JP2815595B2 - Prevention of elution of alkali etc. by treating metal oxide on the inner surface of medical glassware - Google Patents

Prevention of elution of alkali etc. by treating metal oxide on the inner surface of medical glassware

Info

Publication number
JP2815595B2
JP2815595B2 JP33007388A JP33007388A JP2815595B2 JP 2815595 B2 JP2815595 B2 JP 2815595B2 JP 33007388 A JP33007388 A JP 33007388A JP 33007388 A JP33007388 A JP 33007388A JP 2815595 B2 JP2815595 B2 JP 2815595B2
Authority
JP
Japan
Prior art keywords
compound
ultrasonic
elution
film
metal oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP33007388A
Other languages
Japanese (ja)
Other versions
JPH02175630A (en
Inventor
博 鈴木
喜輔 説田
岩吉 杉山
Original Assignee
松本製薬工業株式会社
不二硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 松本製薬工業株式会社, 不二硝子株式会社 filed Critical 松本製薬工業株式会社
Priority to JP33007388A priority Critical patent/JP2815595B2/en
Publication of JPH02175630A publication Critical patent/JPH02175630A/en
Application granted granted Critical
Publication of JP2815595B2 publication Critical patent/JP2815595B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Surface Treatment Of Glass (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は医療用ガラス製品生地からのアルカリ等の溶
出防止法、特に改良されたCVD法でシリカ膜を形成して
処理する方法に関するものである。
Description: TECHNICAL FIELD The present invention relates to a method for preventing elution of alkali and the like from medical glassware fabrics, and more particularly to a method for forming and treating a silica film by an improved CVD method. .

〔従来の技術と問題点〕[Conventional technology and problems]

基体の表面に金属酸化物薄膜を形成する方法としては
スプレー法、スピンナー法等で代表される液相処理法、
CVD,PVDで代表される気相法等が広く実施されている。
各方法は酸化物の種類、処理される基材や期待する酸化
膜の物性により選択して実施されている。
As a method for forming a metal oxide thin film on the surface of the substrate, a liquid phase treatment method represented by a spray method, a spinner method, or the like,
A vapor phase method represented by CVD and PVD is widely practiced.
Each method is selected and implemented depending on the type of oxide, the substrate to be treated, and the expected properties of the oxide film.

典型的な薄膜形成法であるこれら各種の液相処理法や
気相処理法とは別に、先年より例えば特開昭48−37786
号公報や特公昭55−15545号公報で開示されている様な
超音波霧化方式による薄膜形成法も盛んに利用されて来
ている。
Apart from these various liquid-phase processing methods and gas-phase processing methods which are typical thin-film forming methods, since last year, for example, JP-A-48-37786
Japanese Patent Application Publication No. 55-15545 and Japanese Patent Publication No. 55-15545, a thin film forming method using an ultrasonic atomizing method has been actively used.

この方法は、化合物を溶液の形にして、これに超音波
を作用させて微細な粒径の霧滴とし、これをキャリャー
ガスに同伴させて移送し、基体表面に接触させて、その
表面で分解を行わせ薄膜を形成するものである。
In this method, a compound is formed in the form of a solution, and ultrasonic waves are applied to the solution to form fine droplets of fine particles, which are transported together with carrier gas, brought into contact with the substrate surface, and decomposed on the surface. Is performed to form a thin film.

この超音波霧化方式は必要以上に溶剤を用いる事なく
作業が出来るので健康的にも又作業環境的にも好まし
い。又、一般に行なわれているCVD法のように高真空や
特殊不活性ガス雰囲気下などの限定された作業条件でな
くても作業が出来る点で優れた方法であると考えられ
る。
This ultrasonic atomization method is preferable from the viewpoints of health and working environment because work can be performed without using a solvent more than necessary. Further, it is considered to be an excellent method in that the work can be performed even under a limited working condition such as a high vacuum or a special inert gas atmosphere as in a generally performed CVD method.

通常超音波方式では霧化の目的にはその大半は800Khz
〜3Mcの領域の周波数が使用されている。使用する周波
数により生成する霧滴の粒径分布は変化し、例えば周波
数3Mcの場合、生成した霧化物の体積比で2〜3ミクロ
ンが50%、1.5〜2ミクロンが27%と言う状態の霧滴を
得ることが出来る。
Usually 800Khz for the purpose of atomization in the ultrasonic method
Frequencies in the region of ~ 3 Mc have been used. The particle size distribution of the mist generated varies depending on the frequency used. For example, in the case of a frequency of 3 Mc, mist having a volume ratio of 2 to 3 microns of 50% and a volume of 1.5 to 2 microns of 27% is 27%. Drops can be obtained.

