JP2806511B2 - Preparation of the alloy-based sintered body - Google Patents

Preparation of the alloy-based sintered body

Info

Publication number
JP2806511B2
JP2806511B2 JP17622191A JP17622191A JP2806511B2 JP 2806511 B2 JP2806511 B2 JP 2806511B2 JP 17622191 A JP17622191 A JP 17622191A JP 17622191 A JP17622191 A JP 17622191A JP 2806511 B2 JP2806511 B2 JP 2806511B2
Authority
JP
Grant status
Grant
Patent type
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17622191A
Other languages
Japanese (ja)
Other versions
JPH055106A (en )
Inventor
順二 今井
肇 児島
修司 山田
正雄 棚橋
糾 濱田
Original Assignee
松下電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【産業上の利用分野】この発明は、刃物、あるいは、ギア、シャフトなどの耐磨耗性を必要とする部品に適用出来る合金系焼結体の製法に関する。 BACKGROUND OF THE INVENTION This invention, blades, or gears, relating to preparation of the alloy-based sintered body that can be applied to parts requiring wear resistance, such as a shaft.

【0002】 [0002]

【従来の技術】従来、このような用途には、セラミック材料あるいは合金材料が用いられていた。 Conventionally, in such applications, a ceramic material or alloy material has been used. セラミック材料の使用 原料用セラミック粉末と有機バインダーとを混合し、射出成形あるいは直圧成形により所定の形状に成形し、熱処理でバインダーを飛ばした後、焼結させたセラミック焼結品がある。 Mixing the raw material ceramic powder and an organic binder used for the ceramic material, molded into a predetermined shape by injection molding or direct molding, after skipping the binder in the heat treatment, there is a ceramic sintered article obtained by sintering. このようにして製造された焼結品は、硬度がHv=2000以上と硬いが、靱性がないため、欠けたり、割れたりし易いという欠点があった。 Thus sinter produced by, although hardness Hv = 2000 or more and a hard, since there is no toughness, chipping or has a disadvantage of easily cracked.

【0003】 合金材料を使用する場合、一方、超硬材料として賞用される金属材料は、靱性は優れている反面、表面硬度(Hv=1100程度)がセラミック焼結品の表面硬度(Hv=2000以上)と比べ相当に低く、耐磨耗性が十分とは言い難い。 [0003] When using the alloy material, whereas a metal material to be Shoyo as superhard material, although toughness is superior, surface hardness (Hv = about 1100) is a ceramic sinter of the surface hardness (Hv = 2000 or higher) and considerably lower than, it is hard to say that the abrasion resistance sufficient. そこで、金属の表面に耐磨耗性を有する皮膜を形成し複合化によって、耐磨耗性を向上させる試みもなされている。 Therefore, the composite forms a coating having abrasion resistance on the surface of the metal, it has been made attempts to improve the abrasion resistance. 具体的に言うと、例えばスパッタ法やCVD法などの方法で、金属表面にTiNやZrN等の膜を形成するのである。 Specifically, for example, by a method such as sputtering or CVD, it is to form a film, such as TiN or ZrN on the metal surface. この場合、金属の表面に形成された皮膜と金属の間には、異質材料を複合化した場合に固有的に形成される境界面が存在するために相互の密着強度が小さいという問題や、皮膜の厚みを十分に厚くすることが現実的に難しく膜厚に制限が加わるため十分な耐磨耗性を確保することができないという問題がある。 In this case, between the coating and the metal formed on the surface of the metal, a problem that the adhesion strength of the cross is small due to the presence of the boundary surface formed to inherent when complexed with heterogeneous material and, film there is a problem that the inability to ensure sufficient abrasion resistance because it is sufficiently thick applied is realistically difficult limit to the thickness of the thickness.

【0004】 [0004]

【発明が解決しようとする課題】この発明は、上記の事情に鑑み、表面硬度が大きく、耐磨耗性に優れ、しかも、欠けや割れが生じ難い合金系焼結体を得ることができるとともに量産化適性を有する方法を提供することを課題とする。 [Problems that the Invention is to Solve The invention has been made in view of the above circumstances, the surface hardness is large, excellent wear resistance, moreover, it is possible to chipping or cracking to obtain the resulting hard alloy sintered body to provide a method with mass production adaptability to an object.

【0005】 [0005]

【課題を解決するための手段】前記課題を解決するため、この発明の合金系焼結体の製法では、Cr:20〜 To solve the above object, according to an aspect of, the process of the alloy-based sintered body of the present invention, Cr:. 20 to
35重量% Ni:2〜25重量%、Al:2〜8重量%、Ti:0.5重量%以下、Zr、Y、Hf、Ce、 35 wt%, Ni: 2 to 25 wt%, Al: 2 to 8 wt%, Ti: 0.5 wt% or less, Zr, Y, Hf, Ce ,
La、NdおよびGdのうちのいずれか1種又は2種以上:0.05〜1.0重量%、Fe:残部からなるフェライト合金(以下、「Alを含むフェライト合金」と呼ぶ)粉末を所定の形状に成型した成形体を非酸化性雰囲気中で1250〜1400℃の温度で加熱することにより焼結し、酸化性ガス雰囲気中で熱処理することにより表面にアルミナ成分を析出させるようにする。 La, Nd and Gd any one or more of: 0.05 to 1.0 wt%, Fe: ferritic alloy comprising the balance (hereinafter, referred to as "ferritic alloy containing Al") given the powder the molded body molded into a shape of sintered by heating at a temperature of 1,250 to 1,400 ° C. in a non-oxidizing atmosphere, so as to precipitate the alumina component to the surface by heat treatment in an oxidizing gas atmosphere. 前記「A Said, "A
lを含むフェライト合金」として、Tiを含まないもの as ferritic alloy "including l, which does not contain the Ti
を用いることもできる。 It can also be used.

【0006】非酸化性雰囲気としては、不活性ガス雰囲気、あるいは、還元性ガス雰囲気、さらには、真空雰囲気が挙げられる。 [0006] As non-oxidizing atmosphere, inert gas atmosphere or, - reducing gas atmosphere, and further include vacuum atmosphere. 非酸化性雰囲気での焼結の際の熱処理温度を1250〜1400℃の温度範囲とする。 The heat treatment temperature during sintering in a non-oxidizing atmosphere to a temperature range of 1,250 to 1400 ° C.. この温度範囲を外れると適用できる成形圧力範囲が狭くなったりする等の制限を受ける不都合がある。 Molding pressure range that can be applied with outside this temperature range there is a disadvantage that restricted such or narrowed.

【0007】Alを含むフェライト合金としては、Fe [0007] Examples of the ferrite alloy containing Al, Fe
−Cr−Al系合金やFe−Cr−Ni−Al系合金等がある。 There are -cr-Al alloy and Fe-Cr-Ni-Al alloy or the like. これらの合金の母材の硬度は、その合金を構成する金属元素の種類や含有量の多少によりHv=200 The hardness of the base material of these alloys, Hv by some type or content of metal elements constituting the alloy = 200
以下であったり、Hv=300以上であったり、その値は異なる。 Or or less, or even at Hv = 300 or more, the value is different. Fe−Cr−Al系合金は概して靱性を満たしても、硬度がHv=200以下であるので、硬度が要求される用途(例えば、ギアやシャフトの如き機構部品)には適していない。 Even meet the Fe-Cr-Al alloy is generally toughness, because hardness is Hv = 200 or less, applications (e.g., mechanical parts such as gears and shafts), which hardness is required not suitable for.

【0008】したがって、用途に応じてAlを含むフェライト合金の種類は選択される。 Accordingly, the type of ferrite alloy containing Al according to the application is selected. Hv=300以上の硬度が要求される用途にはFe−Cr−Ni−Al系合金が適し、特に、その組成がCr:20〜35重量%:N For applications Hv = 300 or higher hardness is required suitable Fe-Cr-Ni-Al alloys, in particular, the composition is Cr: 20 to 35 wt%: N
i:2〜25重量%、Al:2〜8重量%、Ti:0. i: 2 to 25 wt%, Al: 2 to 8 wt%, Ti: 0.
5重量%以下、Zr、Y、Hf、Ce、La、NdおよびGdのうちのいずれか1種又は2種以上:0.05〜 5 wt% or less, Zr, Y, Hf, Ce, La, Nd and Gd any one or more of: 0.05
1.0重量%、Fe:残部からなるFe−Cr−Ni− 1.0 wt%, Fe: the balance Fe-Cr-Ni-
Al系フェライト合金が最適である。 Al ferrite alloy is optimal. 刃物、あるいは、 Cutlery or,
ギア、シャフトなどの耐磨耗性を必要とする機械部品用として適した焼結品が得やすい Gear, sinter is easy to obtain suitable as machinery parts requiring wear resistance, such as a shaft.

【0009】以下、この発明を、より具体的に説明する。 [0009] Hereinafter, this invention will be described more specifically. まず、例えば、Cr:20〜35重量%:Ni:2 First, for example, Cr: 20 to 35 wt%: Ni: 2
〜25重量%、Al:2〜8重量%、Ti:0.5重量%以下、Zr、Y、Hf、Ce、La、NdおよびGd 25 wt%, Al: 2 to 8 wt%, Ti: 0.5 wt% or less, Zr, Y, Hf, Ce, La, Nd and Gd
のうちのいずれか1種又は2種以上:0.05〜1.0 Any one or more of: 0.05 to 1.0
重量%、残部が実質的にFeという配合割合で全成分を溶解し、例えば、アトマイズ法により微粉化したり、機械的粉砕法で合金を微粉化したりすることで、Alを含むフェライト合金粉末を得る。 Wt%, the balance to dissolve all components at the mixing ratio of substantially Fe, for example, or pulverized by an atomizing method, by or finely divided alloy by mechanical grinding method to obtain a ferrite alloy powder containing Al .

【0010】このようにして得たAlを含むフェライト合金粉末を有機のバインダーと混合し、射出成形あるいは直圧成形などの方法で金型によって所定形状に成型(賦形)して成形体とする。 [0010] In this manner by mixing ferrite alloy powder with an organic binder containing Al was obtained, and a predetermined shape for molding (shaping) to the molded body by the mold in a manner such as injection molding or linear molding . この成形体は用途に応じた製品、部品の形状に賦形された物であり、次工程で研削の如き加工が施されるインゴットの如き母材とは異なるものである。 The molded body has been being shaped into products, parts having a shape depending on the application, and is different from such base material ingot grinding, such as processing in the next step is performed. 有機のバインダーの一例を示しておくと、 If you leave shows an example of an organic binder,
ポリビニルアルコール(PVA)、エチレングリコール等の有機化合物が挙げられる。 Polyvinyl alcohol (PVA), organic compounds such as ethylene glycol.

【0011】成型時の圧力は、この発明の場合、400 [0011] The pressure at the time of molding, in a case of this invention, 400
MPa程度の低い圧力の適用もあり、通常、400〜1 There is also the application of the low of about MPa pressure, usually, 400-1
000MPa程度、あるいは、450〜600MPa程度の範囲から選ばれる。 About 000MPa, or selected from the range of about 450~600MPa. ただ、成型時の圧力が400M However, the pressure at the time of molding 400M
Pa未満だと寸法精度等が出難い等の傾向がみられる。 Dimensional accuracy, etc. If it is less than Pa is a tendency such as hard out.
つぎに、この成形体を、非酸化性雰囲気において熱処理することにより焼結させる。 Next, the molded body, is sintered by heat treatment in a non-oxidizing atmosphere. 熱処理は、1250〜14 Heat treatment, 1250-14
00℃(好ましくは1300〜1400℃)で行う。 00 carried out in the ℃ (preferably 1300~1400 ℃). この熱処理温度範囲であれば、液相を生じることなく十分な硬度(Hv=300程度)や抗張力100kg/mm If the heat treatment temperature range, sufficient hardness (Hv = about 300) without causing the liquid phase and tensile strength 100 kg / mm
以上とすることができ、機構部品としても十分な強度の母材たりえるものが得られる。 It can be at least, is obtained which can be the base material of sufficient strength as the mechanical components.

【0012】非酸化性雰囲気で熱処理を行う理由は、酸化が生じると焼結が進まず合金としての靱性を確保することができないからである。 [0012] The reason for performing a heat treatment in a non-oxidizing atmosphere, it is not possible to ensure the toughness of the alloy does not advance the sintering and oxidation occur. 不活性ガス雰囲気の場合、 For inert gas atmosphere,
例えば、アルゴン、ヘリウムなどの不活性ガスが用いられる。 For example, argon, an inert gas such as helium is used. 還元性ガス雰囲気の場合、例えば、水素ガスなどが用いられる。 For reducing gas atmosphere, such as hydrogen gas is used. このようにして得られた焼結体は、母材がセラミックとは異なり、フェライト合金粉末の焼結体であるから、アルミナ析出前では、割れや欠けを生ずることなく、研削、研磨などの機械加工あるいは放電加工が容易に出来るという利点がある。 The sintered body thus obtained is different from the base material is a ceramic, since a sintered body of ferrite alloy powder before alumina precipitation, without causing cracking or chipping, grinding, such grinding machines there is an advantage that processing or electrical discharge machining is easily possible. したがって、要すればアルミナ析出前に機械加工や放電加工を施すことができる。 Therefore, it can be subjected to machining or electric discharge machining before alumina precipitation, if necessary.

【0013】従来のセラミック材料の場合、焼結に伴う20%前後の収縮のため、寸法精度が出難くいのであるが、加工は困難であるため、後加工で寸法精度を上げることが難しい。 [0013] When a conventional ceramic material, for around 20% due to the sintering shrinkage, although Ino difficult out dimensional accuracy, because the processing is difficult, it is difficult to improve the dimensional accuracy in post-processing. 超硬材料の場合も、切削、研削などの後加工が容易ではなく、やはり寸法精度が出難い。 In the case of superhard material, cutting, machining is not easy after such grinding, also hardly out dimensional accuracy. いずれの場合も、精度を要求されるところに用いるには適していないのである。 In either case, it is not well suited for use where the required precision.

【0014】しかし、この発明の場合、上のように、アルミナ析出前では、割れや欠けを生ずることなく、研削、研磨などの機械加工あるいは放電加工で寸法精度を上げることができる。 [0014] However, in this invention, as above, before alumina precipitation, without causing cracking or chipping, grinding, it is possible to improve the dimensional accuracy in machining or electrical discharge machining, such as polishing. そのため、この発明は、寸法精度を要求されるところにも十分に適用できる。 Therefore, this invention can be sufficiently applied to where it is required dimensional accuracy. 次に、この焼結体を、例えば、大気又は酸素ガス等の酸化性ガス雰囲気中において、例えば、1000℃を超す温度で熱処理を行い、表面にアルミナ(酸化アルミニウム)成分を析出させる。 Next, the sintered body, for example, in an oxidizing gas atmosphere such as air or oxygen gas, for example, heat treatment is performed at a temperature in excess of 1000 ° C., to precipitate alumina (aluminum oxide) component to the surface. この熱処理で、例えば、アルミナを主成分とする表面層(アルミナ皮膜)付のFe−Cr−Ni− In this heat treatment, for example, a surface layer mainly composed of alumina (alumina film) with a Fe-Cr-Ni-
Al合金系焼結品が出来上がる。 Al alloy-based sintered product is completed.

【0015】ここで、焼結体を構成する合金の表面に析出される成分をアルミナに限定するのは、酸化性ガス雰囲気中で熱処理すると、容易にAl元素が酸化され硬度の高いアルミナからなるセラミックを生成することができるからである。 [0015] Here, the components to be deposited on the surface of the alloy constituting the sintered body is limited to alumina, when heat-treated in an oxidizing gas atmosphere, easily Al element is made of a highly oxidized hardness alumina This is because it is possible to produce a ceramic. このようにして得られた合金系焼結体は、アルミナを主成分とする表面層を有するため表面硬度は大きくなり、かつ焼結体の内部を充たす母材が合金であるため靱性に優れる。 Alloy based sintered body thus obtained, the surface hardness to have a surface layer containing alumina as a main component increases, and the base material satisfying the interior of the sintered body is excellent in toughness for an alloy. その上、金属表面にスパッタ法やCVD法などによりセラミックの皮膜を形成した場合には、皮膜と金属の母材とに境界面が形成されるので皮膜と母材との密着強度が小さく、更に皮膜層の膜厚が制限されるため充分な耐磨耗性が得られないのに対し、 Moreover, in the case of forming a ceramic coating by a sputtering method or a CVD method on the metal surface, the adhesion strength between the coating and the base metal because the boundary surface to the base material of the film and the metal is formed is small, further while not obtained sufficient abrasion resistance since the film thickness of the coating layer is restricted,
この発明によるアルミナを主成分とする表面層は母材中にアルミナの根が張っているため母材との密着強度が大きく、しかも、この表面層の厚さは10〜50μmに高めることも出来る。 Surface layer containing alumina as a main component according to the invention the adhesion strength between the base material for the roots of the alumina is stretched in the base material is large and the thickness of the surface layer can be enhanced in 10~50μm . さらには、成型、焼結の工程により目的とする形状に賦形し、効率の悪い切削などの加工を要さずに製造することが可能であり、この場合には、工業的生産に要求される経済性、大量生産効果も顕著であると言える。 Furthermore, molding, by sintering process was shaped into an intended shape, it is possible to produce without the need for machining such as inefficient cutting, in this case, it is required for industrial production that economy, it can be said that the mass production effect is remarkable. つまり、量産適性があるのである。 That is, there is mass production suitability.

【0016】この発明の方法が適用できる物品としては、以下のようなものが挙げられる。 [0016] As the article can be applied a method of the present invention, include the following. 〔家庭用に使われる刃物〕電気カミソリの刃、バリカン(特に小石などの噛み込みの可能性のあるペット用バリカンや庭園用の庭木バリカン)の刃、草刈機や料理用ミキサー、カッターなどの刃、小刀、ハサミ、日曜大工用ノコギリ刃など。 Blade of an electric razor [cutlery used for home], clipper blade (especially garden clippers of the bite of the potential for the pet clippers and garden, such as a pebble), mowing machines and cooking mixer, blade of a cutter , knife, scissors, such as do-it-yourself for the saw-blade.

【0017】〔業務用に使われる刃物〕各種帯ノコ刃、 [0017] [cutlery is used for business] various band saw blade,
回転刃、バイト、ダイスなどの工具類、混練機のスクリューなど。 Rotary blade, bytes, tools such as a die, such as kneaders screw. 〔耐磨耗性部品〕電動ドリルの刃、ドリルチャック部品、ギア、回転軸、軸受けなど。 [Abrasion resistance component] blade of the electric drill, drill chuck parts, gears, rotating shafts, bearings, etc..

【0018】 [0018]

【作用】この発明の製法で得られた合金系焼結体においては、表面層を形成するアルミナ成分が内部を充たす合金の中に根を張って形成されるため表面層と合金との密着力を大きくする作用をし、表面にアルミナが析出することは表面硬度を高くする作用をし、また焼結体の内部を充たす合金は焼結体の靱性を高くする作用をする。 [Action] In the alloy system sintered body obtained in fabrication of the invention, the adhesion strength between the surface layer and the alloy for alumina component to form a surface layer is formed rooted in the alloy satisfying the internal was the effect of increasing, the effect of increasing the surface hardness of alumina is deposited on the surface and an alloy satisfying the interior of the sintered body will act to increase the toughness of the sintered body.

【0019】そして、目的とする形状に成型、焼結工程によることは、工業的生産に要求される経済性、大量生産性を向上させるため、量産適性が出てくる。 [0019] and, molded into a shape for the purpose, be due to the sintering process, economic efficiency that is required for industrial production, in order to improve the mass production, mass production suitability come out. また、焼結後であってアルミナ析出前の合金焼結体には、欠けや割れなどを生じずに所定形状に正確に見合うように加工が施せるため、寸法精度の向上を図ることができるため、精度を要求される場合にも適用可能である。 Also, there are alumina precipitation previous alloy sintered body after sintering, because amenable machining to meet exactly in a predetermined shape without causing such chipping or cracks, since it is possible to improve the dimensional accuracy is also applicable to a case where the required accuracy.

【0020】 [0020]

【実施例】以下、この発明の実施例を説明する。 EXAMPLES Hereinafter, an embodiment of the present invention. この発明は、下記の実施例に限らない。 This invention is not limited to the following examples. −実施例1− Cr:24重量%、Ni:4重量%、Al:3.5重量%、Zr:0.05重量%、残部:Feの組成の合金を高周波溶解炉で溶解した。 - Example 1-Cr: 24 wt%, Ni: 4% by weight, Al: 3.5 wt%, Zr: 0.05 wt%, the balance: and the alloy having a composition of Fe was melted in a high-frequency melting furnace. 出来たインゴットを1〜2m 1~2m the can was ingot
mの厚みに圧延し、得られた板を2〜3mm角のチップ状に切断した後、粉砕し50メッシュ以下のフェライト合金粉末にした。 It rolled to a thickness of m, after cutting the obtained plate into chips of 2~3mm angle, and the following ferritic alloy powder pulverized 50 mesh.

【0021】この粉末にバインダーとしてPVAを混合しスラリー状にした後、周りに突条を平行に並べたギアを成型するキャビティにこれを充填し直圧成型で焼結前のギアを成型した。 [0021] The powder was slurried mixture of PVA as a binder was molded before sintering gear straight molding was filled into the cavity for molding the parallel aligned gear with protrusions around. 成形体であるこの生のギアをアルゴンガス雰囲気中で1250℃、5時間の焼結をし、焼結体を得た。 A molded body of this raw gear 1250 ° C. in an argon gas atmosphere, and sintered for 5 hours to obtain a sintered body. 次に大気中で1150℃、10時間の加熱をして、表面にアルミナを析出させた結果、表面が灰色をした目的物であるギアを得た。 Then 1150 ° C. in air, and heating for 10 hours, as a result of precipitated alumina on the surface, to obtain surface-gear is a target product was gray.

【0022】表1に、このアルミナを析出させた焼結体の表面硬度および内部の合金の硬度(母材硬度として示す)並びに表面のアルミナ成分の含有率を示す。 [0022] Table 1 shows the content of the alumina component of the alumina (shown as a base material hardness) The surface hardness and internal alloy of hardness of the sintered body was precipitated and surface. なお、 It should be noted that,
電子顕微鏡で表面層の断面を観察したところ、アルミナは表面から内部に進行するにしたがって針条の突起が内部の合金に突き刺さったような状態であることを確認した。 Observation of the cross-section of the surface layer with an electron microscope, alumina protrusion of the needle strip according proceeds from the surface to the inside, it was confirmed that the state as pierced in the interior of the alloy.

【0023】−実施例2− Cr:30重量%、Ni:21重量%、Al:6重量%、Ti:0.5重量%、Zr:0.2重量%、残部: [0023] - Example 2-Cr: 30 wt%, Ni: 21 wt%, Al: 6 wt%, Ti: 0.5 wt%, Zr: 0.2 wt%, the balance:
Feの組成の合金を高周波溶解炉で溶解し、出来たインゴットをアトマイズ法によりフェライト合金粉末にした後、実施例1と同じ方法で成型、焼結、熱処理を行った。 The alloy composition of Fe was melted in a high-frequency melting furnace, after the ferritic alloy powder by a possible ingot atomizing method, molded in the same manner as in Example 1, sintering, heat treatment was performed.

【0024】表1に得られた焼結体の表面硬度および合金の硬度(母材硬度として示す)並びに表面のアルミナ成分の含有率を示す。 [0024] (shown as a base material hardness) The surface hardness and alloy hardness of the sintered bodies obtained in Table 1 as well as the content of the alumina component of the surface. なお、電子顕微鏡で表面層の断面を観察したところ、アルミナは表面から内部に進行するにしたがって針状の突起が内部の合金に突き刺さったような状態であることを確認した。 Incidentally, observation of the cross-section of the surface layer with an electron microscope, alumina acicular projections according proceeds from the surface to the inside, it was confirmed that the state as pierced in the interior of the alloy. −実施例3− Cr:26重量%、Ni:21重量%、Al:6.5重量%、Zr:0.2重量%、残部:Feの組成の合金を高周波溶解炉で溶解し、出来たインゴットをアトマイズ法によりフェライト合金粉末にした後、実施例1と同じ方法で焼結前のギアを成型した。 - Example 3- Cr: 26 wt%, Ni: 21 wt%, Al: 6.5 wt%, Zr: 0.2 wt%, the balance of the alloy composition of Fe was melted in a high-frequency melting furnace, can have after the ferritic alloy powder by ingot atomizing method, it was molded before sintering of the gear in the same manner as in example 1. 成形体であるこの生のギアを水素ガス雰囲気中で1350℃、5時間の焼結をし、焼結体を得た。 1350 ° C. is a molded body of this raw gear in a hydrogen gas atmosphere, and sintered for 5 hours to obtain a sintered body. 次に大気中で1150℃、10時間の加熱をして、表面にアルミナを析出させた結果、表面が灰色をした目的物であるギアを得た。 Then 1150 ° C. in air, and heating for 10 hours, as a result of precipitated alumina on the surface, to obtain surface-gear is a target product was gray.

【0025】表1に、このアルミナを析出させた焼結体の表面硬度および内部の合金の硬度(母材硬度として示す)並びに表面のアルミナ成分の含有率を示す。 [0025] Table 1 shows the content of the alumina component of the alumina (shown as a base material hardness) The surface hardness and internal alloy of hardness of the sintered body was precipitated and surface. なお、 It should be noted that,
電子顕微鏡で表面層の断面を観察したところ、アルミナは表面から内部に進行するにしたがって針条の突起が内部の合金に突き刺さったような状態であることを確認した。 Observation of the cross-section of the surface layer with an electron microscope, alumina protrusion of the needle strip according proceeds from the surface to the inside, it was confirmed that the state as pierced in the interior of the alloy.

【0026】−参考例1、2− 超硬金属材料であるSKH5とセラミック材料であるアルミナについての硬度(この場合は表面硬度と母材硬度は等しい)を表1にそれぞれ参考例1、2として併記する。 [0026] - the hardness of alumina is SKH5 the ceramic material is a reference example 1,2 hard metal material (the surface hardness and the base metal hardness if equal) respectively as Reference Examples 1 and 2 in Table 1 It is also shown.

【0027】 [0027]

【表1】 [Table 1]

【0028】−実施例4− Cr:32重量%、Ni:21重量%、Al:6.5重量%、Zr:0.8重量%、残部:Feという割合で溶解し、アトマイズ法により微粉化しFe−Cr−Ni− [0028] - Example 4-Cr: 32 wt%, Ni: 21 wt%, Al: 6.5 wt%, Zr: 0.8 wt%, the balance: was dissolved in a proportion of Fe, micronized by an atomizing method Fe-Cr-Ni-
Al系フェライト合金粉末を得た。 To obtain an Al-based ferrite alloy powder. このようにして得た合金粉末とバインダー用のPVAとを混ぜ合わせ、45 Thus it was combined and PVA for the alloy powder and the binder was obtained, 45
0MPaの圧力で成型した。 It was molded at a pressure of 0MPa. ついで、成形体を真空中において、1350℃、3時間の熱処理をすることにより焼結させた後、研削加工し所定の形状に正確に合わせた。 Next, in a vacuum moldings, 1350 ° C., after sintered by a heat treatment for three hours to meet exact grinding a predetermined shape. 次に、大気中において、1150℃、20時間の熱処理および1250℃、30分の熱処理を施しアルミナ皮膜の形成を行い、空冷してFe−Cr−Ni−Al系焼結品(合金系焼結体)を得た。 Then, in the air, 1150 ° C., 20 hours of heat treatment and 1250 ° C., subjected to formation of the alumina film heat-treated at 30 minutes, cooled to Fe-Cr-Ni-Al-based sinter (alloy based sintered body) was obtained.

【0029】−実施例5− 成形圧力が600MPaである他は、実施例4と同様にして、Fe−Cr−Ni−Al系焼結品を得た。 [0029] - Example 5 molding pressure other is 600MPa, the same procedure as in Example 4 to obtain a Fe-Cr-Ni-Al-based sintered article. −実施例6− Cr:24重量%、Ni:4重量%、Al:3.5重量%、Zr:0.05重量%、残部が実質的にFeという割合で高周波溶解炉で溶解するようにして、合金インゴットを得た。 - Example 6- Cr: 24 wt%, Ni: 4% by weight, Al: 3.5 wt%, Zr: 0.05 wt%, the balance to be melted in a high-frequency melting furnace at a rate of substantially Fe Te, to obtain an alloy ingot. このインゴットを1〜2mmの厚みまで圧延し、この板を2〜3mm角のチップ状に細断した後、 After the ingot was rolled to a thickness of 1 to 2 mm, it chopped the plate into chips of 2~3mm angle,
機械的に粉砕し、50メッシュ以下のFe−Cr−Ni Mechanically grinding, 50 mesh or less of Fe-Cr-Ni
−Al系フェライト合金粉末を得た。 It was obtained -Al ferrite alloy powder.

【0030】このようにして得た合金粉末とバインダー用のPVAとを混ぜ合わせ、1000MPaの範囲の適当な圧力で成形した。 [0030] In this manner were combined and PVA for the alloy powder and the binder obtained was molded at a suitable pressure in the range of 1000 MPa. ついで、成形体をアルゴンガス雰囲気において、1300℃、5時間の熱処理をすることにより焼結させた後、研削加工し所定の形状に正確に合わせた。 Then, the molded body in an argon gas atmosphere, 1300 ° C., after sintered by a heat treatment of 5 hours, to meet exact grinding a predetermined shape. 次に、大気中において、1150℃、20時間の熱処理および1250℃、30分の熱処理を施しアルミナ皮膜の形成を行い、空冷してFe−Cr−Ni−A Then, in the air, 1150 ° C., 20 hours of heat treatment and 1250 ° C., subjected to formation of the alumina film heat-treated at 30 minutes, cooled to Fe-Cr-Ni-A
l系焼結品を得た。 To give the l-based sintered product.

【0031】−実施例7− Cr:35重量%、Ni:21重量%、Al:7重量%、Zr:0.4重量%、残部が実質的にFeという割合で高周波溶解炉で溶解し、アトマイズ法により微粉化しFe−Cr−Ni−Al系フェライト合金粉末を得た。 [0031] - Example 7- Cr: 35 wt%, Ni: 21 wt%, Al: 7 wt%, Zr: 0.4 wt%, the balance being dissolved in a high-frequency melting furnace at a rate of substantially Fe, micronized to obtain a Fe-Cr-Ni-Al ferrite alloy powder by an atomizing method. このようにして得た合金粉末とバインダー用のPV PV of this manner alloy powder and a binder obtained by
Aとを混ぜ合わせ、700MPaの範囲の適当な圧力で成形した。 It was combined and A, and molded with a suitable pressure in the range of 700 MPa. ついで、成形体を真空中において、1350 Next, in a vacuum moldings, 1350
℃、4時間の熱処理をすることにより焼結させた後、研削加工し所定の形状に合わせた。 ° C., after sintered by a heat treatment for 4 hours, tailored to grinding to a predetermined shape. 次に、大気中において、1150℃、20時間の熱処理および1250℃、 Then, in the air, 1150 ° C., for 20 hours heat treatment and 1250 ° C.,
30分の熱処理を施しアルミナ皮膜の形成を行い、空冷してFe−Cr−Ni−Al系焼結品を得た。 Perform formation of the alumina film heat-treated at 30 minutes to obtain a Fe-Cr-Ni-Al-based sintered article was cooled.

【0032】−実施例8− 成形圧力が900MPaであり、焼結のための熱処理温度が1300℃である他は、実施例7と同様にして、F [0032] - Example 8 molding pressure is 900 MPa, another heat treatment temperature for sintering is 1300 ° C., the same procedure as in Example 7, F
e−Cr−Ni−Al系焼結品を得た。 To give the e-Cr-Ni-Al-based sintered product. −実施例9− 実施例4で使用した合金粉末を分級し、30μm以下とした合金粉末と、約10重量%のパラフィンワックス、 - the alloy powder used in Example 9 Example 4 was classified, and the alloy powder was 30μm or less, about 10 wt% of paraffin wax,
ステアリン酸を主成分としたバインダーとを混練し、1 Kneading a stearic acid as a main component was a binder, 1
50℃で所定の形状に射出成形した。 Were injection molded into a predetermined shape at 50 ° C.. 得られた成形体を、真空中、400℃で50時間保持して脱脂した。 The obtained molded body in a vacuum, was degreased and held for 50 hours at 400 ° C.. 脱脂した成形体を、真空中、1350℃に3時間保持して焼結させた後、炉中に酸素ガスを送給て、1250℃で30分保持して、表面にアルミナ皮膜を析出させ、Fe The degreased molded body in a vacuum, after sintering was 3 hours to 1350 ° C., the oxygen gas into the furnace Te feeding, and held for 30 minutes at 1250 ° C., to precipitate the alumina film on the surface, Fe
−Cr−Ni−Al系焼結品を得た。 It was obtained -Cr-Ni-Al-based sintered product.

【0033】−実施例10− 実施例9と同様にして得た射出成形体を、アルゴンガス雰囲気中、500℃で50時間保持して脱脂した。 [0033] - an injection molded article obtained in the same manner as in Example 10 Example 9, in an argon gas atmosphere, was degreased by holding at 500 ° C. 50 hours. 脱脂した成形体を、アルゴンガス雰囲気中、1350℃に3 The degreased molded body, in an argon gas atmosphere, to 1350 ° C. 3
時間保持して焼結させた後、炉内ガスを酸素ガスに置換し、1250℃で30分保持して、表面にアルミナ皮膜を析出させ、Fe−Cr−Ni−Al系焼結品を得た。 After sintering and timekeeping, replacing the in-furnace gas to oxygen gas, and held for 30 minutes at 1250 ° C., to precipitate the alumina film on the surface, to obtain a Fe-Cr-Ni-Al-based sinter It was.

【0034】−実施例11− 実施例7で使用した合金粉末を分級し、30μm以下とした合金粉末を用いた他は、実施例9と同様にして、F [0034] - classifying the alloy powder used in Example 11 Example 7, except for using the alloy powder was 30μm or less, in the same manner as in Example 9, F
e−Cr−Ni−Al系焼結品を得た。 To give the e-Cr-Ni-Al-based sintered product. 実施例4〜11 Example 4-11
の焼結品のアルミナ皮膜状態、母材硬度および寸法精度を調べた。 Sinter the alumina coating state of examined the preform hardness and dimensional accuracy. 調べた結果を、表2に示す。 The result of examination is shown in Table 2. 表2において、 In Table 2,
寸法精度のデータ欄の○は5%未満の寸法誤差に収まっていることを示す。 ○ data column of dimensional accuracy indicating that falls dimensional error of less than 5%.

【0035】 [0035]

【表2】 [Table 2]

【0036】表2の結果から、実施例4〜11の焼結品は、寸法精度がよくて表面硬度が大きく、丈夫であることがよく分かる。 [0036] From the results in Table 2, the sintered products of Examples 4 to 11, a large surface hardness good dimensional accuracy, well understood to be durable. なお、図1は実施例4のアルミナ皮膜付Fe−Cr−Ni−Al系焼結品の表面付近の金属組織をあらわす光学顕微鏡写真(倍率700倍)である。 Incidentally, FIG. 1 is an optical micrograph representing a metallic structure near the surface of the Example 4 of the alumina film with Fe-Cr-Ni-Al-based sinter (magnification 700 times).
図1の写真では、略下半を占める黒の斑点のある白地部分が母材であり、その上方の黒地の層がアルミナ皮膜であり、さらにその上方の黒地層は保護Ni膜である。 In the photograph of FIG. 1, the white portion of the black spots occupy substantially lower half is the base material, a layer alumina coating black thereabove, further black layers thereabove is a protective Ni film. 図2は実施例4のアルミナ皮膜付Fe−Cr−Ni−Al With alumina coating of Figure 2 Example 4 Fe-Cr-Ni-Al
系焼結品の内部の金属組織をあらわす光学顕微鏡写真(倍率700倍)である。 It is an optical micrograph (magnification 700 times) representing the internal metal structure of the system sinter. 図3は、実施例4の焼結品の表面付近の金属組織の大略を模式的にあらわしたものである。 Figure 3 is a generally metal structure near the surface of the sintered article of Example 4 that represents schematically. そして、図1、2の母材部分では、図2にみるように、黒色部は空洞、灰色部はNiAl相、白色部はフェライト相である。 Then, the base material portion of FIGS. 1 and 2, as seen in FIG. 2, the black portion is hollow, gray section NiAl phase, white portion is ferrite phase. また、図3は、母材3の表面にアルミナ皮膜2が形成され、アルミナ皮膜2の上には保護N Further, FIG. 3, the alumina film 2 is formed on the surface of the base 3, on the alumina film 2 is protected N
i膜3のある構成を図示するものである。 It is intended to illustrate the construction with i film 3.

【0037】また、実施例4において、焼結のための処理温度を1200℃とした場合は、母材硬度が十分なものになり難い傾向がみられた。 Further, in Example 4, the case where the treatment temperature for sintering and 1200 ° C., hardly becomes a thing matrix hardness sufficient tended. そして、実施例6において、成形圧力を350MPaとした他は全く同様にしてFe−Cr−Ni−Al系焼結品を得たが、寸法精度(誤差が5%を越える)、母材硬度およびアルミナ皮膜状態は、いずれも実施例6よりもかなり劣る傾向がみられた。 Then, in Example 6, but except that the molding pressure was 350MPa was obtained exactly the same way Fe-Cr-Ni-Al-based sintered article, the dimensional accuracy (error exceeds 5%), base metal hardness and alumina coating conditions are all considerably less tendency than example 6 was observed.

【0038】 [0038]

【発明の効果】以上に述べたように、この発明は、表面の硬度が高く、かつ欠けや割れが生じにくい耐磨耗性に優れる有用な合金系焼結体を得ることができ、しかも、 As described above, according to the present invention, the invention can be the hardness of the surface is high and obtain useful alloy based sintered body chipping or cracking excellent hard abrasion resistance resulting, moreover,
量産適性があるため、非常に有用である。 Because there is a mass production suitability, it is very useful. 特に、前記の In particular, of the
ような特定の組成のAlを含むフェライト合金粉末を用い、前記した特定の温度条件で焼結させることにより Using ferritic alloy powder containing Al of specific composition as, by sintering at a specific temperature conditions mentioned above,
機構部品などのように表面硬度と母材硬度が共に必要な用途に適する合金系焼結体が確実に得られるという利点がある。 There is an advantage that an alloy based sintered body surface hardness and the base metal hardness, such as mechanical parts are suitable for both applications requiring can be surely obtained.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】実施例4の焼結品の表面付近の金属組織をあらわす光学顕微鏡写真(倍率700倍)である。 1 is an optical micrograph representing a metallic structure near the surface of the sintered article of Example 4 (magnification 700 times).

【図2】実施例4の焼結品の内部の金属組織をあらわす光学顕微鏡写真(倍率700倍)である。 2 is an optical micrograph representing the internal metal structure of the sintered product of Example 4 (magnification 700 times).

【図3】実施例4の焼結品の表面付近の金属組織の概略をあらわす説明図である。 3 is an explanatory diagram showing an outline of a metal structure in the vicinity of the surface of the sintered article of Example 4.

【符号の説明】 DESCRIPTION OF SYMBOLS

1 保護Ni膜 2 アルミナ皮膜 3 母材 1 protective Ni film 2 alumina coating 3 matrix

フロントページの続き (72)発明者 濱田 糾 大阪府門真市大字門真1048番地松下電工 株式会社内 (72)発明者 児島 肇 大阪府門真市大字門真1048番地松下電工 株式会社内 (72)発明者 棚橋 正雄 大阪府門真市大字門真1048番地松下電工 株式会社内 (56)参考文献 特開 昭50−17307(JP,A) 特開 平2−270904(JP,A) Of the front page Continued (72) inventor Hamada 糾 Osaka Prefecture Kadoma Oaza Kadoma 1048 address Matsushita Electric Works Co., Ltd. in the (72) inventor Hajime Kojima Osaka Prefecture Kadoma Oaza Kadoma 1048 address Matsushita Electric Works Co., Ltd. in the (72) inventor Tanahashi Masao Osaka Prefecture Kadoma Oaza Kadoma 1048 address Matsushita Electric Works Co., Ltd. in the (56) reference Patent Sho 50-17307 (JP, a) JP flat 2-270904 (JP, a)

Claims (5)

    (57)【特許請求の範囲】 (57) [the claims]
  1. 【請求項1】 Cr:20〜35重量% Ni:2〜2 1. A Cr: 20 to 35 wt%, Ni: 2 to 2
    5重量%、Al:2〜8重量%、Ti:0.5重量%以下、Zr、Y、Hf、Ce、La、NdおよびGdのうちのいずれか1種又は2種以上:0.05〜1.0重量%、Fe:残部からなるフェライト合金粉末を所定の形状に成型した成形体を非酸化性雰囲気中で1250〜1 5 wt%, Al: 2 to 8 wt%, Ti: 0.5 wt% or less, Zr, Y, Hf, Ce, La, any of the Nd and Gd 1 or two or more: 0.05 1.0 wt%, Fe: the molded body molded ferrite alloy powder consisting of the remainder into a predetermined shape in a non-oxidizing atmosphere 1250-1
    400℃の温度で加熱することにより焼結し、酸化性ガス雰囲気中で熱処理することにより表面にアルミナ成分を析出させることを特徴とする合金系焼結体の製法。 Sintered by heating at a temperature of 400 ° C., preparation of an alloy based sintered body, characterized in that to precipitate the alumina component to the surface by heat treatment in an oxidizing gas atmosphere.
  2. 【請求項2】 Cr:20〜35重量%、Ni:2〜2 Wherein Cr: 20 to 35 wt%, Ni: 2 to 2
    5重量%、Al:2〜8重量%、Zr、Y、Hf、C 5 wt%, Al: 2 to 8 wt%, Zr, Y, Hf, C
    e、La、NdおよびGdのうちのいずれか1種又は2 e, La, any one of Nd and Gd or 2
    種以上:0.05〜1.0重量%、Fe:残部からなる Seed or 0.05 to 1.0 wt%, Fe: the balance
    フェライト合金粉末を所定の形状に成型した成形体を非 Molded body molded ferrite alloy powder into a predetermined shape non
    酸化性雰囲気中で1250〜1400℃の温度で加熱す It is heated at a temperature of 1,250 to 1400 ° C. in an oxidizing atmosphere
    ることにより焼結し、酸化性ガス雰囲気中で熱処理する Sintered by Rukoto, a heat treatment in an oxidizing gas atmosphere
    ことにより表面にアルミナ成分を析出させることを特徴 Characterized by precipitating the alumina component to the surface by
    とする合金系焼結体の製法。 Preparation of the alloy-based sintered body to be.
  3. 【請求項3】 非酸化性雰囲気が不活性ガス雰囲気である請求項1 または2に記載の合金系焼結体の製法。 3. A method of alloy-based sintered body according to a non-oxidizing atmosphere according to claim 1 or 2 is an inert gas atmosphere.
  4. 【請求項4】 非酸化性雰囲気が還元性ガス雰囲気である請求項1 または2に記載の合金系焼結体の製法。 4. The method of alloy-based sintered body according to claim 1 or 2 non-oxidizing atmosphere is a reducing gas atmosphere.
  5. 【請求項5】 非酸化性雰囲気が真空雰囲気である請求項1 または2に記載の合金系焼結体の製法。 5. The method of alloy-based sintered body according to claim 1 or 2 non-oxidizing atmosphere is a vacuum atmosphere.
JP17622191A 1990-07-31 1991-06-19 Preparation of the alloy-based sintered body Expired - Fee Related JP2806511B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP20357890 1990-07-31
JP41430590 1990-12-25
JP2-414305 1990-12-25
JP2-203578 1990-12-25
JP17622191A JP2806511B2 (en) 1990-07-31 1991-06-19 Preparation of the alloy-based sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17622191A JP2806511B2 (en) 1990-07-31 1991-06-19 Preparation of the alloy-based sintered body

Publications (2)

Publication Number Publication Date
JPH055106A true JPH055106A (en) 1993-01-14
JP2806511B2 true JP2806511B2 (en) 1998-09-30

Family

ID=27324221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17622191A Expired - Fee Related JP2806511B2 (en) 1990-07-31 1991-06-19 Preparation of the alloy-based sintered body

Country Status (1)

Country Link
JP (1) JP2806511B2 (en)

Families Citing this family (239)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6193717B1 (en) 1997-10-16 2001-02-27 Asahi Kogaku Kogyo Kabushiki Kaisha Treating instrument for endoscope
US7101371B2 (en) 2001-04-06 2006-09-05 Dycus Sean T Vessel sealer and divider
US9848938B2 (en) 2003-11-13 2017-12-26 Covidien Ag Compressible jaw configuration with bipolar RF output electrodes for soft tissue fusion
JP4727575B2 (en) 2004-06-15 2011-07-20 オリンパス株式会社 Energy treatment tool
US7766910B2 (en) 2006-01-24 2010-08-03 Tyco Healthcare Group Lp Vessel sealer and divider for large tissue structures
US8298232B2 (en) 2006-01-24 2012-10-30 Tyco Healthcare Group Lp Endoscopic vessel sealer and divider for large tissue structures
US7776037B2 (en) 2006-07-07 2010-08-17 Covidien Ag System and method for controlling electrode gap during tissue sealing
US8211099B2 (en) 2007-01-31 2012-07-03 Tyco Healthcare Group Lp Thermal feedback systems and methods of using the same
US8215182B2 (en) 2007-04-26 2012-07-10 Tyco Healthcare Group Lp Apparatus and method for measuring pressure between jaw members
US9622813B2 (en) 2007-11-01 2017-04-18 Covidien Lp Method for volume determination and geometric reconstruction
US7713076B2 (en) 2007-11-27 2010-05-11 Vivant Medical, Inc. Floating connector for microwave surgical device
US8192444B2 (en) 2008-01-16 2012-06-05 Tyco Healthcare Group Lp Uterine sealer
US7642451B2 (en) 2008-01-23 2010-01-05 Vivant Medical, Inc. Thermally tuned coaxial cable for microwave antennas
US8945111B2 (en) 2008-01-23 2015-02-03 Covidien Lp Choked dielectric loaded tip dipole microwave antenna
US8353902B2 (en) 2008-01-31 2013-01-15 Vivant Medical, Inc. Articulating ablation device and method
JP5563485B2 (en) 2008-01-31 2014-07-30 コヴィディエン リミテッド パートナーシップ Polyp removal device and method of use
US8382792B2 (en) 2008-02-14 2013-02-26 Covidien Lp End effector assembly for electrosurgical device
US8623276B2 (en) 2008-02-15 2014-01-07 Covidien Lp Method and system for sterilizing an electrosurgical instrument
US9192427B2 (en) 2008-03-11 2015-11-24 Covidien Lp Bipolar cutting end effector
US9949794B2 (en) 2008-03-27 2018-04-24 Covidien Lp Microwave ablation devices including expandable antennas and methods of use
US9198723B2 (en) 2008-03-31 2015-12-01 Covidien Lp Re-hydration antenna for ablation
US8357158B2 (en) 2008-04-22 2013-01-22 Covidien Lp Jaw closure detection system
US9271796B2 (en) 2008-06-09 2016-03-01 Covidien Lp Ablation needle guide
US9603652B2 (en) 2008-08-21 2017-03-28 Covidien Lp Electrosurgical instrument including a sensor
US8211098B2 (en) 2008-08-25 2012-07-03 Vivant Medical, Inc. Microwave antenna assembly having a dielectric body portion with radial partitions of dielectric material
US8251987B2 (en) 2008-08-28 2012-08-28 Vivant Medical, Inc. Microwave antenna
US8394086B2 (en) 2008-09-03 2013-03-12 Vivant Medical, Inc. Microwave shielding apparatus
US20100069903A1 (en) 2008-09-18 2010-03-18 Tyco Healthcare Group Lp Vessel Sealing Instrument With Cutting Mechanism
US8512328B2 (en) 2008-10-13 2013-08-20 Covidien Lp Antenna assemblies for medical applications
US9375272B2 (en) 2008-10-13 2016-06-28 Covidien Lp Antenna assemblies for medical applications
US9113624B2 (en) 2008-10-15 2015-08-25 Covidien Lp System and method for perfusing biological organs
US8197479B2 (en) 2008-12-10 2012-06-12 Tyco Healthcare Group Lp Vessel sealer and divider
US8114122B2 (en) 2009-01-13 2012-02-14 Tyco Healthcare Group Lp Apparatus, system, and method for performing an electrosurgical procedure
US8632539B2 (en) 2009-01-14 2014-01-21 Covidien Lp Vessel sealer and divider
US8632564B2 (en) 2009-01-14 2014-01-21 Covidien Lp Apparatus, system, and method for performing an electrosurgical procedure
US8282634B2 (en) 2009-01-14 2012-10-09 Tyco Healthcare Group Lp Apparatus, system, and method for performing an electrosurgical procedure
US8202270B2 (en) 2009-02-20 2012-06-19 Vivant Medical, Inc. Leaky-wave antennas for medical applications
US8197473B2 (en) 2009-02-20 2012-06-12 Vivant Medical, Inc. Leaky-wave antennas for medical applications
US8118808B2 (en) 2009-03-10 2012-02-21 Vivant Medical, Inc. Cooled dielectrically buffered microwave dipole antenna
US8226650B2 (en) 2009-03-26 2012-07-24 Tyco Healthcare Group Lp Apparatus, system, and method for performing an endoscopic electrosurgical procedure
US9277969B2 (en) 2009-04-01 2016-03-08 Covidien Lp Microwave ablation system with user-controlled ablation size and method of use
US8251994B2 (en) 2009-04-07 2012-08-28 Tyco Healthcare Group Lp Vessel sealer and divider with blade deployment alarm
US8216227B2 (en) 2009-05-06 2012-07-10 Vivant Medical, Inc. Power-stage antenna integrated system with junction member
US8463396B2 (en) 2009-05-06 2013-06-11 Covidien LLP Power-stage antenna integrated system with high-strength shaft
US8246615B2 (en) 2009-05-19 2012-08-21 Vivant Medical, Inc. Tissue impedance measurement using a secondary frequency
US8292881B2 (en) 2009-05-27 2012-10-23 Vivant Medical, Inc. Narrow gauge high strength choked wet tip microwave ablation antenna
US8235981B2 (en) 2009-06-02 2012-08-07 Vivant Medical, Inc. Electrosurgical devices with directional radiation pattern
US8552915B2 (en) 2009-06-19 2013-10-08 Covidien Lp Microwave ablation antenna radiation detector
US8334812B2 (en) 2009-06-19 2012-12-18 Vivant Medical, Inc. Microwave ablation antenna radiation detector
US8246618B2 (en) 2009-07-08 2012-08-21 Tyco Healthcare Group Lp Electrosurgical jaws with offset knife
US8343150B2 (en) 2009-07-15 2013-01-01 Covidien Lp Mechanical cycling of seal pressure coupled with energy for tissue fusion
US7863984B1 (en) 2009-07-17 2011-01-04 Vivant Medical, Inc. High efficiency microwave amplifier
US8968358B2 (en) 2009-08-05 2015-03-03 Covidien Lp Blunt tissue dissection surgical instrument jaw designs
US8328799B2 (en) 2009-08-05 2012-12-11 Vivant Medical, Inc. Electrosurgical devices having dielectric loaded coaxial aperture with distally positioned resonant structure
US8679115B2 (en) 2009-08-19 2014-03-25 Covidien Lp Electrical cutting and vessel sealing jaw members
US8287536B2 (en) 2009-08-26 2012-10-16 Tyco Healthcare Group Lp Cutting assembly for surgical instruments
US8357159B2 (en) 2009-09-03 2013-01-22 Covidien Lp Open vessel sealing instrument with pivot assembly
US8568412B2 (en) 2009-09-09 2013-10-29 Covidien Lp Apparatus and method of controlling cutting blade travel through the use of etched features
US8162965B2 (en) 2009-09-09 2012-04-24 Tyco Healthcare Group Lp Low profile cutting assembly with a return spring
US8069553B2 (en) 2009-09-09 2011-12-06 Vivant Medical, Inc. Method for constructing a dipole antenna
US9375273B2 (en) 2009-09-18 2016-06-28 Covidien Lp System and method for checking high power microwave ablation system status on startup
US9095359B2 (en) 2009-09-18 2015-08-04 Covidien Lp Tissue ablation system with energy distribution
US8133254B2 (en) 2009-09-18 2012-03-13 Tyco Healthcare Group Lp In vivo attachable and detachable end effector assembly and laparoscopic surgical instrument and methods therefor
US8394087B2 (en) 2009-09-24 2013-03-12 Vivant Medical, Inc. Optical detection of interrupted fluid flow to ablation probe
US8112871B2 (en) 2009-09-28 2012-02-14 Tyco Healthcare Group Lp Method for manufacturing electrosurgical seal plates
US8282632B2 (en) 2009-09-28 2012-10-09 Vivant Medical, Inc. Feedpoint optimization for microwave ablation dipole antenna with integrated tip
US8266783B2 (en) 2009-09-28 2012-09-18 Tyco Healthcare Group Lp Method and system for manufacturing electrosurgical seal plates
US8906007B2 (en) 2009-09-28 2014-12-09 Covidien Lp Electrosurgical devices, directional reflector assemblies coupleable thereto, and electrosurgical systems including same
US8556889B2 (en) 2009-09-29 2013-10-15 Covidien Lp Flow rate monitor for fluid cooled microwave ablation probe
US9820806B2 (en) 2009-09-29 2017-11-21 Covidien Lp Switch assembly for electrosurgical instrument
US9113926B2 (en) 2009-09-29 2015-08-25 Covidien Lp Management of voltage standing wave ratio at skin surface during microwave ablation
US8323310B2 (en) 2009-09-29 2012-12-04 Covidien Lp Vessel sealing jaw with offset sealing surface
US8545493B2 (en) 2009-09-29 2013-10-01 Covidien Lp Flow rate monitor for fluid cooled microwave ablation probe
US8876814B2 (en) 2009-09-29 2014-11-04 Covidien Lp Fluid cooled choke dielectric and coaxial cable dielectric
US8512371B2 (en) 2009-10-06 2013-08-20 Covidien Lp Jaw, blade and gap manufacturing for surgical instruments with small jaws
US8292886B2 (en) 2009-10-06 2012-10-23 Tyco Healthcare Group Lp Apparatus, system, and method for performing an electrosurgical procedure
US8343151B2 (en) 2009-10-09 2013-01-01 Covidien Lp Vessel sealer and divider with captured cutting element
US8388647B2 (en) 2009-10-28 2013-03-05 Covidien Lp Apparatus for tissue sealing
US8430871B2 (en) 2009-10-28 2013-04-30 Covidien Lp System and method for monitoring ablation size
US8382750B2 (en) 2009-10-28 2013-02-26 Vivant Medical, Inc. System and method for monitoring ablation size
US8469953B2 (en) 2009-11-16 2013-06-25 Covidien Lp Twin sealing chamber hub
US9060798B2 (en) 2009-11-16 2015-06-23 Covidien Lp Surgical forceps capable of adjusting sealing pressure based on vessel size
US8394092B2 (en) 2009-11-17 2013-03-12 Vivant Medical, Inc. Electromagnetic energy delivery devices including an energy applicator array and electrosurgical systems including same
US8882759B2 (en) 2009-12-18 2014-11-11 Covidien Lp Microwave ablation system with dielectric temperature probe
US8764744B2 (en) 2010-01-25 2014-07-01 Covidien Lp System for monitoring ablation size
US9113927B2 (en) 2010-01-29 2015-08-25 Covidien Lp Apparatus and methods of use for treating blood vessels
US8313486B2 (en) 2010-01-29 2012-11-20 Vivant Medical, Inc. System and method for performing an electrosurgical procedure using an ablation device with an integrated imaging device
US8556929B2 (en) 2010-01-29 2013-10-15 Covidien Lp Surgical forceps capable of adjusting seal plate width based on vessel size
US8491579B2 (en) 2010-02-05 2013-07-23 Covidien Lp Electrosurgical devices with choke shorted to biological tissue
US9585709B2 (en) 2010-02-05 2017-03-07 Covidien Lp Square wave for vessel sealing
US8968288B2 (en) 2010-02-19 2015-03-03 Covidien Lp Ablation devices with dual operating frequencies, systems including same, and methods of adjusting ablation volume using same
US8568404B2 (en) 2010-02-19 2013-10-29 Covidien Lp Bipolar electrode probe for ablation monitoring
US20110213353A1 (en) 2010-02-26 2011-09-01 Lee Anthony C Tissue Ablation System With Internal And External Radiation Sources
US8617153B2 (en) 2010-02-26 2013-12-31 Covidien Lp Tunable microwave ablation probe
US8808288B2 (en) 2010-03-08 2014-08-19 Covidien Lp Surgical forceps including belt blade reverser mechanism
US8672923B2 (en) 2010-03-11 2014-03-18 Covidien Lp Automated probe placement device
US8740898B2 (en) 2010-03-22 2014-06-03 Covidien Lp Surgical forceps
US9028474B2 (en) 2010-03-25 2015-05-12 Covidien Lp Microwave surface coagulator with retractable blade
US8425511B2 (en) 2010-03-26 2013-04-23 Covidien Lp Clamp and scissor forceps
US8961504B2 (en) 2010-04-09 2015-02-24 Covidien Lp Optical hydrology arrays and system and method for monitoring water displacement during treatment of patient tissue
US8623018B2 (en) 2010-04-13 2014-01-07 Covidien Lp Sealing plate temperature control
US8568397B2 (en) 2010-04-28 2013-10-29 Covidien Lp Induction sealing
US8439913B2 (en) 2010-04-29 2013-05-14 Covidien Lp Pressure sensing sealing plate
US9867664B2 (en) 2010-05-03 2018-01-16 Covidien Lp System and method of deploying an antenna assembly
US8968359B2 (en) 2010-05-04 2015-03-03 Covidien Lp Surgical forceps
US9561076B2 (en) 2010-05-11 2017-02-07 Covidien Lp Electrosurgical devices with balun structure for air exposure of antenna radiating section and method of directing energy to tissue using same
US9192436B2 (en) 2010-05-25 2015-11-24 Covidien Lp Flow rate verification monitor for fluid-cooled microwave ablation probe
US8652127B2 (en) 2010-05-26 2014-02-18 Covidien Lp System and method for chemically cooling an ablation antenna
US8585736B2 (en) 2010-06-02 2013-11-19 Covidien Lp Apparatus for performing an electrosurgical procedure
US8540749B2 (en) 2010-06-02 2013-09-24 Covidien Lp Apparatus for performing an electrosurgical procedure
US8409246B2 (en) 2010-06-02 2013-04-02 Covidien Lp Apparatus for performing an electrosurgical procedure
US8512336B2 (en) 2010-07-08 2013-08-20 Covidien Lp Optimal geometries for creating current densities in a bipolar electrode configuration
US8974449B2 (en) 2010-07-16 2015-03-10 Covidien Lp Dual antenna assembly with user-controlled phase shifting
US8888775B2 (en) 2010-08-10 2014-11-18 Covidien Lp Surgical forceps including shape memory cutter
US8298233B2 (en) 2010-08-20 2012-10-30 Tyco Healthcare Group Lp Surgical instrument configured for use with interchangeable hand grips
US8652135B2 (en) 2010-08-23 2014-02-18 Covidien Lp Surgical forceps
US8814864B2 (en) 2010-08-23 2014-08-26 Covidien Lp Method of manufacturing tissue sealing electrodes
US8663222B2 (en) 2010-09-07 2014-03-04 Covidien Lp Dynamic and static bipolar electrical sealing and cutting device
US8734445B2 (en) 2010-09-07 2014-05-27 Covidien Lp Electrosurgical instrument with sealing and dissection modes and related methods of use
US9498278B2 (en) 2010-09-08 2016-11-22 Covidien Lp Asymmetrical electrodes for bipolar vessel sealing
US8945144B2 (en) 2010-09-08 2015-02-03 Covidien Lp Microwave spacers and method of use
US9005200B2 (en) 2010-09-30 2015-04-14 Covidien Lp Vessel sealing instrument
US9017372B2 (en) 2010-10-01 2015-04-28 Covidien Lp Blade deployment mechanisms for surgical forceps
US9655672B2 (en) 2010-10-04 2017-05-23 Covidien Lp Vessel sealing instrument
US8906018B2 (en) 2010-10-18 2014-12-09 Covidien Lp Surgical forceps
US8840639B2 (en) 2010-10-29 2014-09-23 Covidien Lp Apparatus for performing an electrosurgical procedure
US9119647B2 (en) 2010-11-12 2015-09-01 Covidien Lp Apparatus, system and method for performing an electrosurgical procedure
US9028484B2 (en) 2010-11-16 2015-05-12 Covidien Lp Fingertip electrosurgical instruments for use in hand-assisted surgery and systems including same
US8932293B2 (en) 2010-11-17 2015-01-13 Covidien Lp Method and apparatus for vascular tissue sealing with reduced energy consumption
US8685021B2 (en) 2010-11-17 2014-04-01 Covidien Lp Method and apparatus for vascular tissue sealing with active cooling of jaws at the end of the sealing cycle
US9333002B2 (en) 2010-11-19 2016-05-10 Covidien Lp Apparatus for performing an electrosurgical procedure
US8784418B2 (en) 2010-11-29 2014-07-22 Covidien Lp Endoscopic surgical forceps
US9055957B2 (en) 2010-12-23 2015-06-16 Covidien Lp Microwave field-detecting needle assemblies, methods of manufacturing same, methods of adjusting an ablation field radiating into tissue using same, and systems including same
US9011421B2 (en) 2011-01-05 2015-04-21 Covidien Lp Energy-delivery devices with flexible fluid-cooled shaft, inflow/outflow junctions suitable for use with same, and systems including same
US9770294B2 (en) 2011-01-05 2017-09-26 Covidien Lp Energy-delivery devices with flexible fluid-cooled shaft, inflow/outflow junctions suitable for use with same, and systems including same
US8945175B2 (en) 2011-01-14 2015-02-03 Covidien Lp Latch mechanism for surgical instruments
US8603134B2 (en) 2011-01-14 2013-12-10 Covidien Lp Latch mechanism for surgical instruments
US8974450B2 (en) 2011-02-03 2015-03-10 Covidien Lp System and method for ablation procedure monitoring using electrodes
US9017370B2 (en) 2011-02-17 2015-04-28 Covidien Lp Vessel sealer and divider with captured cutting element
US8968316B2 (en) 2011-02-18 2015-03-03 Covidien Lp Apparatus with multiple channel selective cutting
US8968305B2 (en) 2011-03-28 2015-03-03 Covidien Lp Surgical forceps with external cutter
US8568408B2 (en) 2011-04-21 2013-10-29 Covidien Lp Surgical forceps
US8939972B2 (en) 2011-05-06 2015-01-27 Covidien Lp Surgical forceps
US8900232B2 (en) 2011-05-06 2014-12-02 Covidien Lp Bifurcated shaft for surgical instrument
US8685009B2 (en) 2011-05-16 2014-04-01 Covidien Lp Thread-like knife for tissue cutting
US9265568B2 (en) 2011-05-16 2016-02-23 Coviden Lp Destruction of vessel walls for energy-based vessel sealing enhancement
US8852185B2 (en) 2011-05-19 2014-10-07 Covidien Lp Apparatus for performing an electrosurgical procedure
US8968283B2 (en) 2011-05-19 2015-03-03 Covidien Lp Ultrasound device for precise tissue sealing and blade-less cutting
US8702749B2 (en) 2011-06-09 2014-04-22 Covidien Lp Lever latch assemblies for vessel sealer and divider
US9615877B2 (en) 2011-06-17 2017-04-11 Covidien Lp Tissue sealing forceps
US9039704B2 (en) 2011-06-22 2015-05-26 Covidien Lp Forceps
US9844384B2 (en) 2011-07-11 2017-12-19 Covidien Lp Stand alone energy-based tissue clips
US8628557B2 (en) 2011-07-11 2014-01-14 Covidien Lp Surgical forceps
US9039732B2 (en) 2011-07-11 2015-05-26 Covidien Lp Surgical forceps
US8745840B2 (en) 2011-07-11 2014-06-10 Covidien Lp Surgical forceps and method of manufacturing thereof
US8888771B2 (en) 2011-07-15 2014-11-18 Covidien Lp Clip-over disposable assembly for use with hemostat-style surgical instrument and methods of manufacturing same
US8702737B2 (en) 2011-08-08 2014-04-22 Covidien Lp Surgical forceps
US8968306B2 (en) 2011-08-09 2015-03-03 Covidien Lp Surgical forceps
US8852186B2 (en) 2011-08-09 2014-10-07 Covidien Lp Microwave sensing for tissue sealing
US8870860B2 (en) 2011-08-09 2014-10-28 Covidien Lp Microwave antenna having a coaxial cable with an adjustable outer conductor configuration
US8968317B2 (en) 2011-08-18 2015-03-03 Covidien Lp Surgical forceps
US9113909B2 (en) 2011-09-01 2015-08-25 Covidien Lp Surgical vessel sealer and divider
US8679098B2 (en) 2011-09-13 2014-03-25 Covidien Lp Rotation knobs for surgical instruments
US9636169B2 (en) 2011-09-19 2017-05-02 Covidien Lp Electrosurgical instrument
US8961515B2 (en) 2011-09-28 2015-02-24 Covidien Lp Electrosurgical instrument
US9486220B2 (en) 2011-09-28 2016-11-08 Covidien Lp Surgical tissue occluding device
US9060780B2 (en) 2011-09-29 2015-06-23 Covidien Lp Methods of manufacturing shafts for surgical instruments
US8756785B2 (en) 2011-09-29 2014-06-24 Covidien Lp Surgical instrument shafts and methods of manufacturing shafts for surgical instruments
US9668806B2 (en) 2011-09-29 2017-06-06 Covidien Lp Surgical forceps including a removable stop member
US8864795B2 (en) 2011-10-03 2014-10-21 Covidien Lp Surgical forceps
US9265565B2 (en) 2011-11-29 2016-02-23 Covidien Lp Open vessel sealing instrument and method of manufacturing the same
US9113899B2 (en) 2011-11-29 2015-08-25 Covidien Lp Coupling mechanisms for surgical instruments
US8968310B2 (en) 2011-11-30 2015-03-03 Covidien Lp Electrosurgical instrument with a knife blade lockout mechanism
US9259268B2 (en) 2011-12-06 2016-02-16 Covidien Lp Vessel sealing using microwave energy
US9113930B2 (en) 2012-01-05 2015-08-25 Covidien Lp Ablation systems, probes, and methods for reducing radiation from an ablation probe into the environment
US9375274B2 (en) 2012-01-05 2016-06-28 Covidien Lp Ablation systems, probes, and methods for reducing radiation from an ablation probe into the environment
US9023035B2 (en) 2012-01-06 2015-05-05 Covidien Lp Monopolar pencil with integrated bipolar/ligasure tweezers
US9119648B2 (en) 2012-01-06 2015-09-01 Covidien Lp System and method for treating tissue using an expandable antenna
US9113931B2 (en) 2012-01-06 2015-08-25 Covidien Lp System and method for treating tissue using an expandable antenna
US9113897B2 (en) 2012-01-23 2015-08-25 Covidien Lp Partitioned surgical instrument
US8968360B2 (en) 2012-01-25 2015-03-03 Covidien Lp Surgical instrument with resilient driving member and related methods of use
US9693816B2 (en) 2012-01-30 2017-07-04 Covidien Lp Electrosurgical apparatus with integrated energy sensing at tissue site
US8747434B2 (en) 2012-02-20 2014-06-10 Covidien Lp Knife deployment mechanisms for surgical forceps
US8887373B2 (en) 2012-02-24 2014-11-18 Covidien Lp Vessel sealing instrument with reduced thermal spread and method of manufacture therefor
US8961514B2 (en) 2012-03-06 2015-02-24 Covidien Lp Articulating surgical apparatus
US8968298B2 (en) 2012-03-15 2015-03-03 Covidien Lp Electrosurgical instrument
US9375282B2 (en) 2012-03-26 2016-06-28 Covidien Lp Light energy sealing, cutting and sensing surgical device
US9265569B2 (en) 2012-03-29 2016-02-23 Covidien Lp Method of manufacturing an electrosurgical forceps
US9943359B2 (en) 2012-04-30 2018-04-17 Covidien Lp Limited reuse ablation needles and ablation devices for use therewith
US9364278B2 (en) 2012-04-30 2016-06-14 Covidien Lp Limited reuse ablation needles and ablation devices for use therewith
US9713493B2 (en) 2012-04-30 2017-07-25 Covidien Lp Method of switching energy modality on a cordless RF device
US8968311B2 (en) 2012-05-01 2015-03-03 Covidien Lp Surgical instrument with stamped double-flag jaws and actuation mechanism
US9820765B2 (en) 2012-05-01 2017-11-21 Covidien Lp Surgical instrument with stamped double-flange jaws
US8920461B2 (en) 2012-05-01 2014-12-30 Covidien Lp Surgical forceps with bifurcated flanged jaw components
US9668807B2 (en) 2012-05-01 2017-06-06 Covidien Lp Simplified spring load mechanism for delivering shaft force of a surgical instrument
US8920410B2 (en) 2012-05-04 2014-12-30 Covidien Lp Peripheral switching device for microwave energy platforms
US9375258B2 (en) 2012-05-08 2016-06-28 Covidien Lp Surgical forceps
US9113901B2 (en) 2012-05-14 2015-08-25 Covidien Lp Modular surgical instrument with contained electrical or mechanical systems
US8906008B2 (en) 2012-05-22 2014-12-09 Covidien Lp Electrosurgical instrument
US9192432B2 (en) 2012-05-29 2015-11-24 Covidien Lp Lever latch assemblies for surgical improvements
US8968313B2 (en) 2012-06-12 2015-03-03 Covidien Lp Electrosurgical instrument with a knife blade stop
JP6236441B2 (en) 2012-06-22 2017-11-22 コビディエン エルピー Microwave temperature measurement for microwave ablation system
US9770255B2 (en) 2012-06-26 2017-09-26 Covidien Lp One-piece handle assembly
US9066681B2 (en) 2012-06-26 2015-06-30 Covidien Lp Methods and systems for enhancing ultrasonic visibility of energy-delivery devices within tissue
US9011436B2 (en) 2012-06-26 2015-04-21 Covidien Lp Double-length jaw system for electrosurgical instrument
US9901398B2 (en) 2012-06-29 2018-02-27 Covidien Lp Microwave antenna probes
US9039691B2 (en) 2012-06-29 2015-05-26 Covidien Lp Surgical forceps
US9833285B2 (en) 2012-07-17 2017-12-05 Covidien Lp Optical sealing device with cutting ability
US8939975B2 (en) 2012-07-17 2015-01-27 Covidien Lp Gap control via overmold teeth and hard stops
US9636168B2 (en) 2012-08-09 2017-05-02 Covidien Lp Electrosurgical instrument including nested knife assembly
US9433461B2 (en) 2012-09-07 2016-09-06 Covidien Lp Instruments, systems, and methods for sealing tissue structures
US9743975B2 (en) 2012-10-02 2017-08-29 Covidien Lp Thermal ablation probe for a medical device
US9668802B2 (en) 2012-10-02 2017-06-06 Covidien Lp Devices and methods for optical detection of tissue contact
US9662165B2 (en) 2012-10-02 2017-05-30 Covidien Lp Device and method for heat-sensitive agent application
US9687290B2 (en) 2012-10-02 2017-06-27 Covidien Lp Energy-based medical devices
US9681908B2 (en) 2012-10-08 2017-06-20 Covidien Lp Jaw assemblies for electrosurgical instruments and methods of manufacturing jaw assemblies
US9572529B2 (en) 2012-10-31 2017-02-21 Covidien Lp Surgical devices and methods utilizing optical coherence tomography (OCT) to monitor and control tissue sealing
US9498281B2 (en) 2012-11-27 2016-11-22 Covidien Lp Surgical apparatus
US9901399B2 (en) 2012-12-17 2018-02-27 Covidien Lp Ablation probe with tissue sensing configuration
US9713491B2 (en) 2013-02-19 2017-07-25 Covidien Lp Method for manufacturing an electrode assembly configured for use with an electrosurigcal instrument
US9655673B2 (en) 2013-03-11 2017-05-23 Covidien Lp Surgical instrument
US9877775B2 (en) 2013-03-12 2018-01-30 Covidien Lp Electrosurgical instrument with a knife blade stop
JP2016514550A (en) 2013-03-29 2016-05-23 コビディエン エルピー The method for producing a step-down coaxial microwave ablation applicator and the
US9622810B2 (en) 2013-05-10 2017-04-18 Covidien Lp Surgical forceps
US9649151B2 (en) 2013-05-31 2017-05-16 Covidien Lp End effector assemblies and methods of manufacturing end effector assemblies for treating and/or cutting tissue
EP3030178A4 (en) 2013-08-07 2017-07-26 Covidien Lp Bipolar surgical instrument
US9814844B2 (en) 2013-08-27 2017-11-14 Covidien Lp Drug-delivery cannula assembly
WO2015035287A1 (en) 2013-09-06 2015-03-12 Covidien Lp Microwave ablation catheter, handle, and system
US9943357B2 (en) 2013-09-16 2018-04-17 Covidien Lp Split electrode for use in a bipolar electrosurgical instrument
US9717548B2 (en) 2013-09-24 2017-08-01 Covidien Lp Electrode for use in a bipolar electrosurgical instrument
US9642671B2 (en) 2013-09-30 2017-05-09 Covidien Lp Limited-use medical device
US9974601B2 (en) 2013-11-19 2018-05-22 Covidien Lp Vessel sealing instrument with suction system
US9687295B2 (en) 2014-04-17 2017-06-27 Covidien Lp Methods of manufacturing a pair of jaw members of an end-effector assembly for a surgical instrument
US9974603B2 (en) 2014-09-17 2018-05-22 Covidien Lp Surgical instrument having a bipolar end effector assembly and a deployable monopolar assembly
US9918785B2 (en) 2014-09-17 2018-03-20 Covidien Lp Deployment mechanisms for surgical instruments
US20160074106A1 (en) 2014-09-17 2016-03-17 Covidien Lp Deployment mechanisms for surgical instruments
US9974602B2 (en) 2015-05-27 2018-05-22 Covidien Lp Surgical instruments and devices and methods facilitating the manufacture of the same
US9848935B2 (en) 2015-05-27 2017-12-26 Covidien Lp Surgical instruments including components and features facilitating the assembly and manufacturing thereof
US9956022B2 (en) 2015-05-27 2018-05-01 Covidien Lp Surgical forceps and methods of manufacturing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5228086B2 (en) * 1973-06-21 1977-07-25
US5011529A (en) * 1989-03-14 1991-04-30 Corning Incorporated Cured surfaces and a process of curing

Also Published As

Publication number Publication date Type
JPH055106A (en) 1993-01-14 application

Similar Documents

Publication Publication Date Title
US5188678A (en) Manufacture of net shaped metal ceramic composite engineering components by self-propagating synthesis
US4415528A (en) Method of forming shaped metal alloy parts from metal or compound particles of the metal alloy components and compositions
US6030472A (en) Method of manufacturing aluminide sheet by thermomechanical processing of aluminide powders
US3565643A (en) Alumina - metalline compositions bonded with aluminide and titanide intermetallics
US5993506A (en) Plate-crystalline tungsten carbide-containing hard alloy, composition for forming plate-crystalline tungsten carbide and process for preparing said hard alloy
US3737289A (en) Carbide alloy
US3999952A (en) Sintered hard alloy of multiple boride containing iron
EP0759480B1 (en) Plate-crystalline tungsten carbide-containing hard alloy, composition for forming plate-crystalline tungsten carbide and process for preparing said hard alloy
US4022584A (en) Sintered cermets for tool and wear applications
US4944800A (en) Process for producing a sintered hard metal body and sintered hard metal body produced thereby
US4973356A (en) Method of making a hard material with properties between cemented carbide and high speed steel and the resulting material
US6284191B1 (en) Method of manufacturing iron aluminide by thermomechanical processing of elemental powers
US3369891A (en) Heat-treatable nickel-containing refractory carbide tool steel
US4150984A (en) Tungsten carbide-base sintered alloys and method for production thereof
JP2004292842A (en) Cermet
JP2002356734A (en) Hard metal alloy, and cutting tool using it
US2982619A (en) Metallic compounds for use in hightemperature applications
US5368812A (en) Metal carbides and derived composites made by milling to obtain a particular nanostructural composite powder
JP2003313612A (en) Process for producing grain-refined martensitic stainless steel and cutting tool using the stainless steel
US3940269A (en) Sintered austenitic-ferritic chromium-nickel steel alloy
US2802748A (en) Hot strength corrosion-resistant cemented refractory boride materials and their production
JPH0516031A (en) Manufacture of sheathed ceramic tool of high toughess and durability
US5403628A (en) Process for producing a coated hard-metal cutting body
US3262762A (en) High temperature-resistant materials of aluminum, boron, carbon, nitrogen and silicon, and their preparation
US5688731A (en) Ceramic articles containing doped zirconia having high electrical conductivity

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees