JP2803238B2 - Compressor capacity control device - Google Patents

Compressor capacity control device

Info

Publication number
JP2803238B2
JP2803238B2 JP1290384A JP29038489A JP2803238B2 JP 2803238 B2 JP2803238 B2 JP 2803238B2 JP 1290384 A JP1290384 A JP 1290384A JP 29038489 A JP29038489 A JP 29038489A JP 2803238 B2 JP2803238 B2 JP 2803238B2
Authority
JP
Japan
Prior art keywords
pressure
valve
power consumption
load
load operation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1290384A
Other languages
Japanese (ja)
Other versions
JPH03151593A (en
Inventor
敏雄 白井
正幸 山後
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HOKUETSU INDUSTRIES CO., LTD.
Original Assignee
HOKUETSU INDUSTRIES CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HOKUETSU INDUSTRIES CO., LTD. filed Critical HOKUETSU INDUSTRIES CO., LTD.
Priority to JP1290384A priority Critical patent/JP2803238B2/en
Publication of JPH03151593A publication Critical patent/JPH03151593A/en
Application granted granted Critical
Publication of JP2803238B2 publication Critical patent/JP2803238B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、圧縮機本体の吸入口に設けた吸気閉塞型ア
ンローダ装置により吸入空気量を制御する圧縮機の容量
制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial application field) The present invention relates to a displacement control device for a compressor that controls an intake air amount by an intake blocker type unloader device provided at an intake port of a compressor body. About.

(従来の技術) 回転圧縮機の容量制御には、大別して3種類の方法が
用いられている。第1の方法は実開平1−78284号公報
に示すようにレシーバタンク圧力が規定圧力を超えたと
きに吸気閉塞型アンローダ装置によって吸気路を閉じる
一方、圧縮空気の消費によって前記圧力が規定圧力を下
廻ったときに再度吸気路を開いて容量制御するものであ
り、第2の方法は実開昭48−57704号公報に示すように
レシーバタンク内の圧力に応じて動作する圧力調整弁か
らのパイロット圧力を受けて吸込ガス調節弁(アンロー
ダ装置)を閉じると同時に放出弁により油回収器内の内
圧を所定圧力まで放出し、吐出口に加わる背圧を低減す
るものであり、第3の方法は特公昭59−44514号公報に
示すようにレシーバタンク圧力を圧力スイッチにより検
知し、この信号に基づきアンローダ装置用制御回路中の
電磁弁を開いてアンローダバルブによる吸気口の閉塞を
行うと共に、油回収ポンプによって吐出室に滞溜する空
気と油の気液混合流体とを前記レシーバタンク内に回収
して、圧縮機の吐出口に加わる背圧を除去する所謂ON−
OFF制御と無負荷時吐出圧力除去方式とを組み合せた容
量制御方法である。
(Prior Art) Three types of methods are generally used to control the capacity of a rotary compressor. In the first method, as shown in Japanese Utility Model Laid-Open No. 1-78284, when the receiver tank pressure exceeds a prescribed pressure, the intake passage is closed by an intake closing type unloader device, while the pressure is reduced by the consumption of compressed air. The second method is to open the intake passage again when it falls below the lower limit and control the capacity. The second method is to use a pilot valve from a pressure regulating valve that operates according to the pressure in the receiver tank as shown in Japanese Utility Model Laid-Open No. 48-57704. Upon receiving the pressure, the suction gas control valve (unloader device) is closed, and at the same time, the internal pressure in the oil recovery unit is released to a predetermined pressure by the discharge valve to reduce the back pressure applied to the discharge port. As shown in JP-B-59-44514, the pressure of the receiver tank is detected by a pressure switch, and based on this signal, the solenoid valve in the control circuit for the unloader device is opened, and the intake port of the unloader valve is opened. So-called ON-, which collects the air and the gas-liquid mixed fluid of the oil remaining in the discharge chamber by the oil recovery pump in the receiver tank and removes the back pressure applied to the discharge port of the compressor.
This is a capacity control method in which the OFF control and the no-load discharge pressure removal method are combined.

(発明が解決しようとする課題) 上述した容量制御方法のうち、第1の方法は圧力レギ
ュレータによってアンローダ装置が無段階制御されるた
め、消費側において圧縮空気が消費されると直ちにそれ
に応じた圧縮空気の供給が成されるので、第8図の二点
鎖線(イ)で示すように消費側の空気配管内圧力の変動
巾を小さく押えられる反面、第9図の二点鎖線(イ′)
で示すように無負荷運転時の負荷動力(消費電力比)が
全負荷時の約70%程度にしか低減できない欠点がある。
また、第2の方法は第8の細破線(ロ)で示すように吸
込ガス調節弁を閉じるまでの過程は前記第1の方法と同
様に無段階容量制御となるが、無負荷運転移行後は油回
収器内圧力を大気放出するものであるため、その無負荷
運転中に急激な圧縮空気の消費があったときには、全負
荷運転に復帰するまでの間に消費側配管内圧力が一時的
に低下し、これが間欠的に繰り返される場合には使用機
器の動作が不安定となることがあり、さらに前述したよ
うに無負荷運転移行後は折角動力を消費して所定圧力ま
で畜圧した圧縮空気を大気に放出するという無駄な行程
を有するものであるため、第9図の細破線(ロ′)に示
すように効果的な消費電力の節減に結びつかないという
欠点がある。また、第3の方法は第9図の太破線
(ハ′)に示すように消費電力の節減効果は前記第1,第
2の方法より遥かに大きい反面、アンローダ装置は第5
図の線Eに示すように電磁弁からのパイロット圧力によ
りON−OFF制御するものであるため、第8図の太破線
(ハ)に示すように軽・中間負荷時には前記第2の方法
と同様に制御機器のON−OFF動作に伴い消費側配管内圧
力が、ある一定圧力範囲で変動するという問題がある。
そのため、特に消費側使用機器の最低駆動圧力が高い場
合には、前記変動圧力が下限値に達した際に該機器の動
作が緩慢となるなどの不具合を生ずることとなる。
(Problem to be Solved by the Invention) Among the above-mentioned capacity control methods, the first method is that the unloader device is steplessly controlled by the pressure regulator, so that when the compressed air is consumed on the consuming side, the corresponding compression is performed immediately. Since air is supplied, the fluctuation range of the pressure in the air pipe on the consuming side can be reduced as shown by the two-dot chain line (a) in FIG. 8, while the two-dot chain line (a ') in FIG.
As shown by, there is a disadvantage that the load power (power consumption ratio) during no-load operation can be reduced to only about 70% of the full load.
In the second method, as shown by the eighth thin broken line (b), the process until the suction gas control valve is closed is stepless capacity control similarly to the first method, but after the shift to the no-load operation. Discharges the pressure inside the oil recovery unit to the atmosphere.If there is a sudden consumption of compressed air during the no-load operation, the pressure in the consuming pipe will temporarily decrease until the operation returns to full-load operation. If this is repeated intermittently, the operation of the equipment used may become unstable. Since it has a useless process of discharging air to the atmosphere, there is a drawback that it does not lead to effective reduction of power consumption as shown by a thin broken line (b ') in FIG. In the third method, as shown by the thick broken line (c ') in FIG. 9, the power saving effect is far greater than in the first and second methods, but the unloader device is the fifth method.
Since the ON-OFF control is performed by the pilot pressure from the solenoid valve as shown by the line E in the figure, as shown by the thick broken line (c) in FIG. In addition, there is a problem that the pressure in the consuming side pipe fluctuates in a certain constant pressure range with the ON-OFF operation of the control device.
For this reason, particularly when the minimum driving pressure of the consuming device is high, when the fluctuating pressure reaches the lower limit value, problems such as slow operation of the device occur.

これらの対策として、アンローダ装置がON−OFF動作
する圧力設定範囲を狭めたり、その動作設定圧力値を全
体に上方設定することも考えられるが、前者の場合は無
負荷運転と負荷運転動作の繰り返し頻度がさらに増大し
電磁弁その他の各制御機器の故障や寿命低下の原因とな
る他、後者の場合は設定圧力の上った分、圧縮機の負荷
動力が増大し、圧縮機或いは駆動原動機の過熱の原因と
なる虞れが高い。
As a countermeasure against this, it is conceivable to narrow the pressure setting range in which the unloader device performs ON-OFF operation, or to set the operation setting pressure value higher as a whole, but in the former case, the no-load operation and the load operation operation are repeated. In addition to the increase in frequency, this may cause failure of the solenoid valve and other control devices and shorten the service life. In the latter case, the load power of the compressor increases due to the increase in the set pressure, and the compressor or the driving motor There is a high possibility of causing overheating.

以上で説明した従来の容量制御方法は、何れも規定圧
力(第5図中P7参照)においてアンローダ装置は全開
で、かつ圧縮機の負荷動力は原動機の定格出力とほぼ一
致するように設計され、またアンローダ装置の無負荷運
転から全負荷運転への復帰圧力は、電磁弁等各制御機器
の最小復帰圧力巾を考慮した上定められ、規定圧力P7
(7kgf/cm2)よりも略1kgf/cm2程度低いP6(6kgf/cm2
を下限として設定されるのが普通である(第5図P6参
照)。
The conventional capacity control methods described above are designed such that the unloader device is fully opened at a specified pressure (see P7 in FIG. 5), and the load power of the compressor substantially matches the rated output of the prime mover. The return pressure of the unloader device from no-load operation to full-load operation is determined in consideration of the minimum return pressure width of each control device such as a solenoid valve.
P6 (6 kgf / cm 2 ), which is about 1 kgf / cm 2 lower than (7 kgf / cm 2 )
Is usually set as the lower limit (see FIG. 5, P6).

よって、消費側においては前記アンローダ装置の復帰
圧力値に合せて使用機器を選択する必要がある。換言す
れば、消費側からみた場合圧縮機の定格圧力(規定圧力
P7)に合わせて使用機器を選択しても、圧縮機が中負荷
状態では、配管内圧力はそれより低いP6の圧力となる場
合があるので、結局は前記復帰圧力に合せて使用機器を
選択しなければならないという不都合があり、それ故に
圧縮機自体も性能を充分に発揮した稼動を果していない
ことになる。
Therefore, on the consuming side, it is necessary to select the equipment to be used according to the return pressure value of the unloader device. In other words, when viewed from the consumer side, the rated pressure of the compressor (specified pressure
Even if the equipment to be used is selected according to P7), when the compressor is in a medium load condition, the pressure in the piping may be lower than P6, so eventually select the equipment to use according to the return pressure. Therefore, there is a disadvantage that the compressor itself does not operate with sufficient performance.

また、従来の容量制御方法では消費側圧力の増減にの
み応動してアンローダ装置を作動させるものであったの
で、省電力効果を向上させることには限界があった。
Further, in the conventional capacity control method, the unloader device is operated only in response to an increase or decrease in the consumption-side pressure, so that there is a limit in improving the power saving effect.

このような問題を解決する一手段として、特開昭56−
159589号公報のスクリュー圧縮機の吐出圧流量制御装置
が提案されている。この吐出圧流量制御装置は、吐出圧
力と、吐出圧力下限値との差に応じて吸気調整弁を閉じ
る方向の信号を出力する第1の機能部と吐出圧力が吐出
圧力上限以上になった時に前記吸気調整弁を全閉とし放
風弁を全開とする信号を入力し、吐出圧力が吐出圧力下
限値以下になった時に前記吸気調整弁を全開とし放風弁
を全閉とする信号を出力する第2の機能部と、前記第1,
2の機能部を選択的に切り換える第3の機能部と、この
第3の機能部における第1の機能部と第2の機能部との
切換点を、第1の機能部による吸込圧力と吐出圧力の圧
力比と、第2の機能部による吸気調整弁と放風弁との動
作頻度と、第1の機能部と第2の機能部とによる動力の
差との関数によって決定する第4の機能部とを備えたス
クリュー圧縮機の吐出圧流量制御装置であって、圧縮機
本体の吸入口に設けた吸気閉塞型アンローダ装置により
吸入空気量を制御する圧縮機の容量制御装置において、
スクリュー圧縮機の原動機で消費される動力を動力検出
器により検出し、そして動力にもとづいて制御を行うも
のである。
To solve such a problem, Japanese Patent Application Laid-Open No.
Japanese Patent Application Laid-Open No. 159589 proposes a discharge pressure flow control device for a screw compressor. This discharge pressure flow control device has a first functional unit that outputs a signal in a direction to close the intake adjustment valve in accordance with a difference between the discharge pressure and the discharge pressure lower limit value, and when the discharge pressure exceeds the discharge pressure upper limit. A signal for fully closing the intake control valve and fully opening the blow-off valve is input, and outputting a signal for fully opening the intake control valve and fully closing the blow-off valve when the discharge pressure becomes equal to or lower than the discharge pressure lower limit value. A second functional unit that performs
A third function unit for selectively switching the second function unit, and a switching point between the first function unit and the second function unit in the third function unit is determined by the suction pressure and the discharge by the first function unit. A fourth function determined by a function of the pressure ratio of the pressure, the operation frequency of the intake adjustment valve and the air release valve by the second function unit, and the power difference between the first function unit and the second function unit. A discharge pressure flow control device for a screw compressor having a function unit and a capacity control device for a compressor that controls the amount of intake air by an intake closing type unloader device provided at an intake port of the compressor body.
The power consumed by the prime mover of the screw compressor is detected by a power detector, and control is performed based on the power.

しかしながら、このような制御方法であっても第2の
方法と同様で、無負荷運転移行後は折角動力を消費して
所定圧力まで畜圧した圧縮空気を大気に放出するという
無駄な行程を有するものであるため、効果的な消費電力
の節減に結びつかない。
However, even in such a control method, as in the second method, there is a wasteful process of consuming power and discharging compressed air compressed to a predetermined pressure to the atmosphere after shifting to the no-load operation. It does not lead to effective power savings.

そこで本発明は上記課題を解消し消費側圧力を常時規
定圧力以上に保つと共に軽負荷時又は中負荷時における
省電力効果を向上させることを可能にする圧縮機の容量
制御装置を提供することを目的とする。
Accordingly, the present invention has been made to solve the above-mentioned problems, and to provide a compressor capacity control device capable of always maintaining the consumption-side pressure at a specified pressure or higher and improving the power saving effect at a light load or a medium load. Aim.

[発明の構成] (課題を解決するための手段) 本発明は、圧縮機本体の吸入口に設けた吸気閉塞型ア
ンローダ装置により吸入空気量を制御する圧縮機の内容
制御装置において、前記圧縮機本体の吐出口と連通する
配管系の消費側圧力を検出する圧力検出手段と、原動機
の消費電力を検出する消費電力検出手段と、電気信号に
基づき前記アンローダ装置の弁開閉動作を制御する電空
変換器と、負荷運転動作時において原動機の消費電力が
原動機の定格内か否かを判定する判定手段を有する制御
手段とを備え、この制御手段は負荷運転動作時において
前記消費電力検出手段と前記圧力検出手段の信号に基づ
き前記圧縮機本体の動力が原動機の定格内に納まるよう
に電空変換器を介してアンローダ装置の弁の開度を無段
階制御して消費側圧力を規定圧力より上昇させると共
に、前記消費側圧力が前記規定圧力よりも高い所定圧力
に達した時前記アンローダ装置を完全閉弁させて無負荷
運転動作に移行し、その後無負荷運転解除圧力に達した
時前記アンローダ装置を開弁させて負荷運転動作に移行
するように制御し、かつ、前記判定手段は、定格内の時
は前記アンローダ装置の弁の開度を大きくし、定格外の
時は弁の開度を小さくするように制御するものである。
[Constitution of the Invention] (Means for Solving the Problems) The present invention relates to a content control device for a compressor, which controls an intake air amount by an intake blocker type unloader device provided at an intake port of a compressor body. A pressure detecting means for detecting a consumption pressure of a piping system communicating with a discharge port of the main body; a power consumption detecting means for detecting power consumption of a motor; and an electropneumatic device for controlling a valve opening / closing operation of the unloader device based on an electric signal. A converter, and control means having determination means for determining whether the power consumption of the prime mover is within the rating of the prime mover during the load operation, and the control means includes the power consumption detection means and the power consumption during the load operation. Based on the signal from the pressure detecting means, the opening degree of the valve of the unloader device is steplessly controlled via an electropneumatic converter so as to regulate the consumption side pressure so that the power of the compressor body falls within the rating of the prime mover. When the pressure is raised above the pressure and when the consuming pressure reaches a predetermined pressure higher than the specified pressure, the unloader device is completely closed to shift to a no-load operation, and thereafter when the no-load operation release pressure is reached. The unloader device is controlled to open to shift to the load operation operation, and the determination means increases the opening degree of the valve of the unloader device when it is within the rated value, and increases the valve opening when the rated value is out of the rated value. The control is performed to reduce the opening.

(作 用) 上記容量制御装置によれば、消費側において圧縮空気
の消費が少ない所謂軽負荷又は中負荷時においては、ア
ンローダ装置の弁の開度を無段階でかつ圧縮機の負荷動
力が原動機の定格出力を超えない範囲で制御して消費側
圧力を規定圧力以上に上昇させ、そして消費側圧力が規
定圧力以上の所定圧力に達するとアンローダ装置を完全
閉弁させてその後通常の無負荷運転に移行し、消費側圧
力が無負荷運転解除圧力に達するとアンローダ装置を開
弁させて負荷運転に移行する。
(Operation) According to the above capacity control device, at the time of so-called light load or medium load in which the consumption of compressed air is small on the consuming side, the opening of the valve of the unloader device is stepless and the load power of the compressor is driven by the prime mover. The consumption pressure rises above the specified pressure by controlling the output within the range not exceeding the rated output of, and when the consumption pressure reaches the specified pressure equal to or higher than the specified pressure, the unloader device is completely closed and then the normal no-load operation When the consumption-side pressure reaches the no-load operation release pressure, the unloader device is opened to shift to the load operation.

(実施例) 以下、図面に基づいて本発明の実施例を従来例で説明
した第3の容量制御方法に基づいて説明する。
(Embodiment) Hereinafter, an embodiment of the present invention will be described with reference to the drawings based on the third capacity control method described in the conventional example.

第1図乃至第9図は本発明の一実施例を示し、第1図
及び第2図において圧縮機本体1の吸入口2には吸気閉
塞型アンローダ装置3が装着され、また吐出口4には逆
止弁5及び吐出パイプ6を介してレシーバタンク7が接
続されている。また、前記レシーバタンク7の空気取出
口8には開閉バルブ9及び逆止弁10を介して消費側空気
配管11が接続されていると共に、この消費側空気配管11
には圧力検出手段たる圧力センサ12が消費側の空気配管
内圧力を検出するために設けられている。また、レシー
バタンク7の空気取出口8には制御配管13を介して電空
変換器14の吸入口15が接続され、その排出口16は制御配
管18によりアンローダ装置3の1次室19に接続されてい
る。一方、レシーバタンク7下方には油溜20が設けら
れ、給油配管21,冷却器22,油量調整弁23を介して圧縮機
本体1の作用空間24に潤滑油が供給されるようになって
いる。25は油回収ポンプで、吐出口4から吐出された気
液混合流体を配管26を介して吐出パイプ6との連通路に
回収している。また、アンローダ装置3にはダイヤフラ
ム27に固設したピストン28とアンローダ弁29が連設さ
れ、1次室19に供給される制御配管18からの圧縮空気圧
力とその反対側に配設したリターンスプリング30の張力
とのバランスにより吸気路31を開閉するようになってい
る。
FIGS. 1 to 9 show an embodiment of the present invention. In FIGS. 1 and 2, an intake blockage type unloader device 3 is mounted on a suction port 2 of a compressor body 1 and a discharge port 4 is provided. Is connected to a receiver tank 7 via a check valve 5 and a discharge pipe 6. A consuming air pipe 11 is connected to the air outlet 8 of the receiver tank 7 via an opening / closing valve 9 and a check valve 10.
Is provided with a pressure sensor 12 as pressure detecting means for detecting the pressure in the air pipe on the consumption side. The air outlet 8 of the receiver tank 7 is connected to the inlet 15 of the electropneumatic converter 14 via the control pipe 13, and the outlet 16 is connected to the primary chamber 19 of the unloader device 3 by the control pipe 18. Have been. On the other hand, an oil reservoir 20 is provided below the receiver tank 7, and lubricating oil is supplied to the working space 24 of the compressor body 1 via an oil supply pipe 21, a cooler 22, and an oil amount adjustment valve 23. I have. Reference numeral 25 denotes an oil recovery pump which recovers the gas-liquid mixed fluid discharged from the discharge port 4 to a communication path with the discharge pipe 6 via a pipe 26. A piston 28 fixed to a diaphragm 27 and an unloader valve 29 are connected to the unloader device 3. A compressed air pressure from the control pipe 18 supplied to the primary chamber 19 and a return spring disposed on the opposite side are provided. The intake passage 31 is opened and closed according to the balance with the tension of 30.

電空変換器14は電気信号で排出空気圧を自由に調節す
ることができ後述するアンローダ装置3の容量制御特性
を得るための制御を行うもので、その特性は制御電流に
ほぼ比例しているものである。第2図は電空変換器14の
一例を示しており、コイル32中に流れる電流量に応じて
マグネット33を介して可動板34とノズル35との間隔が変
化し、この間隔が小さくなるとノズル35と連通したパイ
ロット室36の圧力が上昇し、主弁37が開き、排出口16側
の空気圧(制御空気圧)が上昇し、一方可動板34とノズ
ル35との間隔が大きくなると、パイロット室36の圧力が
降下し、リリーフ弁38が開き排出空気圧(制御空気圧)
が降下するように構成され、その制御特性は、制御電流
にほぼ比例した排出口側の圧力が得られるようになって
いる。尚、第2図中39は大気圧部分を示している。
The electropneumatic converter 14 is capable of freely adjusting the discharge air pressure by an electric signal and performs control for obtaining a capacity control characteristic of the unloader device 3 described later, and the characteristic is almost proportional to the control current. It is. FIG. 2 shows an example of the electropneumatic converter 14, in which the distance between the movable plate 34 and the nozzle 35 changes via the magnet 33 in accordance with the amount of current flowing through the coil 32. When the pressure in the pilot chamber 36 communicating with 35 rises, the main valve 37 opens, and the air pressure (control air pressure) on the discharge port 16 side increases, while the space between the movable plate 34 and the nozzle 35 increases, the pilot chamber 36 , The relief valve 38 opens and the discharge air pressure (control air pressure)
Is reduced, and the control characteristic thereof is such that a pressure on the outlet side substantially proportional to the control current is obtained. In FIG. 2, reference numeral 39 indicates an atmospheric pressure portion.

また、原動機40の電力供給ライン41には変流器CT等の
消費電力検出手段たる消費電力検出器42が設けられてい
る。制御回路43はマイクロコンピュータから構成され、
A/D変換器44、D/A変換器45、演算処理回路46及びデータ
設定回路47を有しており、圧力センサ12により検出され
た消費側圧力及び消費電力検出器42により検出された原
動機40の入力電流及び電圧は電力変換器48で電力変換さ
れ、この後A/D変換器44によりデジタル信号に変換され
て演算処理回路46に送られる。また演算処理回路46には
データ設定回路47から予め圧縮機の種類,用途に応じて
セットされた設定圧力及び許容電力等の種々のデータが
送られ、演算処理回路46はこれらのデータに基づいてD/
A変換器45を介して制御信号を電空変換器14へ出力し電
空変換器14の排出圧力を制御する。
The power supply line 41 of the prime mover 40 is provided with a power consumption detector 42 as power consumption detection means such as a current transformer CT. The control circuit 43 is composed of a microcomputer,
A motor having an A / D converter 44, a D / A converter 45, an arithmetic processing circuit 46, and a data setting circuit 47, and a consuming side pressure detected by the pressure sensor 12 and a power consumption detected by the power consumption detector 42; The input current and voltage of 40 are power-converted by a power converter 48, then converted into digital signals by an A / D converter 44 and sent to an arithmetic processing circuit 46. Further, various data such as set pressure and allowable power set in advance according to the type and use of the compressor are sent from the data setting circuit 47 to the arithmetic processing circuit 46, and the arithmetic processing circuit 46 performs processing based on these data. D /
The control signal is output to the electropneumatic converter 14 via the A converter 45 to control the discharge pressure of the electropneumatic converter 14.

次に容量制御動作について第3図のフローチャートを
参照して説明する。
Next, the capacity control operation will be described with reference to the flowchart of FIG.

圧縮機本体1の運転により通常の負荷運転動作が行わ
れアンローダ装置3から吸入口2に流入した空気は作用
空間24を経て圧縮後、この作用空間24内に噴射された潤
滑油と共に吐出口4に排出し、逆止弁5,吐出パイプ6を
介してレシーバタンク7に圧送され、潤滑油と分離後取
出口8から消費側空気配管11に圧送される。そして、消
費側の空気消費量が減少するとレシーバタンク7内圧力
は徐々に昇圧する。この場合、制御回路43は無負荷運転
動作中か否かを判定し(ステップ1)、負荷運転動作中
であるから消費電力検出器42の信号に基づき原動機40の
消費電力が定格内か否かを判定すると共に(ステップ
2)、消費側圧力が規定圧力を超えた後において定格内
である時は電空変換器14をこの排出空気圧が小さくなる
ように制御してアンローダ弁29を少し開き(ステップ
3)、定格外の時はアンローダ弁29を逆に少し閉じる
(ステップ4)。このような制御を反復して第7図の斜
線領域に示す範囲で原動機40の消費電力が定格内にある
ようにして電空変換器14の排出空気圧を制御することに
より、アンローダ装置3の1次室19に対し消費圧力の上
昇に対応した量の制御空気を圧送する。このようにし
て、第6図に示すようにアンローダ弁29のリフトLを連
続的に狭め、吸入空気量を制限する。そして、制御回路
43は消費空気量がさらに減少し、吸入空気量が略全負荷
時の80%に相当する程度まで連続的に絞られて消費側圧
力が無負荷運転開始圧力P8(8kgf/cm2)(第5図参照)
に達すると(ステップ5)、アンローダ弁29を完全に閉
弁して無負荷運転動作に移行する(ステップ6)(第5
図中B点及び第6図中B′点参照)。以降は、消費側圧
力が無負荷運転解除圧力P7(7kgf/cm2)に達したか否か
の判定がなされ(ステップ7)、消費側圧力が無負荷運
転解除圧力に達するとアンローダ弁29を全開し負荷運転
動作に移行し(ステップ8)、以降は最初に説明した順
序で同様の制御が繰り返される。このときの消費側圧力
の変化は第5図中の線Hで示すように、常に規定圧力P7
と無負荷運転開始圧力P8の範囲で制御される。また、制
御回路43は第4図に示すように駆動電動機40の消費電力
が定格値でアンローダ弁29の閉弁制御信号を送り、定格
値−α(αは定格値の95%程度)でアンローダ弁29の開
弁制御信号を送るようになっており、第4図の斜線で示
す不感帯域を有している。これによりアンローダ弁29の
過度の応答を防止すると共にこのアンローダ弁29のハン
チングや寿命の劣化を防止する。また、以上で説明した
本発明の容量制御方法に基づくレシーバタンク圧力及び
消費電力等の関係を従来の容量制御方法と対比すると、
第8図の実線(ニ)及び第9図の実線(ニ′)のとおり
となる。即ち、第8図において従来方法(イ),
(ロ),(ハ)に比べ消費側空気配管内圧力は規定圧力
P7以上に保持されているにもかかわらず第9図に示す負
荷率と消費電力比との関係でみると、負荷率80%程度ま
では消費電力比はほぼ100%内に納まっている。勿論、
この負荷率の範囲は電空変換器14の排出空気圧の調整次
第で70%或いは60%にも変更可能である。また、無負荷
運転開始圧力P8の設定は全負荷,無負荷運転動作の繰り
返し頻度に応じて適宜定めればよく、規定圧力P7と無負
荷運転開始圧力P8との差が小さい場合は圧縮機の全負
荷,無負荷運転動作の繰り返し頻度が増して、各制御機
器の寿命短縮につながる反面、省エネルギー効果は大と
なる。一方、規定圧力P7と無負荷運転開始圧力P8との差
が大きい程全負荷,無負荷運転動作の繰り返し頻度が減
少するため、各制御機器の動作頻度も減少し、よってそ
の寿命も長くなる反面、省エネルギー効果は減少する。
The normal load operation is performed by the operation of the compressor body 1, and the air flowing into the suction port 2 from the unloader device 3 is compressed through the working space 24, and then is discharged together with the lubricating oil injected into the working space 24. And is fed to the receiver tank 7 via the check valve 5 and the discharge pipe 6, and is sent from the outlet 8 after being separated from the lubricating oil to the consumption-side air pipe 11. When the consumption air consumption decreases, the pressure in the receiver tank 7 gradually increases. In this case, the control circuit 43 determines whether or not the operation is in the no-load operation (step 1). Since the operation is in the load operation, the control circuit 43 determines whether or not the power consumption of the prime mover 40 is within the rating based on the signal of the power consumption detector 42. (Step 2), and when the pressure on the consuming side is within the rating after exceeding the specified pressure, the electropneumatic converter 14 is controlled so that the discharged air pressure becomes small, and the unloader valve 29 is slightly opened ( In step 3), when it is out of the rating, the unloader valve 29 is closed slightly (step 4). By repeating such control and controlling the discharge air pressure of the electropneumatic converter 14 so that the power consumption of the prime mover 40 is within the rated range within the range shown by the hatched area in FIG. An amount of control air corresponding to the increase in the consumption pressure is pumped to the next chamber 19. In this way, as shown in FIG. 6, the lift L of the unloader valve 29 is continuously narrowed to limit the amount of intake air. And the control circuit
43, the air consumption is further reduced, the intake air amount is continuously reduced to a level corresponding to approximately 80% of the full load, and the consumption pressure is reduced to the no-load operation start pressure P8 (8 kgf / cm 2 ) (No. (See Fig. 5)
(Step 5), the unloader valve 29 is completely closed and the operation shifts to the no-load operation (step 6) (step 5).
(See point B in the figure and point B 'in FIG. 6). Thereafter, it is determined whether or not the consumption pressure has reached the no-load operation release pressure P7 (7 kgf / cm 2 ) (Step 7). When the consumption pressure reaches the no-load operation release pressure, the unloader valve 29 is opened. The operation is fully opened and the operation shifts to the load operation (step 8), and thereafter, the same control is repeated in the order described first. The change in the pressure on the consumption side at this time is, as shown by the line H in FIG.
And no-load operation start pressure P8. As shown in FIG. 4, the control circuit 43 sends a valve closing control signal for the unloader valve 29 when the power consumption of the drive motor 40 is at the rated value, and when the power consumption of the unloader valve 29 is rated at -α (α is about 95% of the rated value). A valve opening control signal for the valve 29 is sent, and has a dead zone indicated by oblique lines in FIG. This prevents an excessive response of the unloader valve 29 and prevents hunting and deterioration of the life of the unloader valve 29. Further, when comparing the relationship between the receiver tank pressure and the power consumption based on the capacity control method of the present invention described above with the conventional capacity control method,
A solid line (d) in FIG. 8 and a solid line (d ′) in FIG. 9 are obtained. That is, in FIG. 8, the conventional method (a),
The pressure in the consuming air piping is the specified pressure compared to (b) and (c).
Regarding the relationship between the load factor and the power consumption ratio shown in FIG. 9 even though it is held at P7 or higher, the power consumption ratio is almost within 100% up to a load factor of about 80%. Of course,
The range of the load factor can be changed to 70% or 60% depending on the adjustment of the discharge air pressure of the electropneumatic converter 14. The setting of the no-load operation start pressure P8 may be determined as appropriate according to the repetition frequency of the full-load and no-load operation operations. If the difference between the specified pressure P7 and the no-load operation start pressure P8 is small, the compressor The repetition frequency of the full-load and no-load operation increases, which leads to shortening of the life of each control device, but at the same time, the energy saving effect increases. On the other hand, as the difference between the specified pressure P7 and the no-load operation start pressure P8 increases, the frequency of repetition of full-load and no-load operation decreases, so that the operation frequency of each control device also decreases, and the life of the control device also increases. , The energy saving effect decreases.

このように、規定圧力P7と無負荷運転開始圧力P8との
圧力差の大小は制御機器の寿命と省エネルギー効果とに
相反する関係を有するものであるが、一般には以上の作
用を考慮してその圧力範囲を1kgf/cm2程度に設定するの
が適当である。
As described above, the magnitude of the pressure difference between the specified pressure P7 and the no-load operation start pressure P8 has a relationship that is inconsistent with the life of the control device and the energy saving effect. It is appropriate to set the pressure range to about 1 kgf / cm 2 .

これを従来例で説明した第1乃至第3の容量制御方法
をそのまま本発明実施例と同じ設定圧力とした場合で示
すと、第9図の2点鎖線Kで示したように消費電力比は
100%を大巾に超える結果となり、その場合には最初に
説明した各種不具合を招来することとなる。
If this is shown in the case where the first to third capacity control methods explained in the conventional example are set to the same set pressure as in the embodiment of the present invention, the power consumption ratio becomes as shown by the two-dot chain line K in FIG.
The result is much larger than 100%, in which case the various problems described above are caused.

なお、第9図において負荷率L及び消費電力比Wは次
式で表わされる。
In FIG. 9, the load factor L and the power consumption ratio W are expressed by the following equations.

負荷率=(消費空気量(m3/min)/圧縮機の定格空気量
(m3/min))×100 消費電力比=(消費電力(kw/Hr)/駆動原動機の定格
電力(kw/Hr))×100 なお、本発明は上記実施例に限定するものではなく本
発明の要旨の範囲内において種々の変形実施が可能であ
り、例えば吸気閉塞型アンローダ装置及び電空変換器は
各種タイプのものを適用可能である。また、本実施例に
おいては原動機40の消費電力を検出して制御を行う旨説
明したが、これを消費電流に置き換えて行うようにして
もよい。また、電空変換器は流量制御型のものに変更す
ることも可能である。
Load factor = (air consumption (m 3 / min) / rated air amount of compressor (m 3 / min)) × 100 Power consumption ratio = (power consumption (kw / Hr) / rated power of driving motor (kw / Hr)) × 100 Note that the present invention is not limited to the above-described embodiment, and various modifications can be made within the scope of the present invention. For example, an intake blockage type unloader device and an electropneumatic converter are various types. Is applicable. Further, in the present embodiment, the description has been made that the control is performed by detecting the power consumption of the prime mover 40, but this may be replaced with the current consumption. Also, the electropneumatic converter can be changed to a flow control type.

[発明の効果] 以上詳述したように、本発明の容量制御装置によれ
ば、原動機の消費電力を検出し、この検出信号に基づい
てアンローダ弁の開度を制御することにより消費側空気
配管内圧力を常時規定圧力以上でかつ圧縮機の負荷動力
が原動機の定格出力を超えない範囲で吸入空気の容量制
御を行うようにしたので、消費側における使用機器の動
作の不具合を生ずる虞れはなく、また消費電力も拡大す
ることがなく経済的な運転ができ、特に消費空気量の少
ない所謂軽負荷若しくは中負荷状態での使用時間が長い
場合には効果的である。
[Effects of the Invention] As described above in detail, according to the capacity control device of the present invention, the power consumption of the prime mover is detected, and the opening degree of the unloader valve is controlled based on this detection signal, thereby consuming the air piping on the consumption side. Since the capacity of the intake air is controlled so that the internal pressure is always at or above the specified pressure and the load power of the compressor does not exceed the rated output of the prime mover, there is a possibility that the operation of the equipment used on the consumer side may be defective. It can be operated economically without increasing power consumption, and is particularly effective when the usage time in a so-called light load or medium load state where the air consumption is small is long.

また、従来の容量制御方法によれば、規定圧力P7で圧
縮機の負荷動力が原動機の定格出力と一致するように圧
縮機の大きさが定められているが、これは消費側からみ
れば下限圧力P6の圧力仕様の圧縮機と同等の能力しかな
いのに比べて、本発明容量制御方法は前記下限圧力P6の
圧力を規定圧力とすることができる。ので従来の制御方
法で得られていた結果はそのままでさらに吐出圧力がP7
→P6と低下した分だけ大巾な省エネルギー効果を発揮で
きる。
In addition, according to the conventional capacity control method, the size of the compressor is determined so that the load power of the compressor matches the rated output of the prime mover at the specified pressure P7. The capacity control method of the present invention can set the pressure of the lower limit pressure P6 to a specified pressure, as compared to a compressor having a pressure specification of pressure P6 having only the same performance. Therefore, the result obtained by the conventional control method remains unchanged and the discharge pressure further increases
→ A large energy-saving effect can be exhibited by the amount reduced to P6.

そのうえ、本発明を現在使用中の従来機に適用する場
合も簡単な構成の付加で実施できるから安価である。
In addition, the present invention can be applied to a conventional machine currently in use and can be implemented by adding a simple configuration, so that the present invention is inexpensive.

しかも、本発明では規定圧力P7近傍で圧縮空気を使用
した場合でも圧縮空気を安定して消費側に供給でき、な
おかつ、無負荷運転を開始する前記所定圧力P8まで上昇
する時間が従来に対して短くなり、無負荷運転時間を長
くすることができる。より詳細に説明すると規定圧力P7
以上の圧力帯域では圧縮機の動力が原動機の定格出力生
越えない範囲でアンローダ装置を作動させることができ
るので規定圧力P7以上の圧力を保持することができ、ま
た規定圧力よりも高い所定圧力P8に達したときに電空変
換器が作動して消費側圧力(レシーバタンクの内圧)を
アンローダ装置に供給してアンローダ装置のバルブを閉
塞するので、従来の圧縮機に比較してアンローダ装置の
バルブの閉塞直前のバルブリフト量が大きくなり、これ
により空気量を増やし消費側圧力(レシーバタンクの内
圧)の圧力上昇を速くすることができるようになる。こ
の結果消費電力を抑えることができる。
Moreover, in the present invention, even when compressed air is used in the vicinity of the specified pressure P7, the compressed air can be stably supplied to the consuming side, and the time required to start the no-load operation up to the predetermined pressure P8 is longer than that of the conventional art. It becomes shorter, and the no-load operation time can be extended. More specifically, the specified pressure P7
In the above pressure range, the unloader device can be operated within a range where the power of the compressor does not exceed the rated output of the prime mover, so that the pressure above the specified pressure P7 can be maintained, and the predetermined pressure P8 higher than the specified pressure can be maintained. When the pressure reaches, the electropneumatic converter operates and supplies the consumption side pressure (internal pressure of the receiver tank) to the unloader device to close the valve of the unloader device. The valve lift immediately before the closing of the valve becomes large, thereby increasing the amount of air and increasing the pressure of the consuming side pressure (the internal pressure of the receiver tank). As a result, power consumption can be suppressed.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例を示す概略説明図、第2図は
電空変換器の断面図、第3図はフローチャート、第4図
はアンローダ弁の開閉動作特性を消費電力比との関係で
示すグラフ、第5図は容量制御時の圧力状態を示すグラ
フ、第6図はアンローダ弁の開閉動作特性を空気量比と
の関係で示すグラフ、第7図は消費側圧力と空気量及び
負荷動力の関係を示すグラフ、第8図は容量制御時の消
費側圧力と空気量比との関係を示すグラフ、第9図は負
荷特性を示すグラフである。 1……圧縮機本体 3……吸気閉塞型アンローダ装置 12……圧力センサ(圧力検出手段) 14……電空変換器 42……消費電力検出器(消費電力検出手段) 43……制御回路(制御手段)
FIG. 1 is a schematic explanatory view showing an embodiment of the present invention, FIG. 2 is a sectional view of an electropneumatic converter, FIG. 3 is a flowchart, and FIG. FIG. 5 is a graph showing the pressure state during displacement control, FIG. 6 is a graph showing the opening / closing operation characteristics of the unloader valve in relation to the air amount ratio, and FIG. 7 is a consumption side pressure and air amount. FIG. 8 is a graph showing the relationship between the consumption-side pressure and the air amount ratio during the capacity control, and FIG. 9 is a graph showing the load characteristics. DESCRIPTION OF SYMBOLS 1 ... Compressor main body 3 ... Intake blockage type unloader device 12 ... Pressure sensor (pressure detection means) 14 ... Electro-pneumatic converter 42 ... Power consumption detector (power consumption detection means) 43 ... Control circuit ( Control means)

フロントページの続き (58)調査した分野(Int.Cl.6,DB名) F04C 29/10 321 F04C 29/10 331 F04C 29/10 311Continuation of the front page (58) Field surveyed (Int.Cl. 6 , DB name) F04C 29/10 321 F04C 29/10 331 F04C 29/10 311

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】圧縮機本体の吸入口に設けた吸気閉塞型ア
ンローダ装置により吸入空気量を制御する圧縮機の容量
制御装置において、前記圧縮機本体の吐出口と連通する
配管系の消費側圧力を検出する圧力検出手段と、原動機
の消費電力を検出する消費電力検出手段と、電気信号に
基づき前記アンローダ装置の弁開閉動作を制御する電空
変換器と、負荷運転動作時において原動機の消費電力が
原動機の定格内か否かを判定する判定手段を有する制御
手段とを備え、この制御手段は負荷運転動作時において
前記消費電力検出手段と前記圧力検出手段の信号に基づ
き前記圧縮機本体の動力が原動機の定格内に納まるよう
に電空変換器を介してアンローダ装置の弁の開度を無段
階制御して消費側圧力を規定圧力より上昇させると共
に、前記消費側圧力が前記規定圧力よりも高い所定圧力
に達した時前記アンローダ装置を完全閉弁させて無負荷
運転動作に移行し、その後無負荷運転解除圧力に達した
時前記アンローダ装置を開弁させて負荷運転動作に移行
するように制御し、かつ、前記判定手段は、定格内の時
は前記アンローダ装置の弁の開度を大きくし、定格外の
時は弁の開度を小さくするように制御することを特徴と
する圧縮機の容量制御装置。
In a capacity control device for a compressor, wherein an intake air amount is controlled by an intake blocker type unloader device provided at an intake port of a compressor body, a consumption pressure of a piping system communicating with a discharge port of the compressor body. , A power consumption detecting means for detecting power consumption of the prime mover, an electropneumatic converter for controlling a valve opening / closing operation of the unloader device based on an electric signal, and a power consumption of the prime mover during a load operation. Control means having a determination means for determining whether or not the power consumption is within the rating of the prime mover. The control means operates the load of the compressor body based on signals from the power consumption detection means and the pressure detection means during a load operation. Through an electro-pneumatic converter to continuously control the opening of the valve of the unloader device to raise the consuming pressure from a specified pressure, and to reduce the consuming pressure to the specified value. When a predetermined pressure higher than the specified pressure is reached, the unloader device is completely closed and the operation shifts to a no-load operation operation. Thereafter, when the pressure reaches the no-load operation release pressure, the unloader device is opened to perform a load operation operation. And the determination means controls to increase the opening of the valve of the unloader device when the value is within the rating, and to decrease the opening of the valve when the value is out of the rating. Characteristic compressor capacity control device.
JP1290384A 1989-11-08 1989-11-08 Compressor capacity control device Expired - Lifetime JP2803238B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1290384A JP2803238B2 (en) 1989-11-08 1989-11-08 Compressor capacity control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1290384A JP2803238B2 (en) 1989-11-08 1989-11-08 Compressor capacity control device

Publications (2)

Publication Number Publication Date
JPH03151593A JPH03151593A (en) 1991-06-27
JP2803238B2 true JP2803238B2 (en) 1998-09-24

Family

ID=17755320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1290384A Expired - Lifetime JP2803238B2 (en) 1989-11-08 1989-11-08 Compressor capacity control device

Country Status (1)

Country Link
JP (1) JP2803238B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7165949B2 (en) * 2004-06-03 2007-01-23 Hamilton Sundstrand Corporation Cavitation noise reduction system for a rotary screw vacuum pump
US7285882B2 (en) * 2005-05-12 2007-10-23 Sullair Corporation Integrated electric motor driven compressor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56159589A (en) * 1980-05-14 1981-12-08 Hitachi Ltd Discharge pressure and flow rate control system for screw compressor
JPS6336674U (en) * 1986-08-27 1988-03-09
JPS6478284A (en) * 1987-09-19 1989-03-23 Victor Company Of Japan 3-d display device

Also Published As

Publication number Publication date
JPH03151593A (en) 1991-06-27

Similar Documents

Publication Publication Date Title
JP2754079B2 (en) Control method and control device for compressor system
US7922457B2 (en) System and method for controlling a variable speed compressor during stopping
JP3837278B2 (en) Compressor operation method
US8241007B2 (en) Oil-injection screw compressor
JP3125794B2 (en) Method and apparatus for controlling capacity of screw compressor
JPH0438919B2 (en)
JPS59145392A (en) Method of controlling capacity of screw-type compressor
JP4532327B2 (en) Compressor and operation control method thereof
US20070172370A1 (en) Capacity control device and capacity control method for screw compressor
JP5506830B2 (en) Screw compressor
JP2803238B2 (en) Compressor capacity control device
JP2814272B2 (en) Rotary compressor capacity control method
JP6997648B2 (en) Compressor system
WO2020213353A1 (en) Gas compressor
JP3470042B2 (en) Screw compressor pressure control method
US4976588A (en) Compressor control system to improve turndown and reduce incidents of surging
JP2007085360A (en) Method for operating screw compressor
JP2952377B2 (en) Capacity control device for compressor
JP3384894B2 (en) Turbo compressor capacity control method
JP2684715B2 (en) Compressor capacity control method
JPH109147A (en) Reciprocating compressor control method
JPS627399B2 (en)
CN219242207U (en) Capacity adjusting mechanism of single-machine double-stage screw compressor
JP2006161754A (en) Compressor equipment and its control method
JP4608289B2 (en) Operation control method of screw compressor