JP2816197B2 - Method and apparatus for producing ultra-high purity nitrogen - Google Patents

Method and apparatus for producing ultra-high purity nitrogen

Info

Publication number
JP2816197B2
JP2816197B2 JP1227393A JP22739389A JP2816197B2 JP 2816197 B2 JP2816197 B2 JP 2816197B2 JP 1227393 A JP1227393 A JP 1227393A JP 22739389 A JP22739389 A JP 22739389A JP 2816197 B2 JP2816197 B2 JP 2816197B2
Authority
JP
Japan
Prior art keywords
nitrogen
rectification column
liquid
gas
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1227393A
Other languages
Japanese (ja)
Other versions
JPH0412007A (en
Inventor
祥二 小山
尚澄 石津
正博 山崎
新次郎 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1227393A priority Critical patent/JP2816197B2/en
Priority to DE4017410A priority patent/DE4017410A1/en
Priority to US07/531,249 priority patent/US5122175A/en
Priority to KR1019900008087A priority patent/KR910000520A/en
Publication of JPH0412007A publication Critical patent/JPH0412007A/en
Application granted granted Critical
Publication of JP2816197B2 publication Critical patent/JP2816197B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04218Parallel arrangement of the main heat exchange line in cores having different functions, e.g. in low pressure and high pressure cores
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/044Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a single pressure main column system only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/60Processes or apparatus using other separation and/or other processing means using adsorption on solid adsorbents, e.g. by temperature-swing adsorption [TSA] at the hot or cold end
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/42Nitrogen or special cases, e.g. multiple or low purity N2
    • F25J2215/44Ultra high purity nitrogen, i.e. generally less than 1 ppb impurities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/20Boiler-condenser with multiple exchanger cores in parallel or with multiple re-boiling or condensing streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2280/00Control of the process or apparatus
    • F25J2280/02Control in general, load changes, different modes ("runs"), measurements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、窒素の製造に係り、窒素製造において含有
不純成分量の少ない超高純度窒素を製造するのに好適な
方法及び装置に関するものである。
Description: TECHNICAL FIELD The present invention relates to the production of nitrogen, and relates to a method and an apparatus suitable for producing ultra-high-purity nitrogen having a small amount of impurities contained in nitrogen production. is there.

〔従来の技術〕[Conventional technology]

近年、サブミクロンLSI製造用として、不純成分が極
めて少ない超高純度窒素の需要が増大している。
In recent years, there has been an increasing demand for ultra-high-purity nitrogen containing extremely few impurities for producing submicron LSIs.

一般に知られている窒素製造装置は、特願平1−1390
43号(特開平4−121575号公報)に記載の如く原料空気
を低温に冷却した後深冷分離し、精留塔上部より窒素ガ
スを抜き出し、空気熱交換器で常温まで温度回復させて
製品窒素として採取している。
A generally known nitrogen production apparatus is disclosed in Japanese Patent Application No. 1-1390.
No. 43 (Japanese Unexamined Patent Publication No. 4-121575), the raw material air is cooled to a low temperature, then separated by cryogenic cooling, nitrogen gas is extracted from the upper part of the rectification column, and the temperature is recovered to room temperature by an air heat exchanger to obtain a product. Collected as nitrogen.

また、同公報においては、製品窒素ガス中に含まれる
水分量を極めて少なくするために、製品窒素ガスの精留
塔出口に加熱器を設けて、製品窒素ガスラインのベーキ
ングを行なう方法が述べられている。
In addition, the publication discloses a method of baking a product nitrogen gas line by providing a heater at the outlet of a product nitrogen gas rectification column in order to extremely reduce the amount of water contained in the product nitrogen gas. ing.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

上記従来技術は水素、一酸化炭素の除去に関して配慮
がされておらず、精留塔において、酸素、二酸化炭素、
炭化水素、水分等の不純物をppbオーダーまで精留除去
することはできるが、その他の低沸点成分である水素、
一酸化炭素については効果的な分離、あるいは除去がで
きないという不具合があった。
The above prior art does not consider the removal of hydrogen and carbon monoxide, and oxygen, carbon dioxide,
Hydrocarbons, impurities such as moisture can be rectified and removed to the order of ppb, but other low boiling components such as hydrogen,
There was a problem that carbon monoxide could not be effectively separated or removed.

本発明の目的は、上記不具合事項を解決し、低沸点成
分である水素、一酸化炭素や水分等の含有量をppbオー
ダーまで低減した超高純度窒素を製造することのできる
超高純度窒素の製造方法及び装置を提供することにあ
る。
An object of the present invention is to solve the above-mentioned disadvantages and to produce ultra-high-purity nitrogen capable of producing ultra-high-purity nitrogen with a reduced content of low boiling components such as hydrogen, carbon monoxide and water to the order of ppb. It is to provide a manufacturing method and an apparatus.

〔課題を解決するための手段〕[Means for solving the problem]

上記目的を達成させるために、水素を主体とする低沸
点成分を極力減少させることを目的として、精留塔で精
製した窒素を液体窒素で取り出した後、蒸発させたガス
を製品窒素ガスとして取り出したものである。
In order to achieve the above object, in order to reduce low-boiling components mainly composed of hydrogen as much as possible, nitrogen purified by a rectification column is taken out with liquid nitrogen, and then the evaporated gas is taken out as product nitrogen gas. It is a thing.

また、窒素の沸点温度に近い沸点温度を有する一酸化
炭素を除去するために、蒸発後製品窒素ガスとして取り
出す液体窒素を直接低温吸着器に導くようにしたもので
ある。
Further, in order to remove carbon monoxide having a boiling point close to the boiling point of nitrogen, liquid nitrogen taken out as product nitrogen gas after evaporation is led directly to a low-temperature adsorber.

さらに、製品窒素ガスラインおよび、製品液体窒素ラ
インの熱交換器、弁、配管等に含まれる水分等のアウト
ガスを除去するために、新たに精留塔上部から窒素ガス
を取り出す導管を設け、約200℃近くまで加熱した窒素
ガスを、製品窒素ガスラインの熱交換器、弁、液状部お
よびガス状部の配管等に流し、熱風ベーキングを行なう
ようにしたものである。
Furthermore, in order to remove outgas such as water contained in the heat exchangers, valves, piping, etc. of the product nitrogen gas line and the product liquid nitrogen line, a new conduit for taking out nitrogen gas from the upper part of the rectification column was provided. Nitrogen gas heated to about 200 ° C. is passed through a heat exchanger, a valve, piping of a liquid portion and a gaseous portion of a product nitrogen gas line, and hot air baking is performed.

〔作用〕[Action]

精留塔においては、空気を約−170℃の低温で精留分
離するので、窒素より沸点の高い酸素、二酸化炭素、炭
化水素、水分等の高沸点成分は精留塔の底部に濃縮さ
れ、精留塔上部の窒素中の高沸点不純物は非常に少な
い。しかし、窒素より沸点の低い水素等はそのまま精留
塔上部の窒素ガス中に侵入しており、製品窒素ガスを直
接精留塔から抜き出した場合、数百ppb以上の水素を含
有することになる。本発明は精留塔で精製された窒素を
液状で取り出した場合、水素の気液平衡から窒素ガス中
に比べて1/20〜1/40の水素含有量に低減できる。このた
め、液体窒素として精留塔より抜き出した製品窒素を、
副凝縮器でガス化させて製品窒素ガスとして取り出す。
In the rectification column, since air is rectified and separated at a low temperature of about -170 ° C, high-boiling components such as oxygen, carbon dioxide, hydrocarbons, and water having a higher boiling point than nitrogen are concentrated at the bottom of the rectification column. There are very few high boiling impurities in the nitrogen at the top of the rectification column. However, hydrogen with a boiling point lower than that of nitrogen directly penetrates into the nitrogen gas at the top of the rectification column, and if product nitrogen gas is directly extracted from the rectification column, it will contain several hundred ppb or more of hydrogen. . According to the present invention, when nitrogen purified in a rectification column is taken out in a liquid state, the hydrogen content can be reduced to 1/20 to 1/40 as compared with that in nitrogen gas from the gas-liquid equilibrium of hydrogen. Therefore, product nitrogen extracted from the rectification column as liquid nitrogen,
It is gasified by a sub-condenser and taken out as product nitrogen gas.

