JP2542239B2 - Multi-stage electronic cooler - Google Patents

Multi-stage electronic cooler

Info

Publication number
JP2542239B2
JP2542239B2 JP63181802A JP18180288A JP2542239B2 JP 2542239 B2 JP2542239 B2 JP 2542239B2 JP 63181802 A JP63181802 A JP 63181802A JP 18180288 A JP18180288 A JP 18180288A JP 2542239 B2 JP2542239 B2 JP 2542239B2
Authority
JP
Japan
Prior art keywords
electronic cooler
stage electronic
stage
cooler
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63181802A
Other languages
Japanese (ja)
Other versions
JPH0233576A (en
Inventor
卓司 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP63181802A priority Critical patent/JP2542239B2/en
Priority to EP19880907379 priority patent/EP0377740A4/en
Priority to PCT/JP1988/000828 priority patent/WO1989001594A1/en
Publication of JPH0233576A publication Critical patent/JPH0233576A/en
Priority to US07/795,271 priority patent/US5237821A/en
Application granted granted Critical
Publication of JP2542239B2 publication Critical patent/JP2542239B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ペルチエ効果を持つ熱電素子を、基板を介
して順次階段状に積み重ねて縦続してなるカスケード型
の多段電子クーラーに関するものである。
Description: TECHNICAL FIELD The present invention relates to a cascade-type multi-stage electronic cooler in which thermoelectric elements having a Peltier effect are sequentially stacked in a stepped manner via a substrate. .

〔従来の技術〕[Conventional technology]

上記多段電子クーラーは、例えば第1図に示すように
6段になっていて、真空ベルジャ5に収納されており、
各段にはN型半導体1とP型半導体2とを一対とする熱
電素子Aが、基板3に接合された電極4にて縦続されて
いる。そして各段の熱電素子Aに通電することにより各
段の上側の基板側が吸熱され、最上段の基板(冷却板)
3aが最大冷却到達温度まで冷却されるようになってい
る。
The multi-stage electronic cooler has, for example, six stages as shown in FIG. 1 and is housed in the vacuum bell jar 5.
A thermoelectric element A having a pair of an N-type semiconductor 1 and a P-type semiconductor 2 is cascaded at each stage by an electrode 4 joined to a substrate 3. By energizing the thermoelectric element A of each stage, the upper substrate side of each stage absorbs heat, and the uppermost substrate (cooling plate)
3a is cooled to the maximum cooling reached temperature.

現在、この種の多段電子クーラーの一例としてマーロ
ー社製のカスケード型の6段型の電子クーラーが知られ
ており、この従来例のものにあっては、流入熱量Qがゼ
ロの理想的な状態のときに電流Iが3.5Aでもって最大の
冷却到達温度は−100℃である。
At present, a cascade type six-stage electronic cooler manufactured by Marlow is known as an example of this kind of multi-stage electronic cooler. In this conventional example, an inflowing heat quantity Q is in an ideal state. When the current I was 3.5 A, the maximum temperature reached for cooling was −100 ° C.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

従来の上記多段電子クーラーにあっては真空ベルジャ
5内に収納しただけの構成であったため、外気、温度の
影響を受けやすく、流入熱量Qがあって到底−100℃近
くまで冷却することはできなかった。
Since the conventional multi-stage electronic cooler described above has only been housed in the vacuum bell jar 5, it is easily affected by the outside air and temperature, and the inflowing heat quantity Q makes it possible to cool it to almost -100 ° C. There wasn't.

すなわち、真空ベルジャ5内の多段電子クーラーに対
するり流入熱量Qには真空ベルジャ5内での対流伝熱と
外側からの放射伝熱とがあり、このうち対流伝熱はベル
ジャ5内を真空にすることによりその影響をなくしてい
るが、上記したように、多段電子クーラーが真空ベルジ
ャ5内に収納されただけの構成となっているため、外側
からの放射伝熱を防ぐことができず、この放射伝熱によ
る流入熱量Qをゼロにすることができなかった。
That is, the reflow heat quantity Q to the multi-stage electronic cooler in the vacuum bell jar 5 includes convective heat transfer in the vacuum bell jar 5 and radiant heat transfer from the outside, of which convective heat transfer makes the bell jar 5 vacuum. However, as described above, since the multi-stage electronic cooler is only housed in the vacuum bell jar 5 as described above, it is not possible to prevent radiation heat transfer from the outside. The inflowing heat quantity Q due to radiative heat transfer could not be made zero.

本発明は、上記のことにかんがみなされたもので、対
流伝熱はもちろんのこと、放射伝熱による流入熱量Qを
極めて小さくできて、最大冷却到達温度を従来のものよ
り低くできるようにした多段電子クーラーを提供するこ
とを目的とするものである。
The present invention has been conceived in view of the above, and in addition to convection heat transfer, the inflow heat quantity Q by radiant heat transfer can be made extremely small, and the maximum cooling ultimate temperature can be made lower than the conventional one. The purpose is to provide an electronic cooler.

〔課題を解決するための手段〕[Means for solving the problem]

上記目的を達成するために、本発明に係わる多段電子
クーラーは、真空容器内に収容してなる多段電子クーラ
ーにおいて、上記多段電子クーラーを構成する部材に、
この多段電子クーラーの構成部材より熱の放射率の小さ
い物質を接着、圧着、蒸着、メツキ等により付着させた
構成となっている。
In order to achieve the above object, a multi-stage electronic cooler according to the present invention is a multi-stage electronic cooler housed in a vacuum container, wherein a member constituting the multi-stage electronic cooler comprises:
This multi-stage electronic cooler has a structure in which a substance having a smaller emissivity of heat is adhered by adhesion, pressure bonding, vapor deposition, plating or the like.

上記多段電子クーラーの構成部材より熱の放射率の小
さい物質にはAuが用いられる。
Au is used as a substance having a smaller emissivity of heat than the constituent members of the multi-stage electronic cooler.

多段電子クーラーを構成するセラミック製の基板にAu
を箔状にして接着、あるいは蒸着により付着する。
Au on the ceramic substrate that constitutes the multi-stage electronic cooler
Is made into a foil shape and attached by adhesion or vapor deposition.

多段電子クーラーの各熱電素子の側面にAuメツキを施
す。
Apply Au plating to the side of each thermoelectric element of the multi-stage electronic cooler.

上記真空容器を多段電子クーラーの構成部材より熱の
放射率の小さい物質で構成する。
The vacuum container is made of a material having a smaller emissivity of heat than the constituent members of the multi-stage electronic cooler.

真空容器に多段電子クーラーの構成部材より熱の放射
率の小さい物質を接着、圧着、蒸着、メツキ等により付
着させる。
A substance having a lower emissivity of heat than the constituent members of the multi-stage electronic cooler is attached to the vacuum container by adhesion, pressure bonding, vapor deposition, plating, or the like.

上記真空容器における多段電子クーラーの構成部材よ
り熱の放射率の小さい物質にAuを用いる。
Au is used as a substance having a smaller emissivity of heat than the constituent members of the multi-stage electronic cooler in the vacuum container.

〔作用〕[Action]

真空容器の外側からこの中に収容した多段電子クーラ
ーへの熱の放射による熱の流入量が少なくなり、多段電
子クーラーの最大冷却温度が低くなる。
The amount of heat flowing from the outside of the vacuum container to the multi-stage electronic cooler housed therein is reduced, and the maximum cooling temperature of the multi-stage electronic cooler is lowered.

〔実 施 例〕〔Example〕

本発明の実施例を比較例と共に説明する。 Examples of the present invention will be described together with comparative examples.

比 較 例 第1図に示す多段電子クーラーを、これの基板3をAl
Nで、熱電素子Aの構成素子対をBi−Teにてそれぞれ作
成し、ガラス製の真空ベルジャ5内で10-6torrの真空中
で作動させた。このときの外気温度(室温)は27℃であ
った。
Comparative Example The multi-stage electronic cooler shown in FIG.
In N, the constituent element pairs of the thermoelectric element A were each made of Bi-Te and operated in a vacuum bell jar 5 made of glass in a vacuum of 10 -6 torr. At this time, the outside air temperature (room temperature) was 27 ° C.

このときの最大の冷却到達温度は−95℃であった。 The maximum cooling temperature reached at this time was -95 ° C.

実施例 1 上記比較例における多段電子クーラーで、AlNにて構
成した各基板3に厚さ5μの多段電子クーラーの構成部
材より熱の放射率の小さな材料であるAu箔を接着して同
様の測定を行なったところ、最大の冷却到達温度は−98
℃であった。
Example 1 In the multi-stage electronic cooler in the above-mentioned comparative example, Au foil, which is a material having a smaller heat emissivity than the constituent member of the multi-stage electronic cooler having a thickness of 5 μ, was adhered to each substrate 3 made of AlN and the same measurement was performed. The maximum temperature reached was −98
° C.

実施例 2 実施例1における多段電子クーラーで、さらに各熱電
素子Aの側面にAuメッキを施して同様の測定を行なった
ところ、最大の冷却到達温度は−101℃であった。
Example 2 With the multi-stage electronic cooler in Example 1, the side surface of each thermoelectric element A was further plated with Au, and the same measurement was performed. The maximum cooling ultimate temperature was -101 ° C.

実施例 3 実施例1のガラス製も真空ベルジャ5の代りに、Auメ
ッキを施したCu製容器を用いて同様の測定を行なったと
ころ最大の冷却到達温度は−108℃であった。
Example 3 When the same measurement was carried out using the Cu-plated container plated with Au instead of the vacuum bell jar 5 of the glass of Example 1, the maximum attainable cooling temperature was -108 ° C.

上記のように実施例1〜3での最大の冷却到達温度は
比較例のものに比較して大きくすることができた。
As described above, the maximum cooling ultimate temperature in Examples 1 to 3 could be made larger than that in the comparative example.

このことは以下のことからも説明することができる。 This can also be explained from the following.

すなわち、多段電子クーラーへの放射流入熱量QR ただし、 CS:ステファンボルツマン定数 (5.67×10-12W/cm2・K4) εH:高温部(真空容器)の放射率 εC:クーラー各部の放射率 TH:クーラー作動時の外気温度(常温) TCi:クーラーi段の温度 Ai:クーラーi段の受光面積 であらわされる。That is, the radiant heat input Q R to the multi-stage electronic cooler is However, C S : Stefan Boltzmann constant (5.67 × 10 -12 W / cm 2 · K 4 ) ε H : Emissivity of high temperature part (vacuum container) ε C : Emissivity of each part of cooler T H : Outside temperature at cooler operation ( Normal temperature) T C i: Temperature of cooler i-th stage Ai: Light receiving area of cooler i-th stage

Bi−Teからなる熱電素子Aを用いて第2図、第3図、
第4図に示すように6段、8段、10段の多段電子クーラ
ーを構成したときのクーラーの最大冷却温度Tcmaxと上
記Eの関係を計算により求めた。そしてその結果を第5
図に示す。
2, 3 using the thermoelectric element A made of Bi-Te.
As shown in FIG. 4, the relationship between the maximum cooling temperature Tcmax of the cooler and the above E when a multi-stage electronic cooler of 6, 8, and 10 stages was constructed was obtained by calculation. And the result is the fifth
Shown in the figure.

なお各多段電子クーラーを構成する熱電素子の対数は
各図面中に記載した通りである。そしてそれぞれの使用
素子のサイズは、6段用が1.7角×2.3t、8段用が6角
×2.3t、10段用が0.6角×2.3tである。
The number of thermoelectric elements forming each multi-stage electronic cooler is as described in each drawing. The size of each used element is 1.7 squares × 2.3t for 6 stages, 6 sides × 2.3t for 8 stages, and 0.6 sides × 2.3t for 10 stages.

上記計算において、Eはε、εが0〜1の値をと
るので、0〜5.67の値となる。
In the above calculation, E has a value of 0 to 5.67 because ε H and ε C have a value of 0 to 1.

E=0(ε=ε=0)のときは、放射流入熱量QR
はゼロとなり、E=5.67(ε=ε=1)のときは、
完全黒体の容器内で、完全黒体のクーラーを作動させた
場合でQRは最大となる。
When E = 0 (ε H = ε C = 0), radiant heat input Q R
Becomes zero, and when E = 5.67 (ε H = ε C = 1),
In a container full black body, Q R is the maximum when operated cooler full black body.

従って多段電子クーラーほ最大冷却温度Tcmaxを下げ
るには、 (1) クーラーの構成部材に、このクーラーの構成部
材より熱の放射率の小さい物質を付着させることでεC
を減少させる。
Therefore, in order to reduce the maximum cooling temperature Tcmax of the multi-stage electronic cooler, (1) εC is made by attaching a substance having a lower emissivity of heat to the cooler constituent members than the cooler constituent members.
To reduce.

(2) クーラーを、クーラーの構成部材より熱の放射
率の小さい物質製の容器に収容してεHを減少させるこ
とでEを減少させるのが有効であることがわかる。
(2) It can be seen that it is effective to reduce E by housing the cooler in a container made of a material having a smaller emissivity of heat than the constituent members of the cooler to reduce εH.

また上記(1)、(2)を併用すればさらに大きな効
果が得られる。
Further, if the above (1) and (2) are used together, an even greater effect can be obtained.

上記各実施例では比較例に比べ、εないしはε
値を減少させる処理が施されたため、Eが減少し、第5
図に示される関係通りにTcmaxが低温側へ移行される。
In each of the above-described examples, the value of ε C or ε H was decreased as compared with the comparative example, so that E was decreased and
Tcmax shifts to the low temperature side according to the relationship shown in the figure.

なお比較例では 、実施例1では 、実施例2では 、実施例3では 程度と推定できる。In the comparative example , In Example 1, , In Example 2 , In Example 3, It can be estimated as the degree.

また本発明に係る多段電子クーラーでは、多段カスケ
ードの多数が多くなる程その効果が顕著にあらわれる。
10段の多段電子クーラーを、基板をAlNで、熱電素子をB
i−Teでそれぞれ構成し、ガラス製の真空ベルジャに収
容して測定した場合、最大冷却温度Tcmaxは−104℃であ
るが、セラミック製の基板にAu箔を接着し、Bi−Teから
なる熱電素子の側面にAuメツキを施し、さらにAuメツキ
容器内で作動させることにより上記Tcmaxは−134℃程度
まで達するものと推定される。
In the multi-stage electronic cooler according to the present invention, the effect becomes more remarkable as the number of multi-stage cascades increases.
A 10-stage multi-stage electronic cooler with a substrate of AlN and a thermoelectric element of B
The maximum cooling temperature Tcmax is -104 ° C when measured in a vacuum bell jar made of glass, which is composed of i-Te, but the Au foil is bonded to the ceramic substrate, and the It is estimated that the above Tcmax reaches about -134 ° C. by applying Au plating to the side surface of the element and further operating in the Au plating container.

また上記Au箔を接着するかわりにAuを蒸着してもよ
い。さらにAuメツキを施したCu製の容器のかわりにAu製
の容器を用いてもよい。
Further, instead of adhering the Au foil, Au may be vapor-deposited. Further, a container made of Au may be used instead of the container made of Cu with Au plating.

〔発明の効果〕〔The invention's effect〕

本発明によれば、対流伝熱はもちろんのこと、放射伝
熱による流入熱量Qを極めて小さくできて、最大冷却到
達温度を従来のものに比較して低くできる。
According to the present invention, not only the convective heat transfer but also the inflowing heat quantity Q due to the radiant heat transfer can be made extremely small, and the maximum cooling ultimate temperature can be made lower than the conventional one.

【図面の簡単な説明】[Brief description of drawings]

第1図は多段電子クーラーの概略的な全体構成図、第2
図、第3図、第4図は6段、8段、10段の各多段電子ク
ーラーの熱電素子の対数を示す説明図、第5図はEとTc
maxの関係を示す線図である。 Aは熱電素子、3は基板、5は真空ベルジャ。
FIG. 1 is a schematic overall configuration diagram of a multi-stage electronic cooler, and FIG.
FIGS. 3, 3 and 4 are explanatory views showing the number of thermoelectric elements of multi-stage electronic coolers of 6, 8, and 10 stages, and FIG. 5 is E and Tc.
It is a diagram which shows the relationship of max. A is a thermoelectric element, 3 is a substrate, and 5 is a vacuum bell jar.

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】真空容器内に収容してなる多段電子クーラ
ーにおいて、多段電子クーラーを構成する部材に、この
多段電子クーラーの構成部材より熱の放射率の小さい物
質を接着、圧着、蒸着、メツキ等により付着させたこと
を特徴とする多段電子クーラー。
1. A multi-stage electronic cooler housed in a vacuum container, wherein a material having a smaller heat emissivity than a constituent member of the multi-stage electronic cooler is bonded, pressure-bonded, vapor-deposited or plated to a member constituting the multi-stage electronic cooler. A multi-stage electronic cooler characterized by being attached by means such as.
【請求項2】上記多段電子クーラーの構成部材より熱の
放射率の小さい物質にはAuを用いたことを特徴とする請
求項1記載の多段電子クーラー。
2. The multi-stage electronic cooler according to claim 1, wherein Au is used as the substance having a smaller emissivity of heat than the constituent members of the multi-stage electronic cooler.
【請求項3】多段電子クーラーを構成するセラミック製
の基板にAuを箔状にして接着、あるいは蒸着ににより付
着したことを特徴とする請求項1記載の多段電子クーラ
ー。
3. The multi-stage electronic cooler according to claim 1, wherein Au is foil-shaped and adhered to the ceramic substrate constituting the multi-stage electronic cooler by adhesion or vapor deposition.
【請求項4】多段電子クーラーの各熱素子の側面にAuメ
ッキを施したことを特徴とする請求項1記載の多段電子
クーラー。
4. The multi-stage electronic cooler according to claim 1, wherein the side surface of each thermal element of the multi-stage electronic cooler is plated with Au.
【請求項5】真空容器を多段電子クーラーの構成部材よ
り熱の放射率の小さい物質で構成したことを特徴とする
請求項1記載の多段電子クーラー。
5. The multi-stage electronic cooler according to claim 1, wherein the vacuum container is made of a material having a smaller emissivity of heat than the constituent members of the multi-stage electronic cooler.
【請求項6】真空容器に多段電子クーラーの構成部材よ
り熱の放射率の小さい物質を接着、圧着、蒸着、メツキ
等により付着させたことを特徴とする請求項5記載の多
段電子クーラー。
6. The multi-stage electronic cooler according to claim 5, wherein a substance having a smaller emissivity of heat than that of a constituent member of the multi-stage electronic cooler is attached to the vacuum container by adhesion, pressure bonding, vapor deposition, plating or the like.
【請求項7】多段電子クーラーの構成部材より熱の放射
率の小さい物質にはAuを用いたを特徴とする請求項5ま
たは6記載の多段電子クーラー。
7. The multi-stage electronic cooler according to claim 5, wherein Au is used as the substance having a smaller emissivity of heat than the constituent members of the multi-stage electronic cooler.
JP63181802A 1987-08-20 1988-07-22 Multi-stage electronic cooler Expired - Lifetime JP2542239B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP63181802A JP2542239B2 (en) 1988-07-22 1988-07-22 Multi-stage electronic cooler
EP19880907379 EP0377740A4 (en) 1987-08-20 1988-08-19 Multistep electronic cooler
PCT/JP1988/000828 WO1989001594A1 (en) 1987-08-20 1988-08-19 Multistep electronic cooler
US07/795,271 US5237821A (en) 1987-08-20 1991-11-20 Multistep electronic cooler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63181802A JP2542239B2 (en) 1988-07-22 1988-07-22 Multi-stage electronic cooler

Publications (2)

Publication Number Publication Date
JPH0233576A JPH0233576A (en) 1990-02-02
JP2542239B2 true JP2542239B2 (en) 1996-10-09

Family

ID=16107105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63181802A Expired - Lifetime JP2542239B2 (en) 1987-08-20 1988-07-22 Multi-stage electronic cooler

Country Status (1)

Country Link
JP (1) JP2542239B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4924569B2 (en) * 2008-08-25 2012-04-25 トヨタ自動車株式会社 Fuel pump motor and method for controlling applied voltage to fuel pump motor

Also Published As

Publication number Publication date
JPH0233576A (en) 1990-02-02

Similar Documents

Publication Publication Date Title
US7838759B2 (en) Methods of forming thermoelectric devices including electrically insulating matrices between conductive traces
US4859250A (en) Thermoelectric pillow and blanket
US6505468B2 (en) Cascade cryogenic thermoelectric cooler for cryogenic and room temperature applications
US5022928A (en) Thermoelectric heat pump/power source device
US8623687B2 (en) Methods of forming thermoelectric devices including conductive posts and/or different solder materials and related methods and structures
US7679203B2 (en) Methods of forming thermoelectric devices using islands of thermoelectric material and related structures
JP2737518B2 (en) Cooling structure of infrared detector
US4947648A (en) Thermoelectric refrigeration apparatus
US20100257871A1 (en) Thin film thermoelectric devices for power conversion and cooling
US6365821B1 (en) Thermoelectrically cooling electronic devices
US20050178424A1 (en) Method of manufacturing crystalline film, method of manufacturing crystalline-film-layered substrate, method of manufacturing thermoelectric conversion element, and thermoelectric conversion element
US20070028956A1 (en) Methods of forming thermoelectric devices including superlattice structures of alternating layers with heterogeneous periods and related devices
Patel et al. Thermoelectric cooling effect in a p-Sb2Te3− n-Bi2Te3 thin film thermocouple
US20090000652A1 (en) Thermoelectric Structures Including Bridging Thermoelectric Elements
US20160336501A1 (en) Energy harvesting for wearable technology through a thin flexible thermoelectric device
US5237821A (en) Multistep electronic cooler
Min et al. Integrated thin film thermoelectric cooler
JP2542239B2 (en) Multi-stage electronic cooler
JPH0766976B2 (en) Infrared detector
JP4609817B2 (en) Semiconductor laser module
JP2522692B2 (en) Multi-stage electronic cooler
WO1989001594A1 (en) Multistep electronic cooler
JPH08121890A (en) Small-sized low temperature device
KR20140110811A (en) Fabrication methods of thermoelectric thin film modules using adhesive flip chip bonding and thermoelectric thin film modules produced using the same method
JP3164862B2 (en) Electronically cooled infrared detector