JP2811277B2 - Temperature control method of gas cooled fuel cell power generator - Google Patents

Temperature control method of gas cooled fuel cell power generator

Info

Publication number
JP2811277B2
JP2811277B2 JP6078742A JP7874294A JP2811277B2 JP 2811277 B2 JP2811277 B2 JP 2811277B2 JP 6078742 A JP6078742 A JP 6078742A JP 7874294 A JP7874294 A JP 7874294A JP 2811277 B2 JP2811277 B2 JP 2811277B2
Authority
JP
Japan
Prior art keywords
fuel cell
oxidizing gas
gas
temperature
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP6078742A
Other languages
Japanese (ja)
Other versions
JPH07288135A (en
Inventor
勝国 山田
淳 幹
浩明 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6078742A priority Critical patent/JP2811277B2/en
Publication of JPH07288135A publication Critical patent/JPH07288135A/en
Application granted granted Critical
Publication of JP2811277B2 publication Critical patent/JP2811277B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、燃料電池の性能劣化時
の酸化ガス量増大に配慮したガス冷却式燃料電池発電装
の温度制御方式に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a temperature control system for a gas-cooled fuel cell power generator, which takes into account an increase in the amount of oxidizing gas when the performance of a fuel cell deteriorates.

【0002】[0002]

【従来の技術】燃料電池発電装置は、文献:「燃料電池
発電システム」、燃料電池発電システム編集委員会編、
オーム社1992刊に示されるように、燃料ガスと酸化ガス
が供給され電気化学反応により発電する。
2. Description of the Related Art Fuel cell power generation devices are described in the literature: "Fuel Cell Power Generation System", edited by the Fuel Cell Power Generation System Editing Committee,
As shown in Ohm 1992, fuel gas and oxidizing gas are supplied to generate electricity by an electrochemical reaction.

【0003】図6は従来の燃料電池発電装置の構成を示
すブロック図である。
FIG. 6 is a block diagram showing a configuration of a conventional fuel cell power generator.

【0004】本図に示すように、燃料電池に炭化水素を
改質して燃料ガスとして供給する燃料改質装置1、燃料
電池に冷却も兼ねる酸化ガスを昇圧し燃料改質装置1か
らの炭酸ガスを加えて供給する酸化ガス供給装置2、燃
料改質装置1及び酸化ガス供給装置2と配管により接続
された燃料電池3、この燃料電池3の直流出力端に接続
された直交変換装置4、燃料電池3の排気側から酸化ガ
ス供給側へを循環する循環ブロア10、燃料電池3に供
給される酸化ガスと排気の混合ガス温度を検出する第2
の温度センサ11、第2の温度センサ11が検出した混
合ガス温度が所定の値になるように循環ブロア10の循
環流量を制御する混合ガス温度制御器12とにより構成
される。
As shown in FIG. 1, a fuel reformer 1 reforms hydrocarbons to a fuel cell and supplies the fuel gas as a fuel gas. An oxidizing gas supply device 2 for adding and supplying a gas, a fuel reformer 1, a fuel cell 3 connected to the oxidizing gas supply device 2 by a pipe, an orthogonal transformer 4 connected to a DC output terminal of the fuel cell 3, A circulation blower 10 that circulates from the exhaust side of the fuel cell 3 to the oxidizing gas supply side, and a second that detects the temperature of the mixed gas of the oxidizing gas and the exhaust gas supplied to the fuel cell 3
And a mixed gas temperature controller 12 for controlling the circulation flow rate of the circulation blower 10 so that the mixed gas temperature detected by the second temperature sensor 11 becomes a predetermined value.

【0005】外部から供給される炭化水素は水蒸気改質
法などで燃料改質装置1により高水素濃度の燃料ガスと
なり燃料電池3の燃料極3Aに供給される。外部から供
給される酸化ガス例えば空気は圧縮機、効率を高めるた
めの予熱装置などを備えた酸化ガス供給装置2より所定
の圧力に調整され、循環ブロア10からの高温排気を加
えて所定の温度に調整され燃料電池3の空気極3Bに供
給される。燃料電池3では、この燃料ガスと酸化ガスに
よって直流電力を発電する。この直流電力は直交変換装
置4に供給され、交流電力に変換して負荷に供給され
る。
[0005] Hydrocarbon supplied from the outside becomes a fuel gas having a high hydrogen concentration by the fuel reformer 1 by a steam reforming method or the like, and is supplied to the fuel electrode 3A of the fuel cell 3. The oxidizing gas, for example, air supplied from the outside is adjusted to a predetermined pressure by an oxidizing gas supply device 2 equipped with a compressor, a preheating device for improving efficiency, etc., and a high temperature exhaust gas from the circulation blower 10 is added to a predetermined temperature. And supplied to the air electrode 3B of the fuel cell 3. The fuel cell 3 generates DC power using the fuel gas and the oxidizing gas. This DC power is supplied to the quadrature converter 4, converted into AC power, and supplied to the load.

【0006】次に、燃料電池発電装置の基本的な制御を
説明する。
Next, basic control of the fuel cell power generator will be described.

【0007】負荷に供給される交流電力に見合う直流電
力を燃料電池3が発電するために必要な燃料ガスと酸化
ガスの供給流量は、直流出力電流に比例するのでこの直
流電流の大小に応じて燃料ガスと酸化ガスの供給流量を
制御する。燃料電池3の電気化学反応は、反応に適した
温度範囲がありかつ発熱反応であるため、燃料電池3の
温度を反応に適した温度範囲に保持し、過熱を防止する
冷却が必要である。燃料電池3の発熱量が大きい時に
は、過熱しないよう酸化ガスを冷却剤として使用し、酸
化ガス供給温度を検出し排気循環量を減少させるように
制御する。発熱量が小さい時には、電解質融点以下に燃
料電池3の温度が低下しないように、酸化ガス供給温度
を検出し排気循環量を増加させるように制御する。
The supply flow rates of the fuel gas and the oxidizing gas required for the fuel cell 3 to generate DC power corresponding to the AC power supplied to the load are proportional to the DC output current. Control the supply flow rates of fuel gas and oxidizing gas. Since the electrochemical reaction of the fuel cell 3 has a temperature range suitable for the reaction and is an exothermic reaction, it is necessary to maintain the temperature of the fuel cell 3 in a temperature range suitable for the reaction and to perform cooling to prevent overheating. When the calorific value of the fuel cell 3 is large, the oxidizing gas is used as a coolant so as not to overheat, the oxidizing gas supply temperature is detected, and the exhaust gas circulation amount is controlled to be reduced. When the calorific value is small, the oxidizing gas supply temperature is detected and controlled so as to increase the exhaust gas circulation amount so that the temperature of the fuel cell 3 does not drop below the electrolyte melting point.