また、窒素の沸点とほぼ同じである一酸化炭素につい
ては、精留で分離することは困難であり、精留塔に送入
される原料空気量の一酸化炭素濃度とほぼ同じ濃度で製
品窒素ガス中に含有される。この一酸化炭素を除去する
ために、精留塔より液状で取り出した製品窒素を、吸着
剤を充填した低温吸着器を通すことにより数ppbオーダ
ーまで吸着除去させた後、副凝縮器に導くようにした。
In addition, it is difficult to separate carbon monoxide having a boiling point substantially equal to that of nitrogen by rectification. Contained in gas. In order to remove this carbon monoxide, the product nitrogen taken out in liquid form from the rectification column is adsorbed and removed to the order of several ppb by passing it through a low-temperature adsorber filled with an adsorbent, and then guided to a sub-condenser. I made it.

さらに、製品窒素ラインの熱交換器、弁、配管からの
アウトガスにより製品窒素が汚染されることを防止する
ために、精留塔上部の窒素ガスを約−170℃から約200℃
近くまで加熱する加熱器を設けた。精留塔上部から抜き
出される窒素ガカの温度は約−170℃の低温であり、含
有水分量は極めて少なく、また他の不純成分も少ない清
浄なガスである。この窒素ガスを約200℃近くまで加熱
し、製品窒素ラインに流して熱風ベーキングを行ない、
熱交換器、弁、配管のアウトガスを除去することができ
る。
Furthermore, in order to prevent the product nitrogen from being contaminated by outgas from the heat exchangers, valves, and piping of the product nitrogen line, the nitrogen gas in the upper part of the rectification column was heated from about -170 ° C to about 200 ° C.
A heater for heating up to near was provided. The temperature of the nitrogen gas extracted from the upper part of the rectification column is a low temperature of about -170 ° C, and it is a clean gas containing very little water and little other impurities. Heat this nitrogen gas up to about 200 ° C, flow it through the product nitrogen line and perform hot air baking,
Outgas from heat exchangers, valves and piping can be removed.

装置の起動当初は、精留塔を約−170℃の低温で運転
しながら製品窒素ラインのベーキングを可能とするた
め、副凝縮器の製品窒素ラインを通った加熱ガスは、単
独に設けた窒素熱交を通し、製品窒素ガスラインの全て
を熱風で加熱できるようにした。この熱風ベーキング期
間中は、原料空気と製品窒素ガス以外の低温戻りガスと
の熱交換器である空気熱交換器のみを使用し、窒素熱交
換器には原料空気を流さない 次に、製品窒素ラインの熱風ベーキングが完了したら
加熱ヒータの電源を切り、製品窒素ラインの予冷を行な
った後、窒素ガスを用いたベーキングラインを閉止し、
精留塔から液体窒素の抜き出しを開始して通常運転に入
る。なお、通常運転においては窒素熱交換器には原料空
気を流し、製品窒素との熱交換を行なわせる。
At the beginning of the start-up of the apparatus, the heating gas passing through the product nitrogen line of the sub-condenser must be provided separately to enable baking of the product nitrogen line while operating the rectification column at a low temperature of about -170 ° C. Through heat exchange, all of the product nitrogen gas lines could be heated by hot air. During this hot air baking period, only the air heat exchanger, which is the heat exchanger between the raw air and the low-temperature return gas other than the product nitrogen gas, is used, and the raw air is not passed through the nitrogen heat exchanger. When the hot air baking of the line is completed, turn off the power of the heater and pre-cool the product nitrogen line, then close the baking line using nitrogen gas,
Withdrawal of liquid nitrogen from the rectification column is started and normal operation is started. In the normal operation, the raw material air is flowed through the nitrogen heat exchanger to exchange heat with the product nitrogen.

また、ベーキング用加熱器は、低温吸着器を長時間運
転使用した後の再生操作において、より再生効果を高め
るための加熱ヒーターとしても使用できる。
Further, the baking heater can also be used as a heater for further improving the regenerating effect in the regenerating operation after operating the low-temperature adsorber for a long time.

以上の方法により、製品窒素に含まれる不純成分自体
を低減するとともに、その清浄な超高純度窒素ガスを使
用してベーキングを完了させるので、通常運転時にはア
ウトガスの含有量もほとんど含まない超高純度窒素ガス
を製造することができる。
By the above method, the impurity component itself contained in the product nitrogen is reduced, and the baking is completed using the clean ultra-high purity nitrogen gas. Nitrogen gas can be produced.

〔実 施 例〕〔Example〕

以下、本発明の一実施例を第1図により説明する。 Hereinafter, an embodiment of the present invention will be described with reference to FIG.