生成した霧化粒子の大きさは化合物の反応性と共に形
成される被膜の状態に著しい影響を与える事が知られて
いる。
It is known that the size of the atomized particles formed has a significant effect on the state of the film formed together with the reactivity of the compound.

超音波方式で金属酸化物被膜を形成する場合、例え
ば、前記の特公昭48−37786では金属化合物をアルコー
ル等の溶剤に溶解して30cp以下の粘度の溶液にして超音
波方式で霧化し基体を処理し、また、特公昭55−15545
では金属化合物を水や揮発性溶剤の溶液にして超音波処
理してエアロゾル化し、このエアロゾルで基体の表面を
処理する方法が提案されている。
In the case of forming a metal oxide film by an ultrasonic method, for example, in Japanese Patent Publication No. 48-37786, a metal compound is dissolved in a solvent such as alcohol to form a solution having a viscosity of 30 cp or less and atomized by an ultrasonic method to form a substrate. Processed, and
Has proposed a method in which a metal compound is converted into a solution of water or a volatile solvent and subjected to ultrasonic treatment to form an aerosol, and the surface of the substrate is treated with the aerosol.

超音波霧化方式で形成された金属酸化物被膜は使用す
る金属化合物材料の種類や性質の他に霧化粒子の大きさ
や温度、随伴する溶剤の有無や種類などの諸因子で被膜
の状態や性質が大きく支配される。
The metal oxide film formed by the ultrasonic atomization method depends on various factors such as the size and temperature of the atomized particles, the presence or absence of the accompanying solvent, etc., in addition to the type and properties of the metal compound material used, and the state of the film. Nature is largely controlled.

ビン、アンプル、シリンジ等内容積に比較して開口部
が小さいガラス製品や医療用ガラス製品(以下 本ガラ
ス製品 という)の内表面にシリカ被膜形成処理しよう
とする時、処理化合物として従来から一般的に使用され
ているシランガスやアルキルシラン、シランアルコキシ
ド等の可燃性化合物を用いると処理時に燃焼を起こして
金属酸化物は粉末化してしまい透明均質な被膜形成をさ
せる事は難しい。又、溶剤として水をもちいると化合物
の変質を起こす事が多い上、被処理物の表面温度低下を
起こして被膜特性の低下の原因になり易く好ましくな
い。更に、従来一般的に提案されているアルコールや低
沸点溶剤を用いると処理中に燃焼したり、有害な分解ガ
スを発生し、本ガラス製品の表面をシリカ膜形成処理を
使用する時にはガラス溶融温度以下の温度で熱分解を起
こさせる加水分解性化合物で燃焼性の炭化水素基を持た
ない、シリルテトライソシアネートを用いる事が望まし
い。
When a silica film is to be formed on the inner surface of glass products or medical glass products (hereinafter referred to as “glass products”) whose opening is smaller than the internal volume of bottles, ampules, syringes, etc. When a flammable compound such as silane gas, alkylsilane, or silane alkoxide used in the above process is used, combustion occurs during the treatment, and the metal oxide is powdered, so that it is difficult to form a transparent and uniform film. Further, when water is used as a solvent, the quality of the compound is often deteriorated, and the surface temperature of the object to be treated is lowered, which is liable to cause deterioration of the film properties, which is not preferable. Furthermore, if alcohols or low boiling solvents that are generally proposed in the past are used, they burn during processing or generate harmful decomposition gases. It is desirable to use silyltetraisocyanate, which is a hydrolyzable compound that causes thermal decomposition at the following temperature and has no flammable hydrocarbon group.

本願の発明者の一人は先にシリルテトライソシアネー
トを含む加水分解性金属化合物を超音波方式で処理して
基体の表面に金属酸化物薄膜を形成することを提案し
た。(特願昭63−172255) 溶液を用いて処理する従来の超音波処理方式やシリル
テトライソシアネート等の特定の加水分解性化合物を用
いた、本発明者らの先の出願にかかる前記超音波方式で
霧化した霧化物(エアロゾル)で本ガラス製品の内表面
をシリカ処理した時にはガラス生地からのアルカリ等た
とえばナトリウム、カルシウム、鉄などの金属化合物の
溶出を防止できる透明で緻密な膜を得る事は出来なかっ
た。
One of the inventors of the present application has previously proposed that a hydrolyzable metal compound containing silyltetraisocyanate is treated by an ultrasonic method to form a metal oxide thin film on the surface of a substrate. (Japanese Patent Application No. 63-172255) A conventional ultrasonic treatment method using a solution or the ultrasonic method according to the earlier application of the present inventors using a specific hydrolyzable compound such as silyltetraisocyanate. When the inner surface of this glass product is treated with silica using an atomized substance (aerosol) atomized by the above, a transparent and dense film that can prevent the elution of alkali compounds such as sodium, calcium, iron, etc. from the glass material is obtained. Could not.

本ガラス製品の内表面に、金属化合物の溶出を防止出
来る透明なシリカ膜の形成をする為には溶剤を使わずシ
リルテトライソシアネートでCVD方式での処理を選択す
る必要のある事が判明した。
In order to form a transparent silica film on the inner surface of this glass product that can prevent metal compounds from being eluted, it was found that it was necessary to select a CVD treatment with silyltetraisocyanate without using a solvent.

CVD法でシリカ膜形成処理をする時にはSiH4等のシラ
ン類でガラスを処理する事は知られているがこの化合物
は大気中で燃焼分解を受けやすい。この為特殊な雰囲気
が必要であり実施し難い。又、ケイ素ハロゲン化物では
腐食性分解物が生成し不都合である。
It is known that when a silica film is formed by the CVD method, the glass is treated with silanes such as SiH 4, but this compound is susceptible to combustion decomposition in the atmosphere. For this reason, a special atmosphere is required and implementation is difficult. Further, corrosive decomposition products are generated with silicon halides, which is inconvenient.

常温で液体又は固体状の化合物をCVD法で処理し薄膜
形成を行う時には作業の前準備と作業中、その化合物の
所定の蒸気圧を維持する為に沸点又はそれに近い温度に
化合物を維持する必要がある。
When forming a thin film by treating a liquid or solid compound at room temperature by the CVD method, it is necessary to maintain the compound at a temperature at or near the boiling point in order to maintain the specified vapor pressure of the compound during preparation and during the work There is.

しかし加水分解性や熱分解性がある様な反応性の高い
化合物を高温し保持しつづけると、一般的に縮合反応等
の分解反応が進行し変質してしまい、作業を維持しにく
くなると言う問題が従来のCVD法にはあった。
However, if a highly reactive compound such as a hydrolyzable or thermally decomposable compound is kept at a high temperature and kept, the decomposition reaction such as a condensation reaction generally proceeds and deteriorates, making it difficult to maintain the work. However, there is a conventional CVD method.

この様に従来の超音波方式やCVD方式による金属酸化
物薄膜時にシリカ膜にあるこれらの問題を解決する事が
要望されていた。
As described above, it has been demanded to solve these problems in the silica film when the metal oxide thin film is formed by the conventional ultrasonic method or CVD method.

シリカ膜を形成しようとする時には従来法の中では超
音波方式やCVD方式が適用し易い方式である。しかし、
特別にち密な膜を形成しようとする時には、従来の超音
波方式では目的が達成されない。又、CVD方式では加熱
による化合物の変質が発生し易く、形成された膜の品質
にも影響が出やすく、その上作業の連続性、安全性にも
問題があった。
When a silica film is to be formed, an ultrasonic method or a CVD method is a method that can be easily applied among conventional methods. But,
When a particularly dense film is to be formed, the object cannot be achieved by the conventional ultrasonic method. Further, in the CVD method, deterioration of the compound due to heating is apt to occur, and the quality of the formed film is liable to be affected. In addition, there is a problem in continuity of work and safety.

そこで、本発明者の一人が先に出願した(特願昭63−
172255)超音波方式を用いて、本ガラス製品の処理に適
用出来る方法を検討した。
Then, one of the present inventors filed the application earlier (Japanese Patent Application No. 63-63).
172255) A method applicable to the treatment of the present glass product using an ultrasonic method was studied.

この結果、超音波方式の化合物を加熱せずに霧化出来
ると言う特性とCVD法の形成膜の品質特性の両方の特徴
を相乗的に発揮し同時に各方法が有している欠点が排除
された新しいCVD法で本ガラス製品に適用出来る機能を
持った膜を形成する方法を開発し、本発明に至った。
As a result, both the characteristics of being able to atomize the ultrasonic compound without heating and the quality characteristics of the film formed by the CVD method are synergistically exhibited, and at the same time, the disadvantages of each method are eliminated. A new method for forming a film having a function applicable to the present glass product by a new CVD method has been developed, and the present invention has been achieved.

即ち、従来の超音波方式の薄膜形成では、発生した霧
滴をキャリャーガスで移送し、基体処理に使用してい
た。本法では超音波方式で発生させたシリルテトライソ
シアネートの霧化粒子を処理に使うのではなくCVD方式
での原料供給体として使用する。CVD工程では超音波方
式では霧化粒子は加熱されてガス化されキャリャーガス
との基体混合物とされる。この基体混合物で基体を処理
すると化合物は単分子レベルの形で供給されるので、基
体表面に形成される膜は従来法とは異なり分子レベルで
均質なシリカ膜となり本発明の目的に適用出来る方法で
ある事が見出されたのである。
That is, in the conventional ultrasonic thin film formation, the generated mist droplets are transported by a carrier gas and used for substrate processing. In this method, atomized particles of silyltetraisocyanate generated by an ultrasonic method are not used for treatment but are used as a raw material supply body in a CVD method. In the CVD process, the atomized particles are heated and gasified by the ultrasonic method to form a base mixture with the carrier gas. When the substrate is treated with this substrate mixture, the compound is supplied in the form of a single molecule, so that the film formed on the surface of the substrate is a silica film which is homogeneous at the molecular level unlike the conventional method, and can be applied to the object of the present invention. It was found that

〔発明の概要〕[Summary of the Invention]

かくて、本発明は超音波方式で発生させたシリルテト
ライソシアネート霧滴をキャリャーガスで移送し、次工
程でこのシリルテトライソシアネート霧滴がガス化され
るのに必要な温度に加熱してガス化する。更にこの化合
物ガスとキャリャーガス混合気体を処理する医療用ガラ
ス製品の内表面に接触させてシリカ膜を形成するという
改良された処理法を提案するものである。
Thus, in the present invention, the silyltetraisocyanate atomized droplets generated by the ultrasonic method are transferred by the carrier gas, and heated to a temperature necessary for the silyltetraisocyanate atomized droplets to be gasified in the next step to be gasified. . Further, the present invention proposes an improved processing method of forming a silica film by bringing the compound gas and the carrier gas mixed gas into contact with the inner surface of a medical glass product to be processed.

〔発明の具体的説明〕[Specific description of the invention]

本発明の方法を実施するのに適当な装置の一例を示す
図面について説明する。
Reference is made to the drawings, which illustrate an example of an apparatus suitable for performing the method of the present invention.

この装置は超音波発振子でシリルテトライソシアネー
トを霧滴化し、これをキャリャーガスで移送する発生部
分(A)と、移送されて来たキャリャーガスとシリルテ
トライソシアネートの混合物をガス化させる加熱部分
(B)と混合気体を移送して医療用ガラスの処理をする
処理部分(C)からなり、特に処理部分(C)には、例
えば生産ラインで連続的な処理をしたい時には断続吐出
する部分と所定部分に塗布する部分及び試料を移動させ
る部分が含まれる。勿論、非連続的な方法で処理はでき
る。
This apparatus uses an ultrasonic oscillator to atomize silyltetraisocyanate and transfers it by carrier gas (A), and a heating part (B) that gasifies a mixture of the transferred carrier gas and silyltetraisocyanate. And a treatment part (C) for treating the medical glass by transferring a mixed gas. Particularly, the treatment part (C) includes a part for intermittent discharge when a continuous treatment is desired in a production line, and a part for a predetermined part. A part to be applied and a part to move the sample are included. Of course, processing can be done in a discontinuous manner.

発生部分(A)は一定容量の液槽タンク1からなり、
このタンク1の底部には所望周波数の超音波を発振する
超音波発振処子2、側面には窒素ガス等のキャリャーガ
スの導入口3、天面4には加熱部分に通ずる開口5が設
けられている。更に天面には下方に延びてタンク1内に
収容される液体6の温度を検知する温度センサー7、底
部にはフロートスイッチ8が設けられている。
The generation part (A) is composed of a fixed volume liquid tank 1
An ultrasonic oscillator 2 for oscillating ultrasonic waves of a desired frequency is provided at the bottom of the tank 1, an inlet 3 for a carrier gas such as a nitrogen gas is provided on a side surface, and an opening 5 is provided on a top surface 4 to communicate with a heating portion. I have. Further, a temperature sensor 7 that extends downward and detects the temperature of the liquid 6 contained in the tank 1 is provided on the top surface, and a float switch 8 is provided on the bottom.

加熱部分Bは液槽タンク1の開口5の上方に設けられ
た一定高さの円筒9とその周囲のヒーター10と保温材11
からなっている。その円筒9は蓋部12を有しそこには温
度計13が設けられ、又円筒9の上方側部には開口14が設
けられ次の処理部分Cに通ずる処理移送管15が取着けら
れている。
The heating portion B includes a cylinder 9 having a fixed height provided above the opening 5 of the liquid tank 1, a heater 10 and a heat insulator 11 around the cylinder 9.
Consists of The cylinder 9 has a lid 12 in which a thermometer 13 is provided, and an opening 14 is provided in the upper side of the cylinder 9 and a processing transfer pipe 15 leading to the next processing part C is attached. I have.

処理部分Cにおいて処理移送管15はエアシリンダーユ
ニット16に固定されたエアシリンダー17部を経て接続金
具18に接続される。前記ユニット16は台19上に水平方向
に摺動自在に取着けられ、又前記エアシリンダー17は垂
直方向に摺動自在に取着けられている。更に前記接続金
具18には処理されるべきアンプル20に進入しうる吐出針
21が取着けられている。
In the processing portion C, the processing transfer pipe 15 is connected to a connection fitting 18 via an air cylinder 17 fixed to an air cylinder unit 16. The unit 16 is slidably mounted on a table 19 in a horizontal direction, and the air cylinder 17 is slidably mounted in a vertical direction. Further, the connection fitting 18 has a discharge needle that can enter the ampoule 20 to be processed.
21 is installed.

処理されるべき前記アンプル20が定規22とともに溝付
ローラー23によって所定位置に送られ前記吐出針21の進
入を受入れるようになっている。
The ampoule 20 to be processed is sent to a predetermined position by a grooved roller 23 together with a ruler 22 so as to receive the entry of the discharge needle 21.

今発生部分Aの液槽タンク1に充填された液状のシリ
ルテトライソシアネート6は超音波発振子2から発振す
る超音波によって無数の霧液となる。次いで導入口3か
ら導入されるキャリャーガスに分散された霧滴は開口5
から上昇して加熱部分Bに至り、ヒーター10によって加
熱されてガス化する。ガス化された前記シリルテトライ
ソシアネート化合物は同伴してきたキャリャーガスとの
混合気体となって処理部分Cの処理移送管15に送られ
る。
The liquid silyltetraisocyanate 6 filled in the liquid tank 1 of the generated portion A now becomes an innumerable mist by the ultrasonic waves oscillated from the ultrasonic oscillator 2. Next, the mist droplets dispersed in the carrier gas introduced from the inlet 3 are
From the heater 10 to the heating portion B, where it is heated by the heater 10 and gasified. The gasified silyltetraisocyanate compound becomes a mixed gas with the accompanying carrier gas and is sent to the processing transfer pipe 15 of the processing part C.

一方所定位置に送られたアンプル20内に吐出針21を進
入するようエアシリンダーユニット16を図において左方
に摺動せしめ、上記混合気体を処理移送管15から吐出針
21を経てアンプル20内部へ送入する。一定量送入後エア
シリンダー17は下方へ摺動して処理移送管15を押圧して
その混合気体の送入を遮断する。
On the other hand, the air cylinder unit 16 is slid to the left in the drawing so that the discharge needle 21 enters the ampoule 20 sent to the predetermined position, and the mixed gas is discharged from the processing transfer pipe 15 through the discharge needle.
It is sent into the ampoule 20 via 21. After a certain amount of feed, the air cylinder 17 slides downward and presses the processing transfer pipe 15 to cut off the feed of the mixed gas.

混合気体中の上記シリルテトライソシアネートはアン
プル20内部に送られてその表面に接触して分解し、そこ
にシリカ薄膜を形成し、かくしてアンプル20のガラス生
地からのアルカリ等の溶出防止を図ることができるので
ある。
The silyltetraisocyanate in the mixed gas is sent to the inside of the ampoule 20 and decomposed by contacting the surface thereof, forming a silica thin film thereon, and thus preventing elution of alkali and the like from the glass cloth of the ampoule 20. You can.

本発明を更に詳しく説明すれば、発生部分(A)では
加温されたキャリャーガスを使用する事も出来るが、本
発明の目的ではキャリャーガスは室温が良く加温はしな
い方が良い。これは化合物並びに発振子の昇温を避ける
為である。化合物、発振子が昇温すると霧化機能に変化
が生じ好ましくない。従って、発生部分(A)は通常空
冷しながら作業する事が多い。超音波装置はこの目的の
為には通常800KHz〜3Mc程度の周波数の物を用いるが、1
Mc以下の周波数のものを用いると霧化粒子が粗大に成る
のでガス化し難く成る傾向がある。
If the present invention is described in more detail, a heated carrier gas can be used in the generating portion (A), but for the purpose of the present invention, it is better that the carrier gas has a good room temperature and is not heated. This is to avoid the temperature rise of the compound and the oscillator. When the temperature of the compound or the oscillator rises, the atomization function changes, which is not preferable. Therefore, the generated portion (A) is often worked while usually being air-cooled. Ultrasound equipment usually uses a frequency of about 800 KHz to 3 Mc for this purpose.
If a frequency of less than Mc is used, the atomized particles tend to be coarse and difficult to gasify.

キャリャーガスは除湿した空気又はN2ガスや他の不活
性ガスを用いる。
Kyaryagasu uses dehumidified air or N 2 gas or other inert gas.

加熱部分(B)は加熱に耐える材料を用いる必要があ
る。通常はステンレス、ガラス等から選ばれたものが使
用される。そしてこの部分からの伝熱で発生部分(A)
が昇温しない様にする必要がある。
The heating portion (B) needs to use a material that can withstand heating. Usually, a material selected from stainless steel, glass and the like is used. And the part generated by heat transfer from this part (A)
It is necessary to keep the temperature from rising.

熱源は水、蒸気、油、電熱等特に制約はない、加熱温
度は使用する化合物と希望する作業速度に対応して選ば
れ、特に限定はされない。一般的には次の処理部分
(C)で化合物との混合気体の凝集が起こらない事が望
ましい。この為には加熱部分(B)の加熱温度はその化
合物の常圧での圧力が100mmHg以上を示す温度に設定さ
れる事が多い。
The heat source is not particularly limited, such as water, steam, oil, and electric heat. The heating temperature is selected according to the compound to be used and the desired operation speed, and is not particularly limited. Generally, it is desirable that the gas mixture with the compound does not agglomerate in the next processing portion (C). For this purpose, the heating temperature of the heating portion (B) is often set to a temperature at which the pressure of the compound at normal pressure is 100 mmHg or more.

処理部分(C)はこの経路が長いとか混合気体の温度
低下を受け易い時には保温又は加温をする事が望まし
い。
It is desirable that the processing portion (C) is kept warm or heated when this route is long or when the temperature of the mixed gas is apt to decrease.

アンプル等処理されるべき医療用ガラス製品の温度
は、シリカ膜の場合には高温の方が焼結が進行するの
で、可能な限り高温の方が良い。従って処理後はアニー
リング工程を含めて500〜650℃で2〜3分の加熱を行う
事が望ましい。
In the case of a silica film, the temperature of the medical glass product to be treated such as an ampoule is preferably as high as possible because sintering proceeds at a higher temperature. Therefore, after the treatment, it is desirable to perform heating at 500 to 650 ° C. for 2 to 3 minutes including the annealing step.

加熱の替わりにUV処理、レーザー処理、電子線処理な
どの処理も可能である。
Instead of heating, treatments such as UV treatment, laser treatment, and electron beam treatment are also possible.

〔実施例〕〔Example〕

図面に示す装置を作成し、超音波を発振する発振子を
含む発生部分のタンクにシリルテトライソシアネートを
200cc入れ、窒素ガスを0.2l/minの流量で導入口より吹
き込む。1.6〜1.8Mcの周波数の超音波を発振し、これに
より発生した霧滴をキャリャーガスで移送し開口を通し
て加熱部分に送り、ここで加熱してガス化させる。加熱
部分の温度は250℃に設定しガス化を計った。
Create the device shown in the drawing, and put silyl tetraisocyanate in the tank of the generating part containing the oscillator that oscillates ultrasonic waves.
200 cc is charged, and nitrogen gas is blown from the inlet at a flow rate of 0.2 l / min. Ultrasonic waves having a frequency of 1.6 to 1.8 Mc are oscillated, and the mist generated by this is transported by a carrier gas and sent to a heating portion through an opening, where it is heated and gasified. The temperature of the heated part was set at 250 ° C., and gasification was measured.

このガス化したシリルテトライソシアネートのキャリ
ャーガス同伴体を医療用アンプルの移動速度に同調して
断続的に吐出制御するエアーシリンダーとアンプルの内
部に吐出する同調可動する管で平均温度150℃のアンプ
ルに1.6秒間吹き込み処理した。この吐出量は計算上0.0
02gであった。処理物はアニーリング炉で630℃2分間処
理し透明な処理物を得た。
The carrier gas entrainer of this gasified silyl tetraisocyanate is intermittently controlled in synchronization with the moving speed of the medical ampoule and controlled by an air cylinder and a tunable movable tube that discharges into the ampoule. Blowing treatment was performed for seconds. This discharge amount is calculated as 0.0
It was 02 g. The treated product was treated in an annealing furnace at 630 ° C. for 2 minutes to obtain a transparent treated product.