【0008】[0008]

【発明が解決しようとする課題】従来の燃料電池発電装
置では、燃料電池の性能が劣化して直流出力が低下する
と、燃料ガスと酸化ガスの供給量を増して直流出力を確
保している。この操作は電気化学反応による発熱量の増
加を伴うので、燃料電池を冷却する能力を向上しなけれ
ばならない。燃料電池へ供給する酸化ガスを用いた冷却
で、酸化ガス供給温度一定の制御をしているから冷却能
力を向上させるためには、酸化ガス供給量を増加しなけ
ればならない。燃料電池性能の劣化時に冷却に必要な酸
化ガスの増加量は著しく多くなり、冷却に係る酸化ガス
供給装置の機器は建設時から大容量化しなければなら
ず、燃料電池発電装置のコストが上昇したり、劣化時に
燃料電池内を通過するガス量の増加によって燃料電池電
解質の飛散量が増え、寿命を短くするなどの問題が発生
する。
In the conventional fuel cell power generator, when the performance of the fuel cell is degraded and the DC output is reduced, the DC gas output is secured by increasing the supply amounts of the fuel gas and the oxidizing gas. Since this operation involves an increase in the amount of heat generated by the electrochemical reaction, the ability to cool the fuel cell must be improved. Since the oxidizing gas supply temperature is controlled to be constant by cooling using the oxidizing gas supplied to the fuel cell, the oxidizing gas supply amount must be increased in order to improve the cooling capacity. When the performance of the fuel cell deteriorates, the amount of oxidizing gas required for cooling increases remarkably, and the equipment of the oxidizing gas supply device for cooling must be increased in capacity from the time of construction, and the cost of the fuel cell power generator increases. In addition, the amount of gas passing through the fuel cell at the time of deterioration increases, so that the amount of fuel cell electrolyte scattered increases, thereby causing problems such as shortening the service life.

【0009】本発明の目的は、燃料電池の活性が低下し
電気化学反応量を増加させて運転する時に、冷却剤とし
ての酸化ガス供給流量の増大を防止することにある。
An object of the present invention is to prevent an increase in the supply flow rate of oxidizing gas as a coolant when the fuel cell is operated with a reduced activity and an increased amount of electrochemical reaction.

【0010】[0010]

【課題を解決するための手段】上記目的は、燃料ガスと
酸化ガスの電気化学反応により発電する燃料電池と、該
燃料電池に前記燃料ガスを供給する燃料ガス供給手段
と、該燃料電池の冷却材の一部として使用する前記酸化
ガスを供給する酸化ガス供給手段と、前記燃料電池から
の排気を該酸化ガス供給手段の出口側に供給する排気循
環手段と、前記燃料電池に供給される前記酸化ガスと排
気の混合ガス温度を検出し前記排気循環手段の供給能力
を制御する混合ガス温度制御手段とを備えたガス冷却式
燃料電池発電装置であって、前記酸化ガス供給手段の出
口に設け前記酸化ガスを冷却する酸化ガス冷却手段と、
前記燃料電池の反応量を検出する燃料電池反応量検出手
段と、該燃料電池反応量検出手段が検出した前記燃料電
池の反応量を入力し前記燃料電池電解質融点の制限を受
けない温度制御設定値により前記酸化ガス冷却手段へ制
御量を出力する酸化ガス温度制御手段とを設けたことに
より達成される。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a fuel cell for generating electricity by an electrochemical reaction between a fuel gas and an oxidizing gas, a fuel gas supply means for supplying the fuel gas to the fuel cell, and a cooling system for the fuel cell. Oxidizing gas supply means for supplying the oxidizing gas used as a part of the material, exhaust gas circulating means for supplying exhaust gas from the fuel cell to an outlet side of the oxidizing gas supply means, and A gas-cooled fuel cell power generator comprising: a mixed gas temperature control means for detecting a mixed gas temperature of the oxidizing gas and the exhaust gas and controlling a supply capacity of the exhaust gas circulating means, provided at an outlet of the oxidizing gas supply means. Oxidizing gas cooling means for cooling the oxidizing gas,
A fuel cell reaction amount detecting means for detecting a reaction amount of the fuel cell; and a reaction amount of the fuel cell detected by the fuel cell reaction amount detecting means for receiving a restriction of the fuel cell electrolyte melting point.
This is attained by providing an oxidizing gas temperature control means for outputting a control amount to the oxidizing gas cooling means in accordance with a temperature control set value which is not changed.

【0011】上記目的は、燃料ガスと酸化ガスの電気化
学反応により発電する燃料電池と、該燃料電池に前記燃
料ガスを供給する燃料ガス供給手段と、該燃料電池の冷
却材の一部として使用する前記酸化ガスを供給する酸化
ガス供給手段と、前記燃料電池からの排気を該酸化ガス
供給手段の出口側に供給する排気循環手段と、前記燃料
電池に供給される前記酸化ガスと排気の混合ガス温度を
検出し前記排気循環手段の供給能力を制御する混合ガス
温度制御手段とを備えたガス冷却式燃料電池発電装置で
あって、前記酸化ガス供給手段の出口に設け前記酸化ガ
スを冷却する酸化ガス冷却手段と、該酸化ガス冷却手段
の出口酸化ガス温度を検出する酸化ガス温度検出手段
と、該温度検出手段が検出した温度を入力し前記酸化ガ
ス冷却手段へ制御量を出力する酸化ガス温度制御手段
と、前記燃料電池の反応量を検出する燃料電池反応量検
出手段と、該燃料電池反応量検出手段が検出した前記燃
料電池の反応量を入力し前記酸化ガス温度制御手段の
記燃料電池電解質融点の制限を受けない温度制御設定値
を設定する酸化ガス温度設定手段とを設けたことにより
達成される。
The object is to provide a fuel cell for generating electricity by an electrochemical reaction between a fuel gas and an oxidizing gas, fuel gas supply means for supplying the fuel gas to the fuel cell, and use as a part of a coolant for the fuel cell. An oxidizing gas supply means for supplying the oxidizing gas, an exhaust gas circulating means for supplying exhaust gas from the fuel cell to an outlet of the oxidizing gas supply means, and a mixing of the oxidizing gas and exhaust gas supplied to the fuel cell. A gas-cooled fuel cell power generator comprising a mixed gas temperature control means for detecting a gas temperature and controlling a supply capacity of the exhaust gas circulation means, provided at an outlet of the oxidizing gas supply means for cooling the oxidizing gas. Oxidizing gas cooling means, oxidizing gas temperature detecting means for detecting the temperature of the oxidizing gas at the outlet of the oxidizing gas cooling means, and inputting the temperature detected by the temperature detecting means to the oxidizing gas cooling means Oxidizing gas temperature control means for outputting, fuel cell reaction amount detecting means for detecting the reaction amount of the fuel cell, and oxidizing gas temperature control by inputting the reaction amount of the fuel cell detected by the fuel cell reaction amount detecting means. Before the means
This is achieved by providing oxidizing gas temperature setting means for setting a temperature control set value which is not restricted by the fuel cell electrolyte melting point .

【0012】上記目的は、燃料ガスと酸化ガスの電気化
学反応により発電する燃料電池と、該燃料電池に前記燃
料ガスを供給する燃料ガス供給手段と、該燃料電池の冷
却材の一部として使用する前記酸化ガスを供給する酸化
ガス供給手段と、前記燃料電池からの排気を該酸化ガス
供給手段の出口側に供給する排気循環手段と、前記燃料
電池に供給される前記酸化ガスと排気の混合ガス温度を
検出し前記排気循環手段の供給能力を制御する混合ガス
温度制御手段とを備えたガス冷却式燃料電池発電装置で
あって、前記酸化ガス供給手段の出口に設け冷却媒体ま
たは低温の装置内流体と熱交換する熱交換器と該熱交換
器をバイパスするバイパスラインと該バイパスラインに
配置した制御弁を有する酸化ガス冷却手段と、前記燃料
電池の反応量を検出する燃料電池反応量検出手段と、該
燃料電池反応量検出手段が検出した前記燃料電池の反応
量を入力し前記燃料電池電解質融点の制限を受けない温
度制御設定値により前記酸化ガス冷却手段の制御弁へ制
御量を出力する酸化ガス温度制御手段とを設けたことに
より達成される。
The object of the present invention is to provide a fuel cell for generating electric power by an electrochemical reaction between a fuel gas and an oxidizing gas, a fuel gas supply means for supplying the fuel gas to the fuel cell, and a cooling material for the fuel cell. An oxidizing gas supply means for supplying the oxidizing gas, an exhaust gas circulating means for supplying exhaust gas from the fuel cell to an outlet of the oxidizing gas supply means, and a mixing of the oxidizing gas and exhaust gas supplied to the fuel cell. A mixed gas temperature control means for detecting gas temperature and controlling the supply capacity of the exhaust gas circulation means, wherein the cooling medium or a low-temperature device provided at an outlet of the oxidizing gas supply means. A heat exchanger for exchanging heat with the internal fluid, a bypass line for bypassing the heat exchanger, an oxidizing gas cooling means having a control valve disposed on the bypass line, and a reaction amount of the fuel cell are detected. To the fuel cell reaction amount detecting means, the fuel cell reaction amount detecting means is not limited by the type of reaction the amount of the fuel cell detected the fuel cell electrolyte melting temperature
This is achieved by providing oxidizing gas temperature control means for outputting a control amount to a control valve of the oxidizing gas cooling means according to the degree control set value .

【0013】上記目的は、燃料ガスと酸化ガスの電気化
学反応により発電する燃料電池と、該燃料電池に前記燃
料ガスを供給する燃料ガス供給手段と、該燃料電池の冷
却材の一部として使用する前記酸化ガスを供給する酸化
ガス供給手段と、前記燃料電池からの排気を該酸化ガス
供給手段の出口側に供給する排気循環手段と、前記燃料
電池に供給される前記酸化ガスと排気の混合ガス温度を
検出し前記排気循環手段の供給能力を制御する混合ガス
温度制御手段とを備えたガス冷却式燃料電池発電装置で
あって、前記酸化ガス供給手段の出口に設け冷却媒体ま
たは低温の装置内流体と熱交換する熱交換器と該熱交換
器をバイパスするバイパスラインと該バイパスラインに
配置した制御弁を有する酸化ガス冷却手段と、該酸化ガ
ス冷却手段の出口酸化ガス温度を検出する酸化ガス温度
検出手段と、該温度検出手段が検出した温度を入力し前
記酸化ガス冷却手段の制御弁へ制御量を出力する酸化ガ
ス温度制御手段と、前記燃料電池の反応量を検出する燃
料電池反応量検出手段と、該燃料電池反応量検出手段が
検出した前記燃料電池の反応量を入力し前記酸化ガス温
度制御手段の前記燃料電池電解質融点の制限を受けない
温度制御設定値を設定する酸化ガス温度設定手段とを設
けたことにより達成される。
[0013] The object of the present invention is to provide a fuel cell for generating electricity by an electrochemical reaction between a fuel gas and an oxidizing gas, a fuel gas supply means for supplying the fuel gas to the fuel cell, and a part of a coolant for the fuel cell. An oxidizing gas supply means for supplying the oxidizing gas, an exhaust gas circulating means for supplying exhaust gas from the fuel cell to an outlet of the oxidizing gas supply means, and a mixing of the oxidizing gas and exhaust gas supplied to the fuel cell. A mixed gas temperature control means for detecting gas temperature and controlling the supply capacity of the exhaust gas circulation means, wherein the cooling medium or a low-temperature device provided at an outlet of the oxidizing gas supply means. Oxidizing gas cooling means having a heat exchanger for exchanging heat with the internal fluid, a bypass line for bypassing the heat exchanger, and a control valve disposed on the bypass line, and an outlet of the oxidizing gas cooling means Oxidizing gas temperature detecting means for detecting the oxidizing gas temperature, oxidizing gas temperature controlling means for inputting the temperature detected by the temperature detecting means and outputting a control amount to a control valve of the oxidizing gas cooling means, and a reaction of the fuel cell Fuel cell reaction amount detection means for detecting the amount of fuel, and the reaction amount of the fuel cell detected by the fuel cell reaction amount detection means is input, and the oxidizing gas temperature control means is not limited by the fuel cell electrolyte melting point. This is achieved by providing oxidizing gas temperature setting means for setting a temperature control set value.

【0014】[0014]

【0015】[0015]

【0016】[0016]

【0017】[0017]

【作用】燃料電池の性能が劣化した時定格の出力を得る
ために反応量を増加させて運転することになるが、発熱
量も増加する。上記構成によれば、燃料電池の反応量増
加を燃料電池反応量検出手段により検出し、反応量検出
値の増加により酸化ガス温度制御手段が酸化ガス冷却手
段の冷却量を増加するように制御するから酸化ガスの温
度が低下し、酸化ガスの流量を増加させずに燃料電池を
冷却し酸化ガス供給流量の増大を防止することができ
る。このようにして燃料電池へ供給される酸化ガスと排
気の混合ガス温度が電解質融点以上であれば、酸化ガス
の温度を電解質融点以下に低下させることが可能で燃料
電池の性能劣化による反応量増加に対応できる範囲が広
くなる。また、燃料電池を通過するガス量が増加しない
ので電解質の飛散も防止され燃料電池の長寿命化を図る
ことができる。
When the performance of the fuel cell is degraded, the fuel cell is operated with an increased amount of reaction in order to obtain a rated output, but the calorific value also increases. According to the above configuration, the increase in the reaction amount of the fuel cell is detected by the fuel cell reaction amount detection means, and the oxidizing gas temperature control means controls the oxidizing gas cooling means to increase the cooling amount by increasing the reaction amount detection value. As a result, the temperature of the oxidizing gas decreases, and the fuel cell is cooled without increasing the flow rate of the oxidizing gas, thereby preventing an increase in the oxidizing gas supply flow rate. The oxidizing gas supplied to the fuel cell and the exhaust
If the gas mixture temperature is higher than the melting point of the electrolyte,
Temperature can be lowered below the melting point of the electrolyte.
Wide range to cope with increase in reaction volume due to deterioration of battery performance
It becomes. Further, since the amount of gas passing through the fuel cell does not increase, the scattering of the electrolyte is prevented, and the life of the fuel cell can be extended.

【0018】そして、酸化ガス冷却手段の出口酸化ガス
温度を制御する酸化ガス温度制御手段の設定を燃料電池
の反応量により行うカスケード制御ループを構成するこ
とにより安定した制御ができる。
The oxidizing gas temperature control means for controlling the temperature of the oxidizing gas at the outlet of the oxidizing gas cooling means can be controlled stably by forming a cascade control loop for setting the oxidizing gas temperature control means based on the reaction amount of the fuel cell.

【0019】更に、燃料電池の性能が劣化した時に直流
出力電圧が低下してくる。燃料電池の定格出力を確保す
るために反応量を増加させると直流出力電流が増加する
から、直流出力電流の検出により反応量を検出できる。
Further, when the performance of the fuel cell deteriorates, the DC output voltage decreases. When the reaction amount is increased to secure the rated output of the fuel cell, the DC output current increases, so that the reaction amount can be detected by detecting the DC output current.

【0020】反応量の増加により発熱量が増加するから
燃料電池の本体温度が高くなり、本体温度の検出により
反応量を検出できる。
Since the amount of heat generated by the increase in the amount of reaction increases, the body temperature of the fuel cell increases, and the amount of reaction can be detected by detecting the body temperature.

【0021】反応量の増加は酸化ガスと燃料ガスの増加
及び本体温度の上昇を伴うから排気温度を検出し、酸化
ガスと燃料ガスの両方の流量または一方を検出し他方を
反応相関により求め、排気熱量を演算して求めることに
より反応量を検出できる。
An increase in the reaction amount is accompanied by an increase in the oxidizing gas and the fuel gas and an increase in the temperature of the main body. The reaction amount can be detected by calculating and calculating the exhaust heat amount.

【0022】次に、酸化ガス冷却手段の熱交換器のバイ
パスラインに配置した制御弁を酸化ガス温度制御手段に
より制御すると、酸化ガスの熱交換器とバイパスライン
への分流比が変化するから酸化ガスの温度を制御でき
る。
Next, when the control valve disposed on the bypass line of the heat exchanger of the oxidizing gas cooling means is controlled by the oxidizing gas temperature control means, the ratio of the oxidizing gas divided into the heat exchanger and the bypass line changes. The temperature of the gas can be controlled.

【0023】[0023]

【実施例】以下、本発明の実施例を図により詳述する。BRIEF DESCRIPTION OF THE DRAWINGS FIG.

【0024】先ず、本実施例の構成を説明する。First, the configuration of this embodiment will be described.

【0025】図1は本発明の実施例の構成を示すブロッ
ク図である。
FIG. 1 is a block diagram showing the configuration of an embodiment of the present invention.

【0026】本図に示すように本実施例は、燃料電池に
メタン等の炭化水素を改質して燃料ガスとして供給する
燃料改質装置1、燃料電池に冷却も兼ねる酸化ガスを昇
圧し燃料改質装置1からの炭酸ガスを加えて供給する酸
化ガス供給装置2、燃料改質装置1及び酸化ガス供給装
置2に接続された燃料電池3、この燃料電池3の直流出
力端に接続された直交変換装置4、酸化ガス供給装置2
の出口に設け酸化ガスを冷却する酸化ガス冷却装置5、
酸化ガス冷却装置5の出口酸化ガス温度を検出する第1
の温度センサ6、第1の温度センサ6の検出信号を入力
し酸化ガス冷却装置5へ制御信号を出力する酸化ガス温
度制御器7、燃料電池の反応量を直流出力電流として検
出する直流電流センサ8、直流電流センサ8が検出した
直流電流を入力し酸化ガス温度制御器7の温度制御設定
値を設定する酸化ガス温度設定器9、燃料電池3の排気
側から酸化ガス供給側へ排気を循環する図示せざる循環
ブロワ10、燃料電池3に供給される酸化ガスと排気の
混合ガス温度を検出する図示せざる第2の温度センサ1
1、第2の温度センサ11が検出した混合ガス温度が所
定の値になるように循環ブロワ10の循環流量を制御す
る図示せざる混合ガス温度制御器12とにより構成され
る。
As shown in this figure, this embodiment comprises a fuel reformer 1 for reforming hydrocarbons such as methane to a fuel cell and supplying it as a fuel gas, and increasing the pressure of an oxidizing gas which also serves as a fuel for the fuel cell. An oxidizing gas supply device 2 for adding and supplying carbon dioxide from the reforming device 1, a fuel cell 3 connected to the fuel reforming device 1 and the oxidizing gas supply device 2, and a DC output terminal of the fuel cell 3 Orthogonal transformation device 4, oxidizing gas supply device 2
An oxidizing gas cooling device 5 provided at the outlet of
First detecting the temperature of the oxidizing gas at the outlet of the oxidizing gas cooling device 5
Temperature sensor 6, an oxidizing gas temperature controller 7 for inputting a detection signal of the first temperature sensor 6 and outputting a control signal to the oxidizing gas cooling device 5, a DC current sensor for detecting a reaction amount of the fuel cell as a DC output current 8. An oxidizing gas temperature setter 9 for inputting a DC current detected by the DC current sensor 8 and setting a temperature control set value of the oxidizing gas temperature controller 7, circulating exhaust gas from the exhaust side of the fuel cell 3 to the oxidizing gas supply side. Circulation blower 10 (not shown), second temperature sensor 1 (not shown) for detecting the temperature of a mixed gas of oxidizing gas and exhaust gas supplied to fuel cell 3
First, a mixed gas temperature controller 12 (not shown) that controls the circulation flow rate of the circulation blower 10 so that the mixed gas temperature detected by the second temperature sensor 11 becomes a predetermined value.

【0027】図2は図1の酸化ガス冷却装置の構成を説
明する説明図である。
FIG. 2 is an explanatory diagram illustrating the configuration of the oxidizing gas cooling device of FIG.

【0028】本図に示すように酸化ガス冷却装置は酸化
ガス供給装置2からの酸化ガスと冷却水または低温のプ
ロセス流体と熱交換する熱交換器13、熱交換器13を
バイパスするバイパスライン14、バイパスライン14
に配置し酸化ガス温度制御器7からの制御信号により動
作する調節弁15、熱交換器13の酸化ガス入口側に配
置した弁16とから構成される。
As shown in the figure, the oxidizing gas cooling device includes a heat exchanger 13 for exchanging heat with the oxidizing gas from the oxidizing gas supply device 2 and cooling water or a low-temperature process fluid, and a bypass line 14 for bypassing the heat exchanger 13. , Bypass line 14
And a control valve 15 which is operated by a control signal from the oxidizing gas temperature controller 7, and a valve 16 which is disposed on the oxidizing gas inlet side of the heat exchanger 13.

【0029】燃料電池3の性能が劣化せず酸化ガスを冷
却する必要の無い時は、弁16を全閉とし調節弁15を
全開とする。燃料電池3の性能が劣化し酸化ガスを冷却
する場合には弁16を開き調節弁15の開度を酸化ガス
温度制御器7からの制御信号により変えて酸化ガス温度
を制御する。
When it is not necessary to cool the oxidizing gas without deteriorating the performance of the fuel cell 3, the valve 16 is fully closed and the control valve 15 is fully opened. When the performance of the fuel cell 3 is deteriorated and the oxidizing gas is cooled, the valve 16 is opened and the opening of the control valve 15 is changed by the control signal from the oxidizing gas temperature controller 7 to control the oxidizing gas temperature.

【0030】次に、本実施例の動作を説明する。Next, the operation of this embodiment will be described.

【0031】酸化ガス温度設定器9の出力信号は、直流
電流センサ8の検出信号が大きくなると酸化ガス温度制
御器7の温度設定値を相対的に小さくするように制御特
性を予め定めておく。
The control characteristic of the output signal of the oxidizing gas temperature setting device 9 is determined in advance so that the temperature setting value of the oxidizing gas temperature controller 7 becomes relatively small as the detection signal of the DC current sensor 8 increases.

【0032】図3は図1の酸化ガス温度制御器の温度設
定を説明する図表である。
FIG. 3 is a table for explaining the temperature setting of the oxidizing gas temperature controller of FIG.

【0033】本図に示すように燃料電池の性能劣化によ
る反応量の増加につれて酸化ガス温度制御器7の温度設
定を低下させるが、電解質融点より高い温度を保持しな
ければならないのは当然である。
As shown in the figure, the temperature setting of the oxidizing gas temperature controller 7 is lowered as the reaction amount increases due to the deterioration of the performance of the fuel cell. However, it is natural that the temperature must be kept higher than the melting point of the electrolyte. .

【0034】次に、本発明の他の実施例を説明する。Next, another embodiment of the present invention will be described.

【0035】図4は本発明の他の実施例の構成を示すブ
ロック図である。
FIG. 4 is a block diagram showing the configuration of another embodiment of the present invention.

【0036】本実施例は本図に示すように図1の直流電
流センサ8に代えて燃料電池の本体温度を検出する単独
あるいは複数の第3の温度センサ17を用いている。本
体温度を検出することにより燃料電池の反応量の増加を
検出できる。他の構成は図1の構成と同じである。
In this embodiment, as shown in this figure, a single or a plurality of third temperature sensors 17 for detecting the temperature of the main body of the fuel cell are used in place of the DC current sensor 8 of FIG. By detecting the temperature of the main body, an increase in the reaction amount of the fuel cell can be detected. Other configurations are the same as those in FIG.

【0037】図5は本発明の他の実施例の構成を示すブ
ロック図である。
FIG. 5 is a block diagram showing the configuration of another embodiment of the present invention.

【0038】本実施例は本図に示すように図1の直流電
流センサ8に代えて燃料電池の排気温度を検出する第4
の温度センサ18、燃料の流量を検出する燃料流量計1
9、酸化ガスの流量を検出する酸化ガス流量計20を用
い酸化ガスと燃料ガスの両方の流量、またはいず何れか
一方の流量を検出している。検出した酸化ガスと燃料ガ
スの両方の流量と排気温度とから排気熱量を演算し反応
量を求めている。また、酸化ガスと燃料ガスのうちの一
方を検出し他方を反応相関により求めることもできる。
他の構成は図1の構成と同じである。
In this embodiment, as shown in this figure, a fourth embodiment for detecting the exhaust temperature of the fuel cell in place of the DC current sensor 8 of FIG.
Temperature sensor 18, fuel flow meter 1 for detecting fuel flow rate
9. The flow rate of both the oxidizing gas and the fuel gas or any one of them is detected by using the oxidizing gas flow meter 20 for detecting the flow rate of the oxidizing gas. The amount of exhaust heat is calculated from the detected flow rates of both the oxidizing gas and the fuel gas and the exhaust gas temperature to obtain the reaction amount. Alternatively, one of the oxidizing gas and the fuel gas can be detected and the other can be determined by a reaction correlation.
Other configurations are the same as those in FIG.