図において、大気から取り入れた原料空気は、空気圧
縮機1によって約9.8kg/cm2Gに圧縮され、原料空気中に
含まれる不純成分(特に一酸化炭素および水素)に低減
するために設けられたCO/H2除去装置2を経由して吸着
塔3に導かれ、水分および炭酸ガスを吸着除去される。
吸着塔3を出た原料空気は2分流され、空気熱交換器4
と窒素熱交換器5とに入り、各々廃ガスおよび窒素ガス
と熱交換して約−170℃まで冷却され、精留塔6に入り
精留される。
In the figure, raw air taken from the atmosphere is compressed to about 9.8 kg / cm 2 G by the air compressor 1 and provided to reduce impurity components (particularly carbon monoxide and hydrogen) contained in the raw air. The water and the carbon dioxide gas are guided to the adsorption tower 3 via the CO / H 2 removing device 2 and adsorbed and removed.
The raw material air exiting the adsorption tower 3 is split into two streams, and the air heat exchanger 4
And a nitrogen heat exchanger 5, and heat exchange with waste gas and nitrogen gas, respectively, to cool to about -170 ° C, and to rectify into a rectification column 6.

なお、空気熱交換器4は従来技術における原料空気と
低温戻りガスとの熱交換器において、窒素ガス通路を除
いたものであり、また窒素熱交換器5は、原料空気と窒
素ガスとの独立した熱交換器である。
The air heat exchanger 4 is the same as the conventional heat exchanger between the raw air and the low-temperature return gas except for the nitrogen gas passage, and the nitrogen heat exchanger 5 is independent of the raw air and the nitrogen gas. Heat exchanger.

精留塔6において精留分離が行なわれ、塔底部には、
二酸化炭素、炭化水素、水分等の高沸点成分を含む約33
%酸素濃度の液体空気が留まり、管21より取り出されて
弁31で約4.6kg/cm2Gに減圧された後、窒素凝縮器7の液
留部に導かれる。この液体空気は窒素凝縮器7でガス化
して廃ガスとなり、管22を通って空気熱交換器4、膨張
タービン8に導かれ、ほぼ大気圧力まで断熱膨張した後
空気熱交換器4を通って常温まで温度回復し大気放出さ
れる。
The rectification is performed in the rectification column 6, and at the bottom of the column,
About 33 containing high boiling components such as carbon dioxide, hydrocarbons and moisture
The liquid air having a concentration of% oxygen stays there, is taken out from the pipe 21, is decompressed to about 4.6 kg / cm 2 G by the valve 31, and is led to the liquid condenser of the nitrogen condenser 7. This liquid air is gasified by the nitrogen condenser 7 to become waste gas, guided to the air heat exchanger 4 and the expansion turbine 8 through the pipe 22, adiabatically expanded to almost atmospheric pressure, and then passed through the air heat exchanger 4. The temperature recovers to room temperature and is released to the atmosphere.

精留塔6で精留され上昇した高純度窒素ガスは、管23
を経由して窒素凝縮器7で液体空気と熱交換して液体窒
素となり、管24を通って再び精留塔6に戻されて下降液
となる。この精留塔6上部の窒素ガス中には、低沸点成
分である水素が混入しており、水素分の濃縮を防止して
も精留塔6の下部から送入する原料空気中の水素濃度以
下とすることは困難である。従って、大気中よりCO/H2
除去装置2によって水素分を除去したとしても、精留塔
6上部窒素ガス中には数百ppb以上の水素が含有される
ことになるが、同液体窒素中においては、水素の気液平
衡から窒素ガスに対して約1/20程度の含有量となり、数
十ppbの水素しか含まれていない。
The high-purity nitrogen gas rectified and raised in the rectification tower 6 is supplied to the pipe 23
And heat exchange with liquid air in the nitrogen condenser 7 to become liquid nitrogen, and is returned to the rectification column 6 again through the pipe 24 to become a descending liquid. The nitrogen gas in the upper part of the rectification column 6 contains hydrogen, which is a low-boiling component. It is difficult to: Therefore, CO / H 2
Even if the hydrogen content is removed by the removal device 2, the nitrogen gas in the upper part of the rectification column 6 will contain several hundred ppb or more of hydrogen. The content is about 1/20 of that of nitrogen gas, and contains only tens of ppb of hydrogen.

製品となる窒素は、精留塔6の上部より液体窒素の状
態で管25を通って取り出され、低温吸着器9に導かれ、
その沸点が窒素と近いために精留で分離することができ
ない一酸化炭素を数ppbオーダーまで吸着除去される。
低温吸着器9を出た液体窒素は、その一部を製品超高純
度液体窒素として取り出され、残りは管26を通り副凝縮
器10に導かれて全量ガス化する。副凝縮器10の加熱源と
しては、精留塔6の上部から管23を通って窒素凝縮器7
へ送入される窒素ガスの一部を使用しており、副凝縮器
10で液化した液体窒素は精留塔6の上部に戻される。な
お、副凝縮器10において熱交換させるために、製品とな
る液体窒素は弁32によって約9kg/cm2Gから約8.4kg/cm2G
に減圧されており、この圧力は副凝縮器10の出口に設け
られた圧力調節器33によって一定となるよう調節されて
いる。
Nitrogen as a product is taken out of the upper part of the rectification column 6 in the form of liquid nitrogen through a pipe 25 and guided to the low-temperature adsorber 9.
Carbon monoxide, whose boiling point is close to that of nitrogen, which cannot be separated by rectification, is adsorbed and removed to the order of several ppb.
Part of the liquid nitrogen exiting the low-temperature adsorber 9 is taken out as product ultra-high-purity liquid nitrogen, and the rest is led to the sub-condenser 10 through the pipe 26 and gasified in its entirety. As a heating source of the sub-condenser 10, a nitrogen condenser 7 passes through the pipe 23 from the upper part of the rectification column 6.
Uses part of the nitrogen gas sent to the
The liquid nitrogen liquefied in 10 is returned to the upper part of the rectification column 6. In addition, in order to cause heat exchange in the sub-condenser 10, liquid nitrogen as a product is supplied from the valve 32 to about 9 kg / cm 2 G to about 8.4 kg / cm 2 G.
The pressure is adjusted to be constant by a pressure regulator 33 provided at the outlet of the sub-condenser 10.

副凝縮器10でガス化した後、窒素熱交換器5で原料空
気と熱交換して常温まで温度回復した窒素ガスは、管27
を通って装置外に取り出され、パーティクルフィルター
11を通り製品超高純度窒素ガスとして採取される。
After gasification in the sub-condenser 10, the nitrogen gas which has exchanged heat with the raw material air in the nitrogen heat exchanger 5 to recover the temperature to normal temperature is supplied to the pipe 27.
Through the particle filter
After passing through 11, the product is collected as ultra-high purity nitrogen gas.

この窒素製造装置の起動時においては、原料空気は空
気熱交換器4のみに送入し、約−170℃まで冷却して精
留塔6に送入する運転を行ない、窒素熱交換器5は使用
せず常温のままである。精留塔6の精留運転が安定し、
精留塔6の上部に不純物の少ない窒素が生成された時点
で、精留塔6上部の管28から取り出して加熱器12を通し
た窒素ガスを、製品窒素ラインに流し始め、加熱器12の
ヒーター電源を入れる。加熱器12で約−170℃から約200
℃近くまで加熱された不純物の少ない窒素ガスを、低温
吸着器9、副凝縮器10、窒素熱交換器5を含む製品超高
純度窒素ガスラインの配管、弁等に流し、十分な熱風ベ
ーキングを行なう。また、同様に製品超高純度液体窒素
ラインの熱風ベーキングを行なう。
At the start of the nitrogen production apparatus, the feed air is fed only to the air heat exchanger 4, cooled to about -170 ° C., and sent to the rectification column 6, and the nitrogen heat exchanger 5 is operated. Leave at room temperature without using. The rectification operation of the rectification tower 6 is stabilized,
When nitrogen with less impurities is generated at the upper part of the rectification column 6, the nitrogen gas taken out from the pipe 28 at the upper part of the rectification column 6 and passed through the heater 12 is started to flow to the product nitrogen line. Turn on the heater power. About -170 ° C to about 200 in heater 12
Nitrogen gas, which has been heated to a temperature close to 0 ° C. and containing a small amount of impurities, flows through piping and valves of a product ultra-high-purity nitrogen gas line including a low-temperature adsorber 9, a sub-condenser 10, and a nitrogen heat exchanger 5, and performs sufficient hot air baking. Do. Similarly, hot air baking of the product ultra-high purity liquid nitrogen line is performed.