(確 認) 処理したアンプルに純水を入れ、アルミホイルでシー
ルをした上オートクレーブで121℃、1時間処理した。
(Confirmation) The treated ampule was charged with pure water, sealed with aluminum foil, and treated in an autoclave at 121 ° C. for 1 hour.

その後処理した水のNa分析をしたところ下記の結果で
あり、同様に処理した未処理物よりも著しくNa溶出防止
効果が良好であり形成されたSiO2膜のち密性、均質性、
密着性が良好で有ることが確認された。
Then a treated water below was the Na analytical results, the density of the SiO 2 film is significantly Na elution preventing effect than the untreated product treated similarly formed a good homogeneity,
It was confirmed that the adhesion was good.

また、Ca,Feの溶出の減少も発光分析の結果確認され
た。
In addition, emission analysis confirmed that the elution of Ca and Fe was reduced.

溶出Naの定量 本処理 0.010ppm 未処理 0.770ppm (比較例) 実施例で加熱部分の加熱方式を用いない処理では外観
上淡いヘイズが発生し、アルカリ溶出防止効果も劣って
いた。溶出量0.03〜0.2ppmであった。
Determination of eluted Na Main treatment 0.010 ppm Untreated 0.770 ppm (Comparative Example) In the examples, the treatment without using the heating method of the heating portion caused a faint haze in appearance, and the effect of preventing alkali elution was poor. The elution amount was 0.03 to 0.2 ppm.

〔発明の効果〕〔The invention's effect〕

本発明の改良されたCVD法によれば、処理に使用され
るシリルテトライソシアネートが、従来法の如く作業準
備及び作業中継続してその蒸気圧を得るのに必要な高温
度に晒されるのではない。室温又はその付近の温度域で
超音波方式で霧化されたキャリャーガスに分散された化
合物が移送され、2次工程でその分散物だげが加熱され
てガス化し、化合物ガスとキャリャーガスの混合気体と
なる。この混合気体を医療用ガラス製品表面に接触させ
てシリカ膜を形成してアルカリ等の溶出を防止するもの
である。
According to the improved CVD method of the present invention, the silyltetraisocyanate used in the treatment is exposed to the high temperature required to obtain its vapor pressure continuously during preparation and operation as in the conventional method. Absent. The compound dispersed in the carrier gas atomized by the ultrasonic method at the room temperature or in the vicinity thereof is transferred, and in the second step, the dispersion is heated and gasified, and the mixed gas of the compound gas and the carrier gas is mixed. Become. This mixed gas is brought into contact with the surface of a medical glass product to form a silica film to prevent elution of alkali and the like.

【図面の簡単な説明】[Brief description of the drawings]

図は本発明の方法を実施するのに適当な装置の一例を示
す説明図である。 A……発生部分、B……加熱部分、C……処理部分、1
……液槽タンク、2……超音波発振子、3……ガス導入
口、5……開口、10……ヒーター、11……保温材、15…
…処理移送管、17……エアーシリンダー、20……アンプ
ル、21……吐出針。
The figure is an explanatory view showing an example of an apparatus suitable for carrying out the method of the present invention. A: generated part, B: heated part, C: processed part, 1
... liquid tank, 2 ... ultrasonic oscillator, 3 ... gas inlet, 5 ... opening, 10 ... heater, 11 ... heat insulating material, 15 ...
… Process transfer tube, 17… Air cylinder, 20… Ampule, 21… Discharge needle.

フロントページの続き (56)参考文献 特開 平2−22106(JP,A) 特開 昭62−207870(JP,A) 特開 昭63−261700(JP,A) (58)調査した分野(Int.Cl.6,DB名) C03C 17/00 - 17/44 C23C 16/00 - 16/56Continuation of the front page (56) References JP-A-2-22106 (JP, A) JP-A-62-207870 (JP, A) JP-A-63-261700 (JP, A) (58) Fields investigated (Int .Cl. 6 , DB name) C03C 17/00-17/44 C23C 16/00-16/56

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】シリルテトライソシアネートを超音波方式
で霧化しキャリャーガスに分散させ、この分散物を加熱
してガス化し医療用ガラス製品内表面に接触させて加熱
処理しシリカ膜を形成してガラス製品生地からのアルカ
リ等の溶出を防止する方法。
1. Silicate tetraisocyanate is atomized by an ultrasonic method and dispersed in a carrier gas, and the dispersion is heated to be gasified and brought into contact with the inner surface of a medical glass product to heat and form a silica film to form a silica product. Method to prevent elution of alkali etc. from dough.
JP33007388A 1988-12-27 1988-12-27 Prevention of elution of alkali etc. by treating metal oxide on the inner surface of medical glassware Expired - Lifetime JP2815595B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33007388A JP2815595B2 (en) 1988-12-27 1988-12-27 Prevention of elution of alkali etc. by treating metal oxide on the inner surface of medical glassware

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33007388A JP2815595B2 (en) 1988-12-27 1988-12-27 Prevention of elution of alkali etc. by treating metal oxide on the inner surface of medical glassware

Publications (2)

Publication Number Publication Date
JPH02175630A JPH02175630A (en) 1990-07-06
JP2815595B2 true JP2815595B2 (en) 1998-10-27

Family

ID=18228480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33007388A Expired - Lifetime JP2815595B2 (en) 1988-12-27 1988-12-27 Prevention of elution of alkali etc. by treating metal oxide on the inner surface of medical glassware

Country Status (1)

Country Link
JP (1) JP2815595B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013179514A1 (en) 2012-05-28 2013-12-05 株式会社ナミコス Glass container and method for manufacturing same

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0676233B2 (en) * 1990-05-30 1994-09-28 日本硝子産業株式会社 Glass ampoule or tube bottle and method for manufacturing the same
EP0759413B1 (en) * 1991-05-17 1999-09-01 Asahi Glass Company Ltd. Surface-treated substrate
FR2697014B1 (en) * 1992-10-19 1995-01-20 Souchon Neuvesel Verreries Method for coating a substrate made of glassy material with a silica film.
DE69412168T2 (en) * 1993-05-14 1998-12-10 Asahi Glass Co Ltd Surface treated substrate and process for its manufacture
DE19622550A1 (en) * 1996-06-05 1997-12-11 Schott Glaswerke Glass containers, in particular for storing pharmaceutical or diagnostic solutions
WO2009011112A1 (en) * 2007-07-13 2009-01-22 Mitsubishi Tanabe Pharma Corporation Stable fat emulsion containing prostaglandin e1
JP6705348B2 (en) * 2016-09-23 2020-06-03 ニプロ株式会社 Liquid formulations and methods for improving the stability of palonosetron
WO2019230964A1 (en) * 2018-05-31 2019-12-05 富士フイルム株式会社 Packed oil-in-water type emulsion composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013179514A1 (en) 2012-05-28 2013-12-05 株式会社ナミコス Glass container and method for manufacturing same

Also Published As

Publication number Publication date
JPH02175630A (en) 1990-07-06

Similar Documents

Publication Publication Date Title
JP3078835B2 (en) Method for producing vaporized reactants for chemical vapor deposition
JP2815595B2 (en) Prevention of elution of alkali etc. by treating metal oxide on the inner surface of medical glassware
KR101614339B1 (en) Method for producing synthetic quartz glass
JP6133319B2 (en) Method for producing synthetic quartz glass by deposition from the gas phase and by atomizing a liquid siloxane feed
JP2884968B2 (en) Method for manufacturing silicon oxide film
US6180190B1 (en) Vapor source for chemical vapor deposition
IE58679B1 (en) Improved chemical vapour deposition method of producing fluorine-doped tin oxide coatings
JP2767284B2 (en) Liquid semiconductor forming material vaporizer
JP2595054B2 (en) Formation method of metal oxide thin film
EP0635877A2 (en) Apparatus and method for depositing borophosphosilicate glass on a substrate
EP0268756A2 (en) Process for preparing disilane from monosilane
CN100530444C (en) Material for forming insulation film and film-forming method with the use of the material
GB2089377A (en) Improved photochemical vapor deposition apparatus and method
JPH0874055A (en) Formation of high purity silver film
JP2004509041A (en) Preparation method of titania-doped quartz glass preform
JP2891383B2 (en) CVD equipment
JP2800686B2 (en) Method of forming high-purity platinum film
US3432331A (en) Method for surface treatment of glass articles
JPH0733427A (en) Production of spherical silica fine powder controlled in pore structure
JP4688458B2 (en) Insulating film forming material and film forming method using the same
JP2004179346A (en) Film formation device and method thereof
JPH04173976A (en) Thin film forming device
JPS6251216B2 (en)
JPH05206021A (en) Method and apparatus for manufacture of semiconductor device
JPH0878216A (en) Metal oxide resistance film forming method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070814

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070814

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20080814

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20090814

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090814

Year of fee payment: 11