【0039】[0039]

【発明の効果】本発明によれば、燃料電池の性能が劣化
して電気化学反応量増加による発熱量が増加した時、反
応量を検出して酸化ガス供給温度を低下させる制御を行
うことにより、酸化ガスの流量を増加させずに燃料電池
を冷却し酸化ガス供給流量の増大を防止することができ
る。そして、燃料電池へ供給される混合ガスの温度が電
解質融点以上であれば、酸化ガスの温度を電解質融点以
下に低下させることが可能で反応量増加に対応できる範
囲が広くなる。また、燃料電池を通過するガス量が増加
しないので電解質の飛散も防止され燃料電池の長寿命化
を図ることができる。
According to the present invention, when the performance of a fuel cell is degraded and the calorific value increases due to an increase in the amount of electrochemical reaction, control is performed to detect the amount of reaction and decrease the oxidizing gas supply temperature. In addition, the fuel cell can be cooled without increasing the flow rate of the oxidizing gas, thereby preventing an increase in the flow rate of the oxidizing gas supply. Then, the temperature of the mixed gas supplied to the fuel cell is
If the temperature is higher than the melting point, the temperature of the oxidizing gas should be lower than the electrolyte melting point.
Range that can be reduced to accommodate the increase in reaction volume.
The area becomes wider. Further, since the amount of gas passing through the fuel cell does not increase, the scattering of the electrolyte is prevented, and the life of the fuel cell can be extended.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例の構成を示すブロック図であ
る。
FIG. 1 is a block diagram showing a configuration of an embodiment of the present invention.

【図2】図1の酸化ガス冷却装置の構成を説明する説明
図である。
FIG. 2 is an explanatory diagram illustrating a configuration of an oxidizing gas cooling device of FIG.

【図3】図1の酸化ガス温度制御器の温度設定を説明す
る図表である。
FIG. 3 is a table illustrating temperature settings of the oxidizing gas temperature controller of FIG. 1;

【図4】本発明の他の実施例の構成を示すブロック図で
ある。
FIG. 4 is a block diagram showing a configuration of another embodiment of the present invention.

【図5】本発明の他の実施例の構成を示すブロック図で
ある。
FIG. 5 is a block diagram showing a configuration of another embodiment of the present invention.

【図6】従来の燃料電池発電装置の構成を示すブロック
図である。
FIG. 6 is a block diagram showing a configuration of a conventional fuel cell power generator.

【符号の説明】[Explanation of symbols]

1 燃料改質装置 2 酸化ガス供給装置 3 燃料電池 3A 燃料極 3B 空気極 4 直交変換装置 5 酸化ガス冷却装置 6 第1の温度センサ 7 酸化ガス温度制御器 8 直流電流センサ 9 酸化ガス温度設定器 10 循環ブロア 11 第2の温度センサ 12 混合ガス温度制御器 13 熱交換器 14 バイパスライン 15 調節弁 16 弁 17 第3の温度センサ 18 第4の温度センサ 19 燃料流量計 20 酸化ガス流量計 REFERENCE SIGNS LIST 1 fuel reforming device 2 oxidizing gas supply device 3 fuel cell 3A fuel electrode 3B air electrode 4 orthogonal transformation device 5 oxidizing gas cooling device 6 first temperature sensor 7 oxidizing gas temperature controller 8 DC current sensor 9 oxidizing gas temperature setting device Reference Signs List 10 circulation blower 11 second temperature sensor 12 mixed gas temperature controller 13 heat exchanger 14 bypass line 15 control valve 16 valve 17 third temperature sensor 18 fourth temperature sensor 19 fuel flow meter 20 oxidizing gas flow meter

フロントページの続き (56)参考文献 特開 昭62−252075(JP,A) 特開 昭58−164165(JP,A) 特開 平4−206159(JP,A) 特公 昭48−40369(JP,B1) (58)調査した分野(Int.Cl.6,DB名) H01M 8/00 - 8/24Continuation of the front page (56) References JP-A-62-252075 (JP, A) JP-A-58-164165 (JP, A) JP-A-4-206159 (JP, A) JP-B-48-40369 (JP) , B1) (58) Field surveyed (Int. Cl. 6 , DB name) H01M 8/00-8/24