熱風ベーキングが完了し、製品窒素ラインの水分等の
アウトガスが除去された時点で加熱器12のヒーター電源
を切り、製品窒素ラインの冷却を開始する。この冷却運
転が進んだ時点で窒素熱交換器5に原料空気を流し始
め、冷却が完了した時点で精留塔6上部の管25より製品
窒素(液状)の取り出しを開始し、精留塔6から管28お
よび加熱器12を通して流していたベーキング用窒素ガス
を完全に閉止し、通常運転に至る。
When the hot air baking is completed and the outgas such as moisture in the product nitrogen line is removed, the heater power supply of the heater 12 is turned off, and the cooling of the product nitrogen line is started. At the time when the cooling operation has proceeded, the feed air is started to flow into the nitrogen heat exchanger 5, and when the cooling is completed, the extraction of product nitrogen (liquid) from the pipe 25 above the rectification tower 6 is started. Then, the baking nitrogen gas flowing through the pipe 28 and the heater 12 is completely shut off, and normal operation is started.

尚、本実施例は第1図に示す一例で説明したが本発明
は本実施例に限定されるものではなく、種々の設計変
更、組合せが可能である。
Although this embodiment has been described with reference to the example shown in FIG. 1, the present invention is not limited to this embodiment, and various design changes and combinations are possible.

〔発明の効果〕〔The invention's effect〕

本発明は、以上説明したように構成されているので以
下に記載されるような効果を奏する。
Since the present invention is configured as described above, it has the following effects.

1. 製品窒素を液状で取り出しガス化させ製品窒素ガス
として採取することにより、低沸点成分である水素の含
有量を数十ppbまで減少させることができる。
1. By taking out product nitrogen in liquid form and gasifying it and collecting it as product nitrogen gas, the content of low boiling component hydrogen can be reduced to tens of ppb.

2. 製品窒素を液状のまま直接低温吸着させるようにし
たことにより、製品窒素ガスおよび液体窒素中の一酸化
炭素含有量を数ppbまで減少させることができる。
2. By directly adsorbing product nitrogen in liquid state at low temperature, the carbon monoxide content in product nitrogen gas and liquid nitrogen can be reduced to several ppb.

3. 精留塔より液状で取り出す製品窒素ラインとは別
に、不純物の少ない窒素ガスを取り出すラインを設け、
約200℃近くの温度で製品窒素ラインの熱風ベーキング
を行なうので、製品窒素ラインからのアウトガスによる
不純成分の混入が防止でき、水分の含有量も1ppb以下と
することも可能である。
3. In addition to the product nitrogen line, which is taken out in liquid form from the rectification tower, a line for taking out nitrogen gas with less impurities is provided.
Since the hot air baking of the product nitrogen line is performed at a temperature of about 200 ° C., it is possible to prevent impurity components from being mixed due to outgas from the product nitrogen line, and it is possible to reduce the water content to 1 ppb or less.

以上のように、本発明によれば、製品窒素中に含まれ
る不純成分を極めて減少させることができ、また、得ら
れた窒素ガスがラインのアウトガス等で汚染されること
のない超高純度窒素を製造することができる。
As described above, according to the present invention, the impurity components contained in the product nitrogen can be extremely reduced, and the obtained nitrogen gas does not become contaminated by line outgas or the like. Can be manufactured.

【図面の簡単な説明】 第1図は本発明の一実施例の超高純度窒素の製造装置の
系統図である。 1……空気圧縮機、2……CO/H2除去装置、3……吸着
塔、4……空気熱交換器、5……窒素熱交換器、6……
精留塔、7……窒素凝縮器、8……膨張タービン、9…
…低温吸着器、10……副凝縮器、11……パーティクルフ
ィルター、12……加熱器
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a system diagram of an apparatus for producing ultra-high purity nitrogen according to one embodiment of the present invention. 1 ...... air compressor, 2 ...... CO / H 2 removal device, 3 ...... adsorption tower, 4 ...... air heat exchanger, 5 ...... nitrogen heat exchanger, 6 ......
Rectification tower, 7 ... nitrogen condenser, 8 ... expansion turbine, 9 ...
... Low temperature adsorber, 10 ... Subcondenser, 11 ... Particle filter, 12 ... Heating device

フロントページの続き (72)発明者 上田 新次郎 茨城県土浦市神立町502番地 株式会会 日立製作所機械研究所内 (56)参考文献 特開 昭61−143681(JP,A) 実開 昭61−33837(JP,U) (58)調査した分野(Int.Cl.6,DB名) C01B 21/04 F25J 3/08Continuation of the front page (72) Inventor Shinjiro Ueda 502, Kandachi-cho, Tsuchiura-shi, Ibaraki Pref. Japan Machinery Research Institute, Hitachi, Ltd. (56) References (JP, U) (58) Field surveyed (Int. Cl. 6 , DB name) C01B 21/04 F25J 3/08

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】原料空気を冷却して精留塔で深冷分離する
窒素製造方法において、 前記精留塔で精製した窒素を液状で取り出し一酸化炭素
を低温で吸着除去後、その一部を液体窒素として採取す
ると共に、残りの液体窒素を加熱させガス化後、原料空
気と熱交換により常温まで温度回復させ窒素ガスを採取
することを特徴とする超高純度窒素の製造方法。
1. A method for producing nitrogen, wherein raw air is cooled and cryogenically separated in a rectification column, wherein nitrogen purified in the rectification column is taken out in a liquid state, carbon monoxide is adsorbed and removed at a low temperature, and a part of the nitrogen is removed. A method for producing ultra-high-purity nitrogen, comprising collecting nitrogen as liquid nitrogen, heating and gasifying the remaining liquid nitrogen, and then recovering the temperature to room temperature by heat exchange with raw material air.
【請求項2】前記液体窒素および窒素ガスの採取は、前
記精留塔で精製した窒素ガスを取り出して加熱し、前記
液体窒素および窒素ラインの熱風ベーキングを行なうこ
とを特徴とする請求項1記載の超高純度窒素の製造方
法。
2. The method according to claim 1, wherein the liquid nitrogen and nitrogen gas are collected by taking out and heating the nitrogen gas purified in the rectification column, and baking the liquid nitrogen and nitrogen lines with hot air. For producing ultra-high purity nitrogen.
【請求項3】原料空気を冷却して精留塔で深冷分離する
窒素製造装置において、 前記精留塔で精製した窒素を液状で取り出す経路を液体
窒素中の一酸化炭素を吸着除去する低温吸着器に導き、
該低温吸着器を通過した窒素の一部を液体窒素として採
取する経路と、残りの液体窒素を加熱しガス化させる副
凝縮器に導く経路と、該ガス化後の窒素ガスと原料空気
とを熱交換させ常温の窒素ガスを採取する経路とからな
り、前記精留塔で精製したガス状の窒素を加熱して前記
低温吸着器に導くように構成したことを特徴とする超高
純度窒素の製造装置。
3. A nitrogen production apparatus for cooling raw air and performing cryogenic separation in a rectification column, wherein a path for extracting nitrogen purified in the rectification column in a liquid state is a low temperature for adsorbing and removing carbon monoxide in liquid nitrogen. Lead to the adsorber,
A path for collecting a portion of the nitrogen that has passed through the low-temperature adsorber as liquid nitrogen, a path for leading the remaining liquid nitrogen to a sub-condenser for heating and gasifying the liquid nitrogen, A path for collecting nitrogen gas at normal temperature by heat exchange, and heating the gaseous nitrogen purified in the rectification column and guiding the gaseous nitrogen to the low-temperature adsorber. Manufacturing equipment.
【請求項4】前記液体窒素の加熱源に精留塔で精製され
た窒素ガスの一部を用いると共に、前記副凝縮器に設け
た窒素ラインを減圧させるように構成したことを特徴と
する請求項3記載の超高純度窒素の製造装置。
4. The apparatus according to claim 1, wherein a part of nitrogen gas purified by a rectification column is used as a heating source of the liquid nitrogen, and a pressure of a nitrogen line provided in the sub-condenser is reduced. Item 3. An apparatus for producing ultrahigh-purity nitrogen according to Item 3.
【請求項5】前記窒素ガスと原料空気との熱交換は、低
温の戻り廃ガスと原料空気との熱交換を行う空気熱交換
器とは隔離された窒素熱交換器により行われることを特
徴とする請求項3又は4記載の超高純度窒素の製造装
置。
5. The heat exchange between the nitrogen gas and the raw air is performed by a nitrogen heat exchanger which is separated from an air heat exchanger for exchanging heat between the low temperature return waste gas and the raw air. The apparatus for producing ultrahigh-purity nitrogen according to claim 3 or 4.
【請求項6】前記ガス状窒素の加熱は、精留塔で精製し
た窒素ガスを約−170℃から約200℃まで加熱する加熱器
及び導管を設け、液体窒素および窒素ガスラインの熱風
ベーキングを行なうように構成したことを特徴とする請
求項第3、4及び5のいずれか記載の超高純度窒素の製
造装置。
6. The heating of the gaseous nitrogen is provided with a heater and a conduit for heating the nitrogen gas purified in the rectification column from about -170 ° C. to about 200 ° C., and performing hot air baking of the liquid nitrogen and nitrogen gas lines. 6. The apparatus for producing ultra-high-purity nitrogen according to claim 3, wherein the apparatus is configured to perform the process.
【請求項7】前記熱風ベーキングの窒素ガスを低温吸着
器の再生ラインに導く導管を設けたことを特徴とする請
求項6記載の超高純度窒素の製造装置。
7. An apparatus for producing ultra-high purity nitrogen according to claim 6, further comprising a conduit for introducing said hot air baking nitrogen gas to a regeneration line of a low temperature adsorber.
JP1227393A 1989-06-02 1989-09-04 Method and apparatus for producing ultra-high purity nitrogen Expired - Fee Related JP2816197B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP1227393A JP2816197B2 (en) 1989-09-04 1989-09-04 Method and apparatus for producing ultra-high purity nitrogen
DE4017410A DE4017410A1 (en) 1989-06-02 1990-05-30 METHOD AND DEVICE FOR PRODUCING EXTREMELY PURE NITROGEN
US07/531,249 US5122175A (en) 1989-06-02 1990-05-31 Method of and apparatus for producing superpure nitrogen
KR1019900008087A KR910000520A (en) 1989-06-02 1990-06-01 Ultra high purity nitrogen production method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1227393A JP2816197B2 (en) 1989-09-04 1989-09-04 Method and apparatus for producing ultra-high purity nitrogen

Publications (2)

Publication Number Publication Date
JPH0412007A JPH0412007A (en) 1992-01-16
JP2816197B2 true JP2816197B2 (en) 1998-10-27

Family

ID=16860121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1227393A Expired - Fee Related JP2816197B2 (en) 1989-06-02 1989-09-04 Method and apparatus for producing ultra-high purity nitrogen

Country Status (1)

Country Link
JP (1) JP2816197B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106949708B (en) * 2016-11-25 2020-02-11 乔治洛德方法研究和开发液化空气有限公司 Method for improving low-pressure pure nitrogen yield by modifying original low-temperature air separation device

Also Published As

Publication number Publication date
JPH0412007A (en) 1992-01-16

Similar Documents

Publication Publication Date Title
US4566886A (en) Process and apparatus for obtaining pure CO
WO1986004979A1 (en) Apparatus for producing high-purity nitrogen and oxygen gases
EP0384688B2 (en) Air separation
JPH06207775A (en) Low-temperature air separating method for manufacturing nitrogen having no carbon monoxide
US4384876A (en) Process for producing krypton and Xenon
JPH028235B2 (en)
CN108645118B (en) Device and method for improving argon recovery rate
JP2000088455A (en) Method and apparatus for recovering and refining argon
US5122175A (en) Method of and apparatus for producing superpure nitrogen
JP2816197B2 (en) Method and apparatus for producing ultra-high purity nitrogen
JPH10132458A (en) Method and equipment for producing oxygen gas
JP3748677B2 (en) Method and apparatus for producing low purity oxygen
JP3181546B2 (en) Method and apparatus for producing nitrogen and argon from air
US5787730A (en) Thermal swing helium purifier and process
JP4177507B2 (en) Method and apparatus for producing low purity oxygen
JP4024347B2 (en) Argon recovery method and apparatus
JP2685523B2 (en) Method and apparatus for producing ultra-high purity nitrogen
JPH05306885A (en) Pressure type air separating device
JPH0399190A (en) Method of manufacturing oxygen
JP2755953B2 (en) Nitrogen gas production method
CN211198611U (en) Argon recovery device for removing carbon monoxide by rectification method
JP3254523B2 (en) Method and apparatus for purifying nitrogen
JP2001033155A (en) Air separator
KR101964331B1 (en) Air separation plant
JP2786265B2 (en) Nitrogen purification method and apparatus

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees