。
First, the following positive plates were manufactured using a Pb-Ca-Sn alloy cored bar and a glass tube having a porosity of 70%, and two positive plates, three ordinary paste type negative plates, and a pulp separator were prepared. Were used to assemble cells with 1.0 and 3.0 mm gap distance. After injecting an electrolytic solution obtained by mixing dilute sulfuric acid and a gelling agent into the solution, a predetermined amount of charge was performed to adjust the specific gravity after charge to 1.30 (20 ° C.). After charging, a safety valve and the like were attached according to a conventional method to produce a battery of about 65 Ah (5 HR).

【0018】[0018]

【表1】 これらの正極板を用いた電池を13Aで放電し、放電容
量を調べた。その結果を図4(極間距離1.0mmの場
合)および図5(極間距離3.0mmの場合)に示す。
極間距離が1mmでも3mmでも放電容量はチューブ間
に隙間をあけ、係数Xが0.75を越えない範囲では放
電容量が従来の電池とほとんど同じであった。このこと
から少なくとも係数Xが0.75を越えなければ、チュ
ーブ間の隙間をあければ、チューブ本数は少なくても放
電容量は低下しないことがわかった。
[Table 1] The batteries using these positive plates were discharged at 13 A, and the discharge capacities were examined. The results are shown in FIG. 4 (for a 1.0 mm gap) and FIG. 5 (for a 3.0 mm gap).
Regardless of whether the distance between the electrodes is 1 mm or 3 mm, the discharge capacity has a gap between the tubes, and the discharge capacity is almost the same as that of the conventional battery as long as the coefficient X does not exceed 0.75. From this, it was found that the discharge capacity did not decrease even if the number of tubes was small, provided that at least the coefficient X did not exceed 0.75 and the gap between the tubes was increased.

【0019】次にこれらの電池を、放電20A×2.5
h(DOD77%)、充電20A×90%,6A×25
%(計110%)、温度50℃の条件でサイクル寿命試
験に供した。図6(極間距離1.0mmの場合)および
図7(極間距離3.0mmの場合)にこれらの試験結果
を示す。係数Xが本発明の範囲内の0.29〜0.75
の電池は従来よりも寿命性能が著しく向上した。この理
由は前述したように、チューブ間に隙間をあけると図3
Aに示すように、反応が特定部分に集中することを防ぐ
ことができ、活物質の劣化を遅らせることができたため
と考えられる。係数Xが0.75を越えた場合に寿命性
能が悪かったのは、活物質の量が少なすぎて、放電が深
くなりすぎたためと思われる。 (実施例2)実施例1と同じ構成で、極板間および極板
群の周囲に50〜200μmの顆粒状シリカを充填し
た、いわゆる顆粒式電池を製作した。極間距離が1mmの
場合の放電容量を図8に、寿命性能を図9に示すが、実
施例1と同じく、放電容量が従来電池とほぼ同じで、サ
イクル寿命性能が向上したのは、係数Xが0.29〜
0.75の範囲になるような隙間をチューブ間に設けた
場合であった。また、ここには示さなかったが、極間距
離が3mmの場合でも、係数Xは0.29〜0.75の電
池で、寿命性能が向上した。
Next, these batteries were discharged at 20 A × 2.5.
h (DOD 77%), charging 20A x 90%, 6A x 25
% (Total 110%) at a temperature of 50 ° C. for a cycle life test. These test results are shown in FIG. 6 (for a 1.0 mm gap) and FIG. 7 (for a 3.0 mm gap). The coefficient X is in the range of 0.29 to 0.75 within the range of the present invention.
The battery of No. 1 has remarkably improved life performance as compared with the conventional battery. As described above, the reason for this is that if there is a gap between the tubes, as shown in FIG.
It is considered that as shown in A, the reaction was prevented from being concentrated on a specific portion, and the deterioration of the active material was able to be delayed. The reason that the life performance was poor when the coefficient X exceeded 0.75 is probably because the amount of the active material was too small and the discharge became too deep. (Example 2) A so-called granular battery having the same structure as in Example 1 and having granular silica of 50 to 200 µm filled between the electrode plates and around the electrode group was manufactured. The discharge capacity when the distance between the electrodes is 1 mm is shown in FIG. 8 and the life performance is shown in FIG. 9. X is 0.29 ~
In this case, a gap was provided between the tubes so as to be in the range of 0.75. Although not shown here, even when the distance between the electrodes was 3 mm, the battery with the coefficient X of 0.29 to 0.75 exhibited improved life performance.

