JP2805311B2 - Multi-stage electronic cooler - Google Patents
Multi-stage electronic coolerInfo
- Publication number
- JP2805311B2 JP2805311B2 JP63159447A JP15944788A JP2805311B2 JP 2805311 B2 JP2805311 B2 JP 2805311B2 JP 63159447 A JP63159447 A JP 63159447A JP 15944788 A JP15944788 A JP 15944788A JP 2805311 B2 JP2805311 B2 JP 2805311B2
- Authority
- JP
- Japan
- Prior art keywords
- stage
- thermoelectric element
- electronic cooler
- element pairs
- power consumption
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000758 substrate Substances 0.000 claims description 6
- 230000005679 Peltier effect Effects 0.000 claims description 3
- 230000005855 radiation Effects 0.000 description 6
- 239000004065 semiconductor Substances 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 230000002265 prevention Effects 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 230000003471 anti-radiation Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
Landscapes
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
- Devices That Are Associated With Refrigeration Equipment (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ペルチェ効果を持つ熱電素子対を、基板を
介して順次段階状にして縦続してなるカスケード型の多
段電子クーラーに関するものである。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cascade-type multi-stage electronic cooler in which thermoelectric element pairs having a Peltier effect are sequentially cascaded via a substrate. .
〔従来の技術〕 上記多段電子クーラーは、例えば第1図に示すように
6段になっていて、各段にはN型半導体1とP型半導体
2とを対する熱電素素子対Aがそれぞれ交互に、かつ直
列になって基板3に接合された電極4にて縦続されてい
て、各段の熱電子素子対Aに通電することにより、各段
の上側の基板側が吸熱され、最上段の基板3aが最大到達
温度で冷却されるようになっている。そして各段の熱電
素子対Aの対数の比率は最上段を1とすると、順次下段
になるに従ってその数が多くなるようになっている。[Prior Art] The above-mentioned multi-stage electronic cooler has, for example, six stages as shown in FIG. 1, and thermoelectric element pairs A for N-type semiconductor 1 and P-type semiconductor 2 are alternately arranged in each stage. When the thermoelectric element pairs A of each stage are energized, the upper substrate side of each stage absorbs heat, and the uppermost substrate is absorbed. 3a is cooled at the maximum temperature. The ratio of the logarithm of the thermoelectric element pair A in each stage is such that, assuming that the uppermost stage is 1, the number of the thermoelectric element pairs A is gradually increased toward the lower stage.
上記のような多段電子クーラーの問題点は、吸熱能力
のわりに消費電力が大きいことであり、最大到達温度を
下げるために段数を増やす程この傾向が大きくなる。The problem of the above-mentioned multi-stage electronic cooler is that the power consumption is large instead of the heat absorption capability. This tendency becomes larger as the number of stages is increased in order to lower the maximum attainable temperature.
本発明は上記のことにかんがみなされたもので、各段
の消費電力の増加比率が一定になるようにして、高性能
で、かつコンパクトにすることができるようにした多段
電子クーラーを提供することを目的とするものである。SUMMARY OF THE INVENTION The present invention has been made in view of the above, and provides a multi-stage electronic cooler capable of achieving high performance and compactness with a constant increase ratio of power consumption in each stage. It is intended for.
上記目的を達成するために、本発明に係る多段電子ク
ーラーは、ペルチェ効果を持つ熱電素子対Aを、基板3
を介して1段目からn段目にわたって順次段階状にして
縦続してなるカスケード型の多段電子クーラーにおい
て、1段目からn段目の各段の熱電素子対Aの対数を
m1,m2…mnとしたときに、1段目からn段目にわたって
熱電素子対Aを順次増加し、この各段毎の熱電素子対A
の対数の増加比率m(=mn/mn-1)の差が0.5の範囲内に
なるようにした構成となっている。In order to achieve the above object, a multi-stage electronic cooler according to the present invention comprises a thermoelectric element pair A having a Peltier effect,
In a cascade-type multi-stage electronic cooler that is cascaded sequentially from the first stage to the n-th stage via the
When m 1 , m 2, ... mn , the thermoelectric element pairs A are sequentially increased from the first stage to the n-th stage, and the thermoelectric element pairs A for each stage are increased.
Are set so that the difference in the logarithmic increase rate m (= m n / m n-1 ) falls within the range of 0.5.
多段電子クーラーの性能は、i)到達温度と、ii)成
績係数=吸熱量/消費電力とに大別される。そして、こ
れらに大きな影響を及ぼす要因の1つに各段の消費電力
の増加比率が考えられるが、各段の熱電素子対の対数の
増加比率mの差が0.5の範囲内になるようにしたことに
より、各段の消費電力量の増加比率m′を一定、あるい
は構成上許容される範囲で可能な限り一定値に近づける
ことができ、これにより目的の高性能の多段電子クーラ
ーを得ることができる。そして、同一サイズの熱電素子
対を用いる場合には、近似的に1つの下の段の熱電素子
対の対数(ついすう)を順次一定の割合mで増やしてゆ
けばよい。熱電素子対の容量が異なった段がある場合に
は、その容量に応じてその対数を上記一定の割合mにな
るように補正する。The performance of the multi-stage electronic cooler is roughly classified into i) attained temperature and ii) coefficient of performance = heat absorption / power consumption. One of the factors that greatly affect these factors is the increase ratio of the power consumption of each stage. The difference in the increase ratio m of the logarithm of the thermoelectric element pair in each stage is set to be within 0.5. Thus, the increase ratio m 'of the power consumption of each stage can be kept constant or as close to a constant value as possible within the range permitted by the configuration, whereby the intended high-performance multistage electronic cooler can be obtained. it can. When the thermoelectric element pairs of the same size are used, the number of pairs of thermoelectric element pairs in one lower stage can be approximately increased sequentially at a constant rate m. If there are stages with different capacities of the thermoelectric element pairs, the logarithm thereof is corrected according to the capacities so as to have the constant ratio m.
本発明の実施例を以下に説明する。 Embodiments of the present invention will be described below.
第1図に示した6段の多段電子クーラーを、各基板3
にメタライズしたAlNを用い、また熱電素子対AにBi−T
eを用い、そしてこの熱電素子対Aの各段毎の対数を表
1に示すように変えて第1実施例、第2実施例の2個を
製作した。なお、上記各熱電素子対Aを構成する各対の
N型、P型の半導体素子1.2は1.7角×2.3高さの同一容
量のものを用いた。The six-stage multi-stage electronic cooler shown in FIG.
Metallized AlN is used, and thermoelectric element pair A is Bi-T
Using e and changing the logarithm of each stage of the thermoelectric element pair A as shown in Table 1, two units of the first embodiment and the second embodiment were manufactured. The N-type and P-type semiconductor elements 1.2 of each pair constituting each thermoelectric element pair A had the same capacity of 1.7 square × 2.3 height.
上記各段毎の熱電素子対Aの対数は表1に示すように
順次増加しており、1段目からn段目の各段の熱電素子
対Aの対数をm1,m2…mnとしたときに、この各段の対数
の増加比率mはmn/mn-1で示される。そしてこの増加比
率mは表中に示すように、第1実施例はm=2.0、第2
実施例はm=2.0〜2.5である。As shown in Table 1, the logarithm of the thermoelectric element pair A in each stage is sequentially increased, and the logarithm of the thermoelectric element pair A in each of the first to nth stages is represented by m 1 , m 2 ,. Then, the increase ratio m of the logarithm of each stage is represented by mn / mn-1 . As shown in the table, the increase ratio m is 2.0 in the first embodiment,
In the embodiment, m = 2.0 to 2.5.
上記第1実施例及び第2実施例の多段電子クーラーに
は第1図に示すように、下から2段目以上の各段をカバ
ーする3個の輻射防止板5a,5b,5cを取付けた。そして
各、輻射防止板5a,5b,5cの頂部には、クーラー頂部に対
向する頂部開口6a,6b,6cが設けてある。また各輻射防止
板5a,5b,5cは12μの銅箔に、1μの金箔を貼りつけたも
のを用いた。 As shown in FIG. 1, three radiation preventing plates 5a, 5b, 5c covering the second and higher stages from the bottom were attached to the multistage electronic coolers of the first and second embodiments. . Each of the radiation prevention plates 5a, 5b, 5c has a top opening 6a, 6b, 6c facing the top of the cooler. Each of the radiation preventing plates 5a, 5b, and 5c was formed by attaching a 1 μ gold foil to a 12 μ copper foil.
上記のように構成された多段電子クーラを300゜K(27
℃)の恒温ステージ上に載せて10-6Torrの真空ベルジャ
中にセットした。The multi-stage electronic cooler constructed as above is installed at 300 ゜ K (27
(° C.) and set in a vacuum bell jar at 10 −6 Torr.
その後、輻射防止板5a,5b,5cの頂部開口6a,6b,6cより
0.02Wに正しく計測された赤外光をクーラ頂部に照射し
た。この状態で、多段電子クーラーの熱負荷を正しく0.
02Wを一定に保って性能測定することができた。Then, from the top openings 6a, 6b, 6c of the radiation prevention plates 5a, 5b, 5c
The infrared light correctly measured at 0.02 W was applied to the top of the cooler. In this state, correct the heat load of the multi-stage electronic cooler to 0.
Performance could be measured while keeping 02W constant.
上記状態で両実施例の多段電子クーラーに通電し、頂
部基板が最も低温まで冷却される最適電流を求めた。In the above state, the multistage electronic coolers of both examples were energized, and the optimum current for cooling the top substrate to the lowest temperature was determined.
その結果、表1に示すように第1の実施例では、最適
電流は3.0Aであり、このときの頂部は−87℃に達した。As a result, as shown in Table 1, in the first example, the optimum current was 3.0 A, and the top at this time reached -87 ° C.
第2の実施例では、最適電流は3.2Aであり、頂部は−
95℃に達した。In the second embodiment, the optimum current is 3.2 A and the top is-
95 ° C was reached.
第1、第2の実施例と全く同じ素材と製法で表2に示
すようなm値で、すなわち、各段のm値の割合を不定に
した第1、第2の比較例の多段電子クーラーを製作し
た。The multi-stage electronic coolers of the first and second comparative examples in which the m values as shown in Table 2 were used, that is, the ratio of the m value in each stage was made indefinite with the same material and manufacturing method as the first and second embodiments. Was made.
上記第1、第2の比較例において、同じく輻射防止板
を取りつけて実施例1,2と全く同様にして性能測定をし
た結果、表2に示すように、第1、第2の比較例におけ
る最適電流は、2.9A、3.2Aであり、頂部温度は−78℃、
−82℃にすぎなかった。 In the first and second comparative examples, the performance was measured in exactly the same manner as in Examples 1 and 2 with the radiation prevention plate attached, as shown in Table 2. The optimum current is 2.9A, 3.2A, the top temperature is -78 ° C,
It was only -82 ° C.
以上の結果をまとめてクーラーの消費電力Wと、最大
到達温度(頂部温度)℃で示すと第3図に示すようにな
る。FIG. 3 shows the above results in terms of the power consumption W of the cooler and the maximum temperature (top temperature) ° C.
図中a、bは第1、第2実施例、c、dは第1、第2
比較例である。In the figure, a and b are the first and second examples, and c and d are the first and second examples.
It is a comparative example.
一般に熱負荷が一定であれば、クーラーの消費電力が
大きいほど最大到達温度は向上する傾向があるが、各段
の熱電素子対Aの対数の増加比率mが一定、もしくは一
定値に近いものが、各段の消費電力量の増加比率m′が
一定し、もしくは一定値に近づき、その結果、第3図に
示すように、上記第1、第2実施例のものがより少ない
消費電力で低い最大到達温度を実現することができる。In general, if the thermal load is constant, the maximum attainable temperature tends to increase as the power consumption of the cooler increases. The increase rate m 'of the power consumption of each stage is constant or approaches a constant value. As a result, as shown in FIG. 3, the first and second embodiments have lower power consumption and lower power consumption. The maximum attainable temperature can be achieved.
なお、上記実施例及び比較例の双方共に、各段毎の熱
電素子対Aを構成する半導体素子は同一容量のものを用
いた例を示したが、第2図に示すように、使用素子の容
量を変えたものを用いてもよい。Note that, in both the above-described embodiment and the comparative example, an example is shown in which the semiconductor elements constituting the thermoelectric element pairs A of the respective stages have the same capacity, but as shown in FIG. You may use what changed the capacity.
この場合、各段毎のm値を2としたときの各段毎の対
数は図に示すように半導体素子の大きさによって2の倍
数にはならない。In this case, when the m value of each stage is 2, the logarithm of each stage does not become a multiple of 2 depending on the size of the semiconductor element as shown in the figure.
本発明によれば、各段の消費電力の増加比率が略一定
になり、その結果、少ない消費電力で低い最大到達温度
を実現することができ、これにより高性能で、かつコン
パクトな多段電子クーラーを得ることができる。ADVANTAGE OF THE INVENTION According to this invention, the increase rate of the power consumption of each stage becomes substantially constant, As a result, a low maximum attainable temperature can be realized with low power consumption, and thereby a high performance and compact multi-stage electronic cooler Can be obtained.
第1図は輻射防止板を取付けた多段電子クーラーの概略
的な全体構成図、第2図は使用素子の容量が異なり、か
つ各段毎の熱電素子対の増加比率を一定にした場合の各
段の対数を示す説明図、第3図は消費電力と最大到達温
度と各段毎の熱電素子対の増加率の関係を示す線図であ
る。 Aは熱電素子、1,2は半導体素子、3は基板、4は電
極、5a,5b,5cは輻射防止板、6a,6b,6cは頂部開口。FIG. 1 is a schematic overall configuration diagram of a multi-stage electronic cooler to which an anti-radiation plate is attached, and FIG. 2 is a diagram showing the case where the capacities of the elements used are different and the increasing ratio of thermoelectric element pairs in each stage is constant. FIG. 3 is a diagram showing the logarithm of the stages, and FIG. 3 is a diagram showing the relationship between the power consumption, the maximum attained temperature, and the rate of increase of the thermoelectric element pairs in each stage. A is a thermoelectric element, 1 and 2 are semiconductor elements, 3 is a substrate, 4 is an electrode, 5a, 5b and 5c are radiation prevention plates, and 6a, 6b and 6c are top openings.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 山口 徹 神奈川県平塚市万田1200 株式会社小松 製作所研究所内 (56)参考文献 実開 昭61−110838(JP,U) 特公 昭43−18426(JP,B1) (58)調査した分野(Int.Cl.6,DB名) H01L 35/32 F25B 21/02──────────────────────────────────────────────────続 き Continuation of front page (72) Inventor Toru Yamaguchi 1200 Manda, Hiratsuka-shi, Kanagawa Pref. Komatsu Ltd. Research Laboratory (56) References Japanese Utility Model Application Sho 61-110838 (JP, U) Japanese Patent Publication No. 43-18426 (JP) , B1) (58) Field surveyed (Int. Cl. 6 , DB name) H01L 35/32 F25B 21/02
Claims (1)
3を介して1段目からn段目にわたって順次段階状にし
て縦続してなるカスケード型の多段電子クーラーにおい
て、1段目からn段目の各段の熱電素子対Aの対数を
m1,m2…mnとしたときに、1段目からn段目にわたって
熱電素子対Aを順次増加し、この各段毎の熱電素子対A
の対数の増加比率m(=mn/mn-1)の差が0.5の範囲内に
なるようにしたことを特徴とする多段電子クーラー。1. A cascade type multi-stage electronic cooler in which thermoelectric element pairs A having a Peltier effect are sequentially cascaded from a first stage to an n-th stage via a substrate 3 and cascaded. The logarithm of the thermoelectric element pair A of each stage is
When m 1 , m 2, ... mn , the thermoelectric element pairs A are sequentially increased from the first stage to the n-th stage, and the thermoelectric element pairs A for each stage are increased.
A multi-stage electronic cooler characterized in that the difference of the logarithmic increase ratio m (= m n / m n-1 ) is within the range of 0.5.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63159447A JP2805311B2 (en) | 1988-06-29 | 1988-06-29 | Multi-stage electronic cooler |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63159447A JP2805311B2 (en) | 1988-06-29 | 1988-06-29 | Multi-stage electronic cooler |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0210782A JPH0210782A (en) | 1990-01-16 |
JP2805311B2 true JP2805311B2 (en) | 1998-09-30 |
Family
ID=15693954
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63159447A Expired - Lifetime JP2805311B2 (en) | 1988-06-29 | 1988-06-29 | Multi-stage electronic cooler |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2805311B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU209979U1 (en) * | 2021-05-19 | 2022-03-24 | Общество с ограниченной ответственностью "Завод "Кристалл" | THERMOELECTRIC MODULE |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61110838U (en) * | 1984-12-26 | 1986-07-14 |
-
1988
- 1988-06-29 JP JP63159447A patent/JP2805311B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH0210782A (en) | 1990-01-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5022928A (en) | Thermoelectric heat pump/power source device | |
US4757688A (en) | Solid-state electrocaloric cooling system and method | |
US4859250A (en) | Thermoelectric pillow and blanket | |
US4593456A (en) | Pyroelectric thermal detector array | |
US5156004A (en) | Composite semiconductive thermoelectric refrigerating device | |
US5714791A (en) | On-chip Peltier cooling devices on a micromachined membrane structure | |
AU620447B2 (en) | Peltier cooling stage utilizing a superconductor- semiconductor junction | |
US4947648A (en) | Thermoelectric refrigeration apparatus | |
US7763792B2 (en) | Multistage heat pumps and method of manufacture | |
JP2805311B2 (en) | Multi-stage electronic cooler | |
WO1995007441A1 (en) | Apparatus and method for deep thermoelectric refrigeration | |
US5886292A (en) | Thermoelectric material | |
Lindler | Use of multi-stage cascades to improve performance of thermoelectric heat pumps | |
JPH1079532A (en) | Thermoelectric conversion device | |
JPH11307826A (en) | Thermionic module | |
US3289422A (en) | Cooling apparatus for infrared detecting system | |
JPH04101472A (en) | Cooler | |
JP3186659B2 (en) | Method for producing thermoelectric conversion material and thermoelectric conversion material | |
JP2558505B2 (en) | Multi-stage electronic cooler | |
US3723189A (en) | Thermoelectric device | |
JP3467891B2 (en) | Multi-stage electronic cooler | |
JP2542239B2 (en) | Multi-stage electronic cooler | |
JPH06181341A (en) | Thermoelectric conversion module, thermoelectric cooling device and refrigerator | |
JP3164862B2 (en) | Electronically cooled infrared detector | |
JPH05142355A (en) | Detector peltier cooling device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080724 Year of fee payment: 10 |
|
EXPY | Cancellation because of completion of term |