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 燃料ガスと酸化ガスの電気化学反応によ
り発電する燃料電池と、該燃料電池に前記燃料ガスを供
給する燃料ガス供給手段と、該燃料電池の冷却材の一部
として使用する前記酸化ガスを供給する酸化ガス供給手
段と、前記燃料電池からの排気を該酸化ガス供給手段の
出口側に供給する排気循環手段と、前記燃料電池に供給
される前記酸化ガスと排気の混合ガス温度を検出し前記
排気循環手段の供給能力を制御する混合ガス温度制御手
段とを備えたガス冷却式燃料電池発電装置であって、 前記酸化ガス供給手段の出口に設け前記酸化ガスを冷却
する酸化ガス冷却手段と、前記燃料電池の反応量を検出
する燃料電池反応量検出手段と、該燃料電池反応量検出
手段が検出した前記燃料電池の反応量を入力し前記燃料
電池電解質融点の制限を受けない温度制御設定値により
前記酸化ガス冷却手段へ制御量を出力する酸化ガス温度
制御手段とを設けたことを特徴とするガス冷却式燃料電
池発電装置の温度制御方式。
1. A fuel cell that generates power by an electrochemical reaction between a fuel gas and an oxidizing gas, a fuel gas supply unit that supplies the fuel gas to the fuel cell, and a fuel cell that is used as a part of a coolant of the fuel cell. An oxidizing gas supply unit that supplies an oxidizing gas; an exhaust gas circulation unit that supplies exhaust gas from the fuel cell to an outlet of the oxidizing gas supply device; and a mixed gas temperature of the oxidizing gas and the exhaust gas supplied to the fuel cell. And a mixed gas temperature control means for controlling the supply capacity of the exhaust gas circulating means. The oxidizing gas provided at an outlet of the oxidizing gas supply means for cooling the oxidizing gas. and cooling means, and the fuel cell reaction amount detecting means for detecting the reaction of the fuel cell, the fuel enter the reaction amount of the fuel cell is the fuel cell reaction detecting means detects
An oxidizing gas temperature control means for outputting a control amount to the oxidizing gas cooling means according to a temperature control set value which is not restricted by a battery electrolyte melting point . Temperature control method.
【請求項2】 燃料ガスと酸化ガスの電気化学反応によ
り発電する燃料電池と、該燃料電池に前記燃料ガスを供
給する燃料ガス供給手段と、該燃料電池の冷却材の一部
として使用する前記酸化ガスを供給する酸化ガス供給手
段と、前記燃料電池からの排気を該酸化ガス供給手段の
出口側に供給する排気循環手段と、前記燃料電池に供給
される前記酸化ガスと排気の混合ガス温度を検出し前記
排気循環手段の供給能力を制御する混合ガス温度制御手
段とを備えたガス冷却式燃料電池発電装置であって、 前記酸化ガス供給手段の出口に設け前記酸化ガスを冷却
する酸化ガス冷却手段と、該酸化ガス冷却手段の出口酸
化ガス温度を検出する酸化ガス温度検出手段と、該温度
検出手段が検出した温度を入力し前記酸化ガス冷却手段
へ制御量を出力する酸化ガス温度制御手段と、前記燃料
電池の反応量を検出する燃料電池反応量検出手段と、該
燃料電池反応量検出手段が検出した前記燃料電池の反応
量を入力し前記酸化ガス温度制御手段の前記燃料電池電
解質融点の制限を受けない温度制御設定値を設定する酸
化ガス温度設定手段とを設けたことを特徴とするガス冷
却式燃料電池発電装置の温度制御方式。
2. A fuel cell for generating power by an electrochemical reaction between a fuel gas and an oxidizing gas, fuel gas supply means for supplying the fuel gas to the fuel cell, and a fuel cell used as a part of a coolant for the fuel cell. An oxidizing gas supply unit that supplies an oxidizing gas; an exhaust gas circulation unit that supplies exhaust gas from the fuel cell to an outlet of the oxidizing gas supply device; and a mixed gas temperature of the oxidizing gas and the exhaust gas supplied to the fuel cell. And a mixed gas temperature control means for controlling the supply capacity of the exhaust gas circulating means. The oxidizing gas provided at an outlet of the oxidizing gas supply means for cooling the oxidizing gas. A cooling unit, an oxidizing gas temperature detecting unit for detecting an outlet oxidizing gas temperature of the oxidizing gas cooling unit, and inputting the temperature detected by the temperature detecting unit and outputting a control amount to the oxidizing gas cooling unit Of the gas temperature control means, and the fuel cell reaction amount detecting means for detecting the reaction of the fuel cell, enter the reaction amount of the fuel cell is the fuel cell reaction detecting means detects the oxidizing gas temperature control means The fuel cell power
A temperature control method for a gas-cooled fuel cell power generator, comprising: an oxidizing gas temperature setting means for setting a temperature control set value which is not restricted by a decomposition melting point .
【請求項3】 燃料ガスと酸化ガスの電気化学反応によ
り発電する燃料電池と、該燃料電池に前記燃料ガスを供
給する燃料ガス供給手段と、該燃料電池の冷却材の一部
として使用する前記酸化ガスを供給する酸化ガス供給手
段と、前記燃料電池からの排気を該酸化ガス供給手段の
出口側に供給する排気循環手段と、前記燃料電池に供給
される前記酸化ガスと排気の混合ガス温度を検出し前記
排気循環手段の供給能力を制御する混合ガス温度制御手
段とを備えたガス冷却式燃料電池発電装置であって、 前記酸化ガス供給手段の出口に設け冷却媒体または低温
の装置内流体と熱交換する熱交換器と該熱交換器をバイ
パスするバイパスラインと該バイパスラインに配置した
制御弁を有する酸化ガス冷却手段と、前記燃料電池の反
応量を検出する燃料電池反応量検出手段と、該燃料電池
反応量検出手段が検出した前記燃料電池の反応量を入力
前記燃料電池電解質融点の制限を受けない温度制御設
定値により前記酸化ガス冷却手段の制御弁へ制御量を出
力する酸化ガス温度制御手段とを設けたことを特徴とす
るガス冷却式燃料電池発電装置の温度制御方式。
3. A fuel cell for generating power by an electrochemical reaction between a fuel gas and an oxidizing gas, fuel gas supply means for supplying the fuel gas to the fuel cell, and a fuel cell used as a part of a coolant for the fuel cell. An oxidizing gas supply unit that supplies an oxidizing gas; an exhaust gas circulation unit that supplies exhaust gas from the fuel cell to an outlet of the oxidizing gas supply device; and a mixed gas temperature of the oxidizing gas and the exhaust gas supplied to the fuel cell. And a mixed gas temperature control means for controlling the supply capacity of the exhaust gas circulation means, and a cooling medium or a low-temperature internal fluid provided at an outlet of the oxidizing gas supply means. Oxidizing gas cooling means having a heat exchanger for exchanging heat with a heat exchanger, a bypass line for bypassing the heat exchanger, and a control valve disposed on the bypass line, and a fuel for detecting a reaction amount of the fuel cell Pond reaction amount detecting means and, the fuel cell reaction volume not detecting means inputs the reaction amount of the fuel cell detected restricted the fuel cell electrolyte melting point temperature control set
An oxidizing gas temperature control means for outputting a control amount to a control valve of the oxidizing gas cooling means according to a constant value .
【請求項4】 燃料ガスと酸化ガスの電気化学反応によ
り発電する燃料電池と、該燃料電池に前記燃料ガスを供
給する燃料ガス供給手段と、該燃料電池の冷却材の一部
として使用する前記酸化ガスを供給する酸化ガス供給手
段と、前記燃料電池からの排気を該酸化ガス供給手段の
出口側に供給する排気循環手段と、前記燃料電池に供給
される前記酸化ガスと排気の混合ガス温度を検出し前記
排気循環手段の供給能力を制御する混合ガス温度制御手
段とを備えたガス冷却式燃料電池発電装置であって、 前記酸化ガス供給手段の出口に設け冷却媒体または低温
の装置内流体と熱交換する熱交換器と該熱交換器をバイ
パスするバイパスラインと該バイパスラインに配置した
制御弁を有する酸化ガス冷却手段と、該酸化ガス冷却手
段の出口酸化ガス温度を検出する酸化ガス温度検出手段
と、該温度検出手段が検出した温度を入力し前記酸化ガ
ス冷却手段の制御弁へ制御量を出力する酸化ガス温度制
御手段と、前記燃料電池の反応量を検出する燃料電池反
応量検出手段と、該燃料電池反応量検出手段が検出した
前記燃料電池の反応量を入力し前記酸化ガス温度制御手
段の前記燃料電池電解質融点の制限を受けない温度制御
設定値を設定する酸化ガス温度設定手段とを設けたこと
を特徴とするガス冷却式燃料電池発電装置の温度制御方
式。
4. A fuel cell for generating power by an electrochemical reaction between a fuel gas and an oxidizing gas, fuel gas supply means for supplying the fuel gas to the fuel cell, and a fuel cell used as a part of a coolant for the fuel cell. An oxidizing gas supply unit that supplies an oxidizing gas; an exhaust gas circulation unit that supplies exhaust gas from the fuel cell to an outlet of the oxidizing gas supply device; and a mixed gas temperature of the oxidizing gas and the exhaust gas supplied to the fuel cell. And a mixed gas temperature control means for controlling the supply capacity of the exhaust gas circulation means, and a cooling medium or a low-temperature internal fluid provided at an outlet of the oxidizing gas supply means. Oxidizing gas cooling means having a heat exchanger for exchanging heat with a heat exchanger, a bypass line bypassing the heat exchanger, and a control valve disposed in the bypass line, and an oxidizing gas temperature at the outlet of the oxidizing gas cooling means. Oxidizing gas temperature detecting means for detecting the temperature, oxidizing gas temperature controlling means for inputting the temperature detected by the temperature detecting means and outputting a control amount to a control valve of the oxidizing gas cooling means, and detecting a reaction amount of the fuel cell A fuel cell reaction amount detecting means for inputting a reaction amount of the fuel cell detected by the fuel cell reaction amount detecting means, and setting a temperature control set value of the oxidizing gas temperature control means which is not restricted by the fuel cell electrolyte melting point. A temperature control method for a gas-cooled fuel cell power generator, comprising: an oxidizing gas temperature setting means for setting.
JP6078742A 1994-04-18 1994-04-18 Temperature control method of gas cooled fuel cell power generator Expired - Fee Related JP2811277B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6078742A JP2811277B2 (en) 1994-04-18 1994-04-18 Temperature control method of gas cooled fuel cell power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6078742A JP2811277B2 (en) 1994-04-18 1994-04-18 Temperature control method of gas cooled fuel cell power generator

Publications (2)

Publication Number Publication Date
JPH07288135A JPH07288135A (en) 1995-10-31
JP2811277B2 true JP2811277B2 (en) 1998-10-15

Family

ID=13670345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6078742A Expired - Fee Related JP2811277B2 (en) 1994-04-18 1994-04-18 Temperature control method of gas cooled fuel cell power generator

Country Status (1)

Country Link
JP (1) JP2811277B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2807635B2 (en) * 1994-11-29 1998-10-08 溶融炭酸塩型燃料電池発電システム技術研究組合 Temperature control method for fuel cell power generation equipment
JP2001202981A (en) * 2000-01-18 2001-07-27 Mitsubishi Heavy Ind Ltd System and method for fuel cell operation control
JP2004349214A (en) * 2003-05-26 2004-12-09 Mitsubishi Materials Corp Operation method of solid oxide fuel cell

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4840369A (en) * 1971-09-25 1973-06-13
JPS58164165A (en) * 1982-03-25 1983-09-29 Kansai Electric Power Co Inc:The Circulating air feeding device of fuel cell
JPS58164157A (en) * 1982-03-25 1983-09-29 Kansai Electric Power Co Inc:The Temperature control method of fuel cell
JPS62252075A (en) * 1986-04-25 1987-11-02 Fuji Electric Co Ltd Temperature control device of air cooling type fuel cell
JPH088108B2 (en) * 1986-09-12 1996-01-29 株式会社日立製作所 Fuel cell power plant
JPH04206159A (en) * 1990-11-29 1992-07-28 Toshiba Corp Fuel cell power generation system

Also Published As

Publication number Publication date
JPH07288135A (en) 1995-10-31

Similar Documents

Publication Publication Date Title
JP5963840B2 (en) Method and apparatus for operating a solid electrolyte fuel cell stack using a mixed ionic / electronic conducting electrolyte
US7332236B2 (en) Method and apparatus for controlling a combined heat and power fuel cell system
JPH11339831A (en) On-vehicle fuel cell system
JP3739636B2 (en) Temperature monitoring and control method for fuel processor
US7147951B1 (en) Cogeneration device
JP2007250374A (en) Fuel cell system
JP2006012563A (en) Fuel cell system
JP2811277B2 (en) Temperature control method of gas cooled fuel cell power generator
JPS62198058A (en) Electric heat supply system of liquid cooling type fuel cell
JP3220438B2 (en) Fuel cell power generation system
KR101735647B1 (en) - Fuel Cell Engine Hybrid Power Generation System for Distributed Power Generation which has a Cooling device
JP3470909B2 (en) Hybrid fuel cell
JPS62278764A (en) Fuel cell power generating plant
JPH0461464B2 (en)
JP2931372B2 (en) Operating method of fuel cell power generation system
JP3728742B2 (en) Fuel cell equipment
JPH0896822A (en) Fuel cell power generating system
JP6847184B2 (en) Combined heat and power system
JPH07302605A (en) Cooling water circulation system control device of fuel cell power generating system
CN112038667B (en) Gas circulation humidifying method and device for hydrogen-oxygen fuel cell test
JPH0261099B2 (en)
KR20170119220A (en) Driving control apparatus of fuel cell system and method thereof
JP2004296266A (en) Fuel cell system
JP2006100153A (en) Operation method of solid oxide fuel cell, and power generation facility of solid oxide fuel cell
JP2017184423A (en) Dispersed power generation system

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

LAPS Cancellation because of no payment of annual fees