【0020】なお、このようにチューブ間に一定間隔の
隙間をもたせる方法としては、例えば、二枚の多孔性の
シートをチューブのピッチで糸でぬう、あるいはヒート
シールするなどしてチューブ部5と連結部7の構成のも
のを製作する、いわゆる連管チューブにおいて、糸ぬい
あるいはヒートシールをチューブ間の隙間(連結部7)
が一定間隔になるように行う方法などがある。図10に
このチューブの形状を示す。
As a method of providing a fixed gap between the tubes as described above, for example, two porous sheets are wrapped with a thread at the pitch of the tubes or heat-sealed to form a gap between the tube 5 and the tube. In the case of a so-called connecting tube for manufacturing the structure of the connecting portion 7, a thread stitch or a heat seal is applied to the gap between the tubes (connecting portion 7).
Are performed at regular intervals. FIG. 10 shows the shape of this tube.

【0021】[0021]

【発明の効果】以上述べたように、本発明のクラッド式
密閉形鉛蓄電池は従来のクラッド式密閉形鉛蓄電池に比
べサイクル寿命性能が著しく優れており、その工業的価
値はきわめて大きい。
As described above, the clad-type sealed lead-acid battery of the present invention has remarkably superior cycle life performance as compared with the conventional clad-type sealed lead-acid battery, and its industrial value is extremely large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明密閉形鉛蓄電池の要部横断面模式図FIG. 1 is a schematic cross-sectional view of a main part of a sealed lead-acid battery of the present invention.

【図2】従来形密閉鉛蓄電池の極板群の要部横断面模式
FIG. 2 is a schematic cross-sectional view of a main part of an electrode group of a conventional sealed lead-acid battery.

【図3】クラッド式正極板の放電後におけるPbSO4
の分布状態を比較した図
FIG. 3 shows PbSO 4 after discharge of a clad type positive electrode plate
Figure comparing the distribution of

【図4】放電容量を示す特性図FIG. 4 is a characteristic diagram showing a discharge capacity.

【図5】放電容量を示す特性図FIG. 5 is a characteristic diagram showing a discharge capacity.

【図6】寿命性能を示す特性図FIG. 6 is a characteristic diagram showing life performance.

【図7】寿命性能を示す特性図FIG. 7 is a characteristic diagram showing life performance.

【図8】放電容量を示す特性図FIG. 8 is a characteristic diagram showing a discharge capacity.

【図9】寿命性能を示す特性図FIG. 9 is a characteristic diagram showing life performance.

【図10】本発明密閉形鉛蓄電池に使用するチューブの形
状の一例を示す図 1 正極板 2 負極板 3 セパレータ 4 ゲル電解液 5 チューブ 6 芯金 7 チューブ連結部
Fig. 10 shows an example of the shape of a tube used in the sealed lead-acid battery of the present invention. 1 Positive electrode plate 2 Negative electrode plate 3 Separator 4 Gel electrolyte 5 Tube 6 Core metal 7 Tube connection part

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平2−168575(JP,A) 特開 昭59−226470(JP,A) 実開 昭61−121665(JP,U) ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-2-168575 (JP, A) JP-A-59-226470 (JP, A) JP-A 61-121665 (JP, U)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 正極板にクラッド式極板、負極板にペー
スト式極板、そして電解液にシリカあるいはアルミナ等
の無機酸化物でゲル化させた希硫酸を使用する、いわゆ
るゲル式密閉形鉛蓄電池、および顆粒状シリカを極板間
および極板群の周囲に充填し、極板,セパレータおよび
顆粒状シリカに電解液を含浸,保持させた、いわゆる顆
粒式密閉形鉛蓄電池において、隣合うチューブ間に、以
下の式の係数Xが0.29〜0.75の範囲になるよう
に、チューブ間に隙間を設けたことを特徴とする密閉形
鉛蓄電池。 A=B×係数X×(1.1−0.1×E)−2×C×D A:チューブ間の隙間(mm) B:チューブ内半径 (mm) C:チューブの厚さ (mm) D:チューブの多孔度(%)×0.01 E:極間距離(mm)
1. A so-called gel-type closed lead using a clad-type electrode plate for a positive electrode plate, a paste-type electrode plate for a negative electrode plate, and dilute sulfuric acid gelled with an inorganic oxide such as silica or alumina as an electrolytic solution. Adjacent tubes in a so-called granular closed lead-acid battery in which a storage battery and granular silica are filled between electrodes and around a group of electrodes, and an electrode plate, a separator, and granular silica are impregnated and held with an electrolyte solution. A sealed lead-acid battery in which a gap is provided between tubes so that a coefficient X in the following equation is in the range of 0.29 to 0.75. A = B × coefficient X × (1.1−0.1 × E) −2 × C × D A: gap between tubes (mm) B: radius inside tube (mm) C: thickness of tube (mm) D: Porosity of tube (%) × 0.01 E: Distance between electrodes (mm)
JP3283731A 1990-10-18 1991-10-03 Sealed lead-acid battery Expired - Lifetime JP3000157B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3283731A JP3000157B2 (en) 1990-10-18 1991-10-03 Sealed lead-acid battery

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP28139690 1990-10-18
JP2-281396 1990-11-09
JP30559590 1990-11-09
JP2-305595 1990-11-09
JP3283731A JP3000157B2 (en) 1990-10-18 1991-10-03 Sealed lead-acid battery

Publications (2)

Publication Number Publication Date
JPH0541242A JPH0541242A (en) 1993-02-19
JP3000157B2 true JP3000157B2 (en) 2000-01-17

Family

ID=27336834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3283731A Expired - Lifetime JP3000157B2 (en) 1990-10-18 1991-10-03 Sealed lead-acid battery

Country Status (1)

Country Link
JP (1) JP3000157B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59226470A (en) * 1983-06-03 1984-12-19 Ryoji Nakamura Clad type lead-acid battery for high rate discharge
JPS605629A (en) * 1983-06-23 1985-01-12 Nec Corp Digital frequency error detecting circuit
JP2782749B2 (en) * 1988-12-21 1998-08-06 日本電池株式会社 Sealed clad type lead battery

Also Published As

Publication number Publication date
JPH0541242A (en) 1993-02-19

Similar Documents

Publication Publication Date Title
US4391036A (en) Process for producing sealed lead-acid battery
JP3000157B2 (en) Sealed lead-acid battery
JPH10334940A (en) Sealed type lead-acid battery and manufacture thereof
US4631241A (en) Retainer type lead-acid battery
CN113540400B (en) Large-size cylindrical lithium ion secondary battery and positive and negative pole pieces thereof
JP2001126735A (en) Lead accumulator
JPS6030063A (en) Sealed type lead-acid battery
JP3146438B2 (en) Sealed lead-acid battery
CN219873598U (en) Hollow lead-acid storage battery grid
JPH1012212A (en) Sealed lead acid battery
JPH1173973A (en) Lithium ion battery
JP2001155722A (en) Sealed lead acid storage battery and method of fabricating it
JPH11354128A (en) Sealed lead-acid battery
JPH06140019A (en) Clad type sealed lead acid battery
JPH05190172A (en) Sealed type clad lead-acid battery
JP2591975B2 (en) Sealed clad type lead battery
JPH10199562A (en) Sealed lead-acid battery
JP3099527B2 (en) Manufacturing method of sealed lead-acid battery
JPH01149376A (en) Sealed lead-acid battery
JP2765020B2 (en) Manufacturing method of sealed lead-acid battery
JPH06295722A (en) Clad type plate
JPH06187967A (en) Clad type sealed lead-acid battery
JPS601757A (en) Manufacture of sealed lead storage battery
JP2001126752A (en) Paste-type sealed lead-acid battery and manufacturing method therefor
JP3504303B2 (en) Cylindrical alkaline secondary battery

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071112

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081112

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081112

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091112

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091112

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101112

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101112

Year of fee payment: 11

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101112

Year of fee payment: 11

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101112

Year of fee payment: 11

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101112

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111112

Year of fee payment: 12

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111112

Year of fee payment: 12

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111112

Year of fee payment: 12

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111112

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term