JPS627399B2 - - Google Patents

Info

Publication number
JPS627399B2
JPS627399B2 JP55115463A JP11546380A JPS627399B2 JP S627399 B2 JPS627399 B2 JP S627399B2 JP 55115463 A JP55115463 A JP 55115463A JP 11546380 A JP11546380 A JP 11546380A JP S627399 B2 JPS627399 B2 JP S627399B2
Authority
JP
Japan
Prior art keywords
compressor
margin
pressure
capacity
compressors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55115463A
Other languages
Japanese (ja)
Other versions
JPS5744787A (en
Inventor
Masao Sawada
Shiro Hirose
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP11546380A priority Critical patent/JPS5744787A/en
Publication of JPS5744787A publication Critical patent/JPS5744787A/en
Publication of JPS627399B2 publication Critical patent/JPS627399B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、消費圧縮ガス量に相応する適量の圧
縮ガスを生起し、圧縮機の動力ロスを低減せしめ
ることを目的とした回転式容積形圧縮機の稼動台
数制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention is a method for controlling the number of rotary positive displacement compressors in operation, with the aim of generating an appropriate amount of compressed gas corresponding to the amount of compressed gas consumed and reducing power loss of the compressor. Regarding.

従来、消費圧縮ガス量に合致せしめて圧縮ガス
を供給する方法としては、第1図で示す如く、消
費圧縮ガス量の増減を検出し、圧縮機稼動台数の
増減を行なつている。
Conventionally, as a method of supplying compressed gas in accordance with the amount of compressed gas consumed, as shown in FIG. 1, an increase or decrease in the amount of compressed gas consumed is detected and the number of operating compressors is increased or decreased.

即ち、第1図を参照すれば、個々の圧縮機
C′は吐出圧力を検出して圧縮機C′の圧送容量を
無段階に制御するアンローダ(容量制御装置)を
装備している。そして、稼動中の圧縮機C′の内
1台(負荷の変動巾が大のときは2台の場合もあ
る。)のアンローダを作動させ、残りの圧縮機
C′を電磁弁S′により固定すれば、稼動中の圧縮機
C′中の1台分の範囲内の負荷変動(消費量変
動)はアンローダにより吸収できる。この場合、
アンローダで吸収し得る範囲を超えて負荷変動が
あれば、空気の供給不足(消費量>圧送量)によ
る吐出圧力低下又は供給過大(消費量<圧送量)
による圧力上昇が生じ、この圧力変動を圧力スイ
ツチ(下限PSL又は上限PSH)により検出し、圧
縮機C′の稼動台数を増加減する信号としてい
る。
That is, referring to FIG.
C' is equipped with an unloader (capacity control device) that detects the discharge pressure and continuously controls the pumping capacity of compressor C'. Then, the unloader of one (or two if the load fluctuation range is large) of the operating compressors C' is activated, and the unloader of the remaining compressors C' is operated.
If C′ is fixed with solenoid valve S′, the compressor during operation can be
Load fluctuations (consumption fluctuations) within the range of one vehicle in C' can be absorbed by the unloader. in this case,
If the load fluctuates beyond the range that can be absorbed by the unloader, the discharge pressure will drop due to insufficient air supply (consumption amount > pumped amount) or excessive supply (consumption amount < pumped amount)
This pressure fluctuation is detected by a pressure switch (lower limit PSL or upper limit PSH) and is used as a signal to increase or decrease the number of operating compressors C'.

上記従来例では、消費圧縮ガス量の変動を吐出
圧力の変動に依つて検出するものであり、アンロ
ーダの作動範囲外にPSH、PSLの設定値を設ける
必要があり、その上に圧縮機起動時には駆動電動
機の起動時間が必要であり、その間十分な圧縮ガ
スを生起し得ないため、吐出口で圧力降下が生じ
得る。この状態は第2図で示す如くであり、PSL
の設定値は、空気源設備としての必要供給最低圧
力に起動時の起動期間に生じる圧力降下量を加算
した圧力以上の値とされる。
In the conventional example above, fluctuations in the amount of compressed gas consumed are detected by fluctuations in discharge pressure, and it is necessary to set PSH and PSL settings outside the operating range of the unloader. A pressure drop can occur at the outlet because the drive motor requires start-up time during which sufficient compressed gas cannot be generated. This state is as shown in Figure 2, and the PSL
The set value is set to be a value equal to or higher than the sum of the minimum supply pressure required for the air source equipment and the amount of pressure drop that occurs during the start-up period at the time of start-up.

然し乍ら、上記状態では、圧縮機C′は必要最
低圧力以上の近傍で稼動されれば足りるにも拘ら
ず、この最低圧力より相当高圧の圧縮ガスを生起
することとなり、圧縮機C′に無用の負荷がかか
ると共に、過大な動力負荷が強制されていた。
However, in the above condition, even though it is sufficient for compressor C' to be operated near the required minimum pressure, compressed gas is generated at a considerably higher pressure than this minimum pressure, and compressor C' has no use for compressor C'. In addition to being loaded, an excessive power load was also imposed.

上記従来の技術及びその問題点を第9図をもち
いて更に詳しく説明すれば、第1図に示す圧縮機
4台の設備で、例えば3台稼動中であつたとする
と、稼動中3台の全機のアンローダを作動させる
と、第9図の仮想線で示すように、吐出量0〜
300%の範囲で吐出圧力が調整される。
To explain the above conventional technology and its problems in more detail using Fig. 9, if, for example, three of the four compressors shown in Fig. 1 are in operation, all three compressors are in operation. When the unloader of the machine is operated, the discharge amount changes from 0 to 0, as shown by the virtual line in Fig.
Discharge pressure is adjusted within a range of 300%.

従つて、稼動中の全機のアンローダを作動させ
ると、消費量が200%、100%に減少しても、全機
が駆動されることになり、駆動電力の無駄使いに
なる。
Therefore, if the unloaders of all the machines in operation are operated, even if the consumption is reduced to 200% or 100%, all the machines will be driven, resulting in a waste of drive power.

そこで、消費量が200%になれば圧縮機を1台
停止させ、更に100%になれば更に1台停止させ
るように、圧縮機の稼動台数を制御して、電力消
費量を節減しなければならないが、稼動中の全機
のアンローダを作動させて、かつ、稼動台数を制
御するには、例えば、消費量が300%から200%に
減少すると、吐出圧はP1からP11になるので(第
9図参照)、このP11の圧力を圧力スイツチで検出
し、圧縮機1台を停止するようにすればよい。
Therefore, it is necessary to reduce power consumption by controlling the number of operating compressors so that when the consumption reaches 200%, one compressor is stopped, and when the consumption reaches 100%, another compressor is stopped. However, in order to operate the unloaders of all machines in operation and control the number of machines in operation, for example, when the consumption decreases from 300% to 200%, the discharge pressure will go from P 1 to P 11 . (See Fig. 9), the pressure at P11 may be detected by a pressure switch and one compressor may be stopped.

しかし、圧縮機の吐出圧力は約7Kg/cm2程度で
あり、アンローダの作動範囲(P2―P1)は約0.3〜
0.5Kg/cm2であり、P1からP11への変化は、約0.1
Kg/cm2程度である。このように、7Kg/cm2以上の
圧力レンジで、0.1Kg/cm2の変化を検出すること
は極めて困難であり、この方法では稼動台数を制
御できなかつた。
However, the discharge pressure of the compressor is about 7 kg/cm 2 and the operating range of the unloader (P 2 - P 1 ) is about 0.3 to
0.5Kg/cm 2 and the change from P 1 to P 11 is approximately 0.1
It is about Kg/ cm2 . As described above, it is extremely difficult to detect a change of 0.1 kg/cm 2 in a pressure range of 7 kg/cm 2 or more, and the number of operating units could not be controlled with this method.

そこで従来は、第9図実線で示すように、3台
の圧縮機が稼動中であれば、その内の1台のみの
アンローダを作動させ、300〜200%の範囲の吐出
圧力変動に対応する容量制御を行ない、200%以
下に消費量が減少してもアンローダは作動せず、
200%に保持されているので、吐出量200%と消費
量200%以下の流量差によつて吐出圧力を上昇せ
しめ、圧力検出の容易なPSHの値まで昇圧させ、
圧力スイツチにより1台の圧縮機を停止させてい
た。
Conventionally, as shown by the solid line in Figure 9, when three compressors are in operation, only one unloader is activated to accommodate discharge pressure fluctuations in the range of 300 to 200%. Capacity control is performed, and even if the consumption decreases to less than 200%, the unloader will not operate.
Since it is held at 200%, the discharge pressure is increased by the difference in flow rate between the discharge rate of 200% and the consumption rate of 200% or less, and the pressure is increased to the value of P SH where the pressure can be easily detected.
One compressor was stopped by a pressure switch.

逆に消費量が300%以上に上昇した場合、圧縮
機は3台で300%の吐出量しかないので、その流
量差により吐出圧力は下降し、圧力検出の容易な
圧力PSLまで下降させ、圧力スイツチにより1台
の圧縮機を追加起動させていた。この追加起動時
には、圧縮機の起動立上特性により、起動後もし
ばらくの間、圧力は下降を続けるため、吐出圧は
最小PLLまで低下する。
On the other hand, when the consumption rate increases to 300% or more, since there are only 3 compressors and the discharge rate is only 300%, the discharge pressure decreases due to the difference in flow rate, and is lowered to a pressure PSL where pressure can be easily detected. One additional compressor was activated by a pressure switch. During this additional startup, the pressure continues to decrease for a while after startup due to the start-up characteristics of the compressor, so the discharge pressure decreases to the minimum PLL .

従つて、従来のものは、消費設備側に必要な最
低圧力をPLLとし、運転圧力範囲は最高PSHまで
の広い範囲となつていた。しかも、本来、P1を可
及的にPSLに近づけて低圧力で運転することが望
ましいが、前述の如く、アンローダ作動範囲は
0.3〜0.5Kg/cm2と非常に狭く、しかも吐出圧は7
Kg/cm2以上の高圧であるから、検出スイツチの精
度面からP1とPSLを接近させることが困難であ
り、P1はPSLよりも相当高い値に設定されてい
た。従つて、圧縮機は必要最低圧より相当高圧側
で駆動され、消費電力の無駄が生じていた。
Therefore, in conventional systems, the minimum pressure required on the consumer equipment side is PLL , and the operating pressure range is wide up to the maximum PSH . Moreover, it is originally desirable to operate at low pressure with P 1 as close to P SL as possible, but as mentioned above, the unloader operating range is
It is very narrow at 0.3 to 0.5Kg/ cm2 , and the discharge pressure is 7
Since the pressure is as high as Kg/cm 2 or more, it is difficult to make P 1 and P SL close to each other in terms of accuracy of the detection switch, and P 1 is set to a value considerably higher than P SL . Therefore, the compressor is driven at a pressure considerably higher than the required minimum pressure, resulting in wasted power consumption.

本発明はかかる従来の問題点に鑑み、鋭意創成
されたものであり、圧縮機を複数台設置し、例え
ば工場動力空気源設備として運転する際、消費圧
縮ガス量に合せて運転する圧縮機台数を制御し、
もつて省エネルギー効果を発揮せんとするもので
ある。
The present invention has been devised in view of such conventional problems, and when a plurality of compressors are installed and operated as a factory power air source equipment, for example, the number of compressors to be operated according to the amount of compressed gas consumed. control,
The aim is to achieve an energy saving effect.

以下、第2図乃至第7図の実施例を参照して説
明すると、圧縮機Cの一例としてのスクリユー圧
縮機用アンローダは吸込絞り弁Vを絞つて圧縮機
Cの吸込圧力を低下させることにより吐出容量を
減少させているが、吸込圧力(ゲージ圧)と圧縮
機C能力は近似的に比例することに着目し、各圧
縮機Cの吸込圧力を計測することにより圧縮機C
の吐出ガス量、例えば吐出空気量が算定できる。
The following description will be made with reference to the embodiments shown in FIGS. 2 to 7. The screw compressor unloader as an example of the compressor C reduces the suction pressure of the compressor C by throttling the suction throttle valve V. Although the discharge capacity is reduced, we focused on the fact that suction pressure (gauge pressure) and compressor C capacity are approximately proportional, and by measuring the suction pressure of each compressor C, compressor C
The amount of discharged gas, for example the amount of discharged air, can be calculated.

即ち、稼動中の圧縮機C全てのアンローダを作
動させると共に吸込圧力の計測を行ない各圧縮機
Cの定格運転時の吸込圧力と比較することにより
アンロード量(余裕量)が算出できる。
That is, the unload amount (margin amount) can be calculated by operating the unloaders of all the compressors C in operation, measuring the suction pressure, and comparing it with the suction pressure of each compressor C during rated operation.

圧縮機全負荷容量×(1−吸込圧力/全負荷時吸込圧
力) =余裕量 尚、圧縮機Cの吸入圧力は、大気圧(ゲージ圧
0Kg/cm2)から完全真空(ゲージ圧―1Kg/cm2
までの範囲であり、その圧力レンジは最大1Kg/
cm2である。従つて、吐出圧力のレンジ約7Kg/cm2
以上に比べて極めて小さい為、微少圧力変化も高
精度に検出することができる為、吸込圧力を計測
してアンロード量を高精度に算出することができ
る。
Compressor full load capacity x (1 - suction pressure / suction pressure at full load) = margin capacity The suction pressure of compressor C varies from atmospheric pressure (gauge pressure 0 kg/cm 2 ) to complete vacuum (gauge pressure - 1 kg/cm 2 ). cm2 )
The pressure range is up to 1Kg/
cm2 . Therefore, the discharge pressure range is approximately 7Kg/cm 2
Since it is extremely small compared to the above, even minute pressure changes can be detected with high precision, so the unload amount can be calculated with high precision by measuring the suction pressure.

稼動中の圧縮機全てについて余裕量を積算する
と総合の余裕量が算出できる。この総合余裕量が
一台分の圧縮機C定格吐出量又はそれ以上有れば
稼動中の圧縮機C一台を停止し、又、余裕量が減
少すれば1台を追加起動することとし、消費圧縮
ガス量に相応する圧縮ガスを生起せしめればよ
い。
By integrating the margins for all compressors in operation, the total margin can be calculated. If this total margin is equal to or greater than the rated discharge amount of one compressor C, one operating compressor C will be stopped, and if the margin decreases, one additional unit will be started. It is sufficient to generate compressed gas corresponding to the amount of compressed gas consumed.

特に第3図をみれば、n台の圧縮機Cが配置さ
れている。ここで、全圧縮機C容量(n台の定格
容量の和)に対する夫々の圧縮機C定格容量の比
率をA,A2……Aoとすると、 A1+A2+……+Ao=1 であり、各圧縮機Cの全負荷状態での吸込圧力は
大気圧(PS=0)として、今m番目までの圧縮
機Cが稼動しているとし、各々の吸込圧をPS1
S2……PSoとしたとき、稼動中のi番目の圧縮
機Cの余裕率は Ai(1−1+PSi/1)=−AiPSi となる。但し、i=1,2,……、m(m≦
n)、PSiは吸込圧力をゲージ圧で測定した値で
ある(PSi≦OKg/cm2G)。上記式において、停
止中の圧縮機CはPS=OKg/cm2Gであり、余裕
率は零となる。又、上記式からm台分の合計余裕
率Aは、 となる。
In particular, if you look at FIG. 3, n compressors C are arranged. Here, if the ratio of each compressor C rated capacity to the total compressor C capacity (sum of the rated capacities of n units) is A, A 2 ... A o , then A 1 + A 2 + ... + A o = 1 The suction pressure of each compressor C under full load is atmospheric pressure (P S =0), and it is assumed that up to the m-th compressor C is currently operating, and the suction pressure of each compressor C is P S1 ,
P S2 ...P So , the margin ratio of the i-th compressor C in operation is Ai (1-1+P Si /1) = -AiP Si . However, i=1, 2, ..., m (m≦
n), P Si is the value of the suction pressure measured in gauge pressure (P Si ≦OKg/cm 2 G). In the above equation, when the compressor C is stopped, P S =OKg/cm 2 G, and the margin ratio is zero. Also, from the above formula, the total margin A for m vehicles is: becomes.

第4図は圧縮機Cの自動起動停止判別回路を示
し、予裕率Aを監視すれば、稼動中の圧縮機C全
体のアンローダ率(設備容量に対する)が解るの
で、予め定められた必要最少限の余裕率ALより
も少くなれば、1台を追加起動し、必要充分の余
裕率AHよりも多くなれば1台を停止せしめる。
再度、停止、起動させる場合にも各圧縮機Cの定
格容量比率Aiと比較すれば、最適な容量の圧縮
機Cを選定することが可能である。
Figure 4 shows the automatic start/stop determination circuit for compressor C. By monitoring the reserve rate A, the unloading rate (relative to the installed capacity) of the entire operating compressor C can be determined, so the minimum required minimum If the margin rate A L becomes less than the limit, one additional unit is activated, and if it exceeds the necessary and sufficient margin rate A H , one unit is stopped.
When stopping and starting again, by comparing the rated capacity ratio A i of each compressor C, it is possible to select the compressor C with the optimum capacity.

説明簡素化のため、例えば同じ容量の圧縮機C
が4台設置されている場合を説明すると、第4図
の回路は第5図の回路に置き替えられる。今AH
=0.25(即ち、1台分の定格容量の余裕率)AL
=O(余裕率は零)に設定すると、余裕率は零か
ら圧縮機C1台分までの間で負荷に応じて運転さ
れるので必要最少限の台数運転が可能であり、吐
出圧力も運転している圧縮機Cのアンローダ弁が
全て作用するため圧力変動巾も小さくなる。
To simplify the explanation, for example, compressor C with the same capacity
To explain the case where four units are installed, the circuit in FIG. 4 is replaced with the circuit in FIG. 5. Now A H
= 0.25 (i.e. margin of rated capacity for one unit) A L
When set to =O (margin rate is zero), the margin rate will be operated according to the load between zero and one compressor C, so it is possible to operate the minimum number of compressors required, and the discharge pressure can also be operated. Since all of the unloader valves of the compressor C are activated, the range of pressure fluctuation is also reduced.

尚、本発明による制御方式に従来の制御に使用
している吐出圧力スイツチによる制御を付加し
て、台数制御を行うことも可能である。例えば、
第6,7図で示す如く、吐出母管の圧力も検知し
て、余裕率による起動・停止信号と組合せて制御
する方法である。吐出圧力上昇信号PHと、吐出
圧力低下信号PLの値を圧縮アンローダの作動圧
力範囲外のPH1,PL1に夫々設定し、OR回路で
制御すれば圧縮機C、アンローダの作動不良の場
合や、アンローダ特性が容量零まで制御できない
場合に有効である。又、PH,PLの値をアンロー
ダ作動範囲のPH2,PL2に設定し、AND回路を使
用すれば、各圧縮機Cのアンロード特性に大きな
バラツキがある場合に有効である。
Note that it is also possible to control the number of units by adding control using a discharge pressure switch used in conventional control to the control method according to the present invention. for example,
As shown in FIGS. 6 and 7, this is a method in which the pressure of the discharge main pipe is also detected and controlled in combination with a start/stop signal based on a margin ratio. If the values of the discharge pressure increase signal P H and the discharge pressure decrease signal P L are set to P H1 and P L1 , which are outside the operating pressure range of the compression unloader, and controlled by the OR circuit, malfunction of the compressor C and the unloader can be prevented. This is effective in cases where the unloader characteristics cannot be controlled to zero capacity. Furthermore, setting the values of P H and P L to P H2 and P L2 within the unloader operating range and using an AND circuit is effective when there are large variations in the unload characteristics of each compressor C.

二段型のスクリユー圧縮機Cでは、吸込絞り弁
付の圧縮機や、一段のみスライド弁付の圧縮機が
あるが、二段吸込圧力を計測することにより同様
の結果が得られる。但し、停止中の圧縮機の二段
吸込圧力は大気圧1で均圧されるため、余裕量が
大きいという計測結果となるため、停止機は余裕
量零という前処理演算器が必要となる。
The two-stage screw compressor C includes a compressor with a suction throttle valve and a compressor with only one stage of a slide valve, but similar results can be obtained by measuring the two-stage suction pressure. However, since the two-stage suction pressure of the stopped compressor is equalized at atmospheric pressure 1, the measurement result is that the margin is large, so a pre-processing calculator is required for the halted compressor, which has a margin of zero.

本発明によれば、圧縮ガスの消費量変動による
圧力変動巾を最少限とすることができ、第8図で
示す如く運転圧力を下降させることができる。即
ち、第10図をもちいてこのことを説明すれば、
本発明では圧力スイツチを用いていないので、ア
ンローダの作動圧力P1をPSL(第9図のPSLと同
じ値)の値まで下げることができる。また消費量
の減少時も従来のものはPSHまで圧力が上昇後、
1台の圧縮機を停止させていたが(第9図参
照)、本発明では、第10図に示すように、
P11′までの圧力上昇で1台の圧縮機が停止される
ので、低圧運転が可能となる。
According to the present invention, it is possible to minimize the range of pressure fluctuations due to fluctuations in compressed gas consumption, and it is possible to lower the operating pressure as shown in FIG. That is, if we explain this using Figure 10,
Since the present invention does not use a pressure switch, the operating pressure P 1 of the unloader can be reduced to the value P SL (same value as P SL in FIG. 9). Also, when the consumption decreases, in the conventional type, after the pressure rises to P SH ,
One compressor was stopped (see Figure 9), but in the present invention, as shown in Figure 10,
Since one compressor is stopped when the pressure rises to P 11 ', low pressure operation is possible.

即ち、圧縮機3台稼動中、300%消費の時は吐
出圧P1=PSLと低くなつている。消費量が減少し
て200%になつた時、従来技術(第9図)ではP2
まで圧力が上昇したが、本発明では3台のアンロ
ーダの並列制御のため、P11′の値までしか圧力は
上昇しなくなる。この時に余裕量の判定により1
台停止させると、アンローダ特性は、2台並列特
性に移る(第10図参照)。
That is, when three compressors are in operation and the consumption is 300%, the discharge pressure is as low as P 1 =P SL . When the consumption decreases to 200%, in the conventional technology (Figure 9) P 2
However, in the present invention, because three unloaders are controlled in parallel, the pressure increases only to the value of P 11 '. At this time, 1
When the machines are stopped, the unloader characteristics shift to two parallel machines (see Fig. 10).

従来技術では、消費量減少判定の為、PSHまで
昇圧させていたものが、本発明ではP11′の値以上
には昇圧しないことになる。
In the conventional technology, the voltage was increased to P SH in order to determine the reduction in consumption, but in the present invention, the voltage is not increased above the value of P 11 '.

尚、消費量が増加した時は、圧縮機の起動時間
による圧力降下は従来技術と差はなく、PLLまで
下降する。この運転圧力の下降が所要動力の節約
になることを次式で証明する。
Note that when the consumption increases, the pressure drop due to the compressor startup time is the same as in the conventional technology and drops to PLL . The following equation proves that this reduction in operating pressure saves the required power.

W:動力Kw,K:比熱比、Bd:吐出口の絶対
静圧、 PS:吸込圧の絶対静圧(Kg/cm2 abs) Q:吸込状態での空気量(m3/min) 例えば、具体的数値として、Q=50m3/min、Pd
=7Kg/cm2Gとし、Pdの圧力を6Kg/cm2Gに降
下させたときの全負荷時の所要動力は 上式から 電力節約比=100×(1−213/232)=8.2% となり、8.2%の電力節約が達成される。そし
て、吐出圧力が下降することで、管路内の圧送損
失は多少増加するが、一般の負荷設備特性は供給
圧力の低下に比例して消比量が減少するため、上
記8.2%の節約達成は確実である。
W: Power Kw, K: Specific heat ratio, Bd: Absolute static pressure at discharge port, P S : Absolute static pressure of suction pressure (Kg/cm 2 abs) Q: Air volume in suction state (m 3 /min) For example: , as specific values, Q=50m 3 /min, Pd
= 7Kg/cm 2 G, and the required power at full load when the pressure of Pd is reduced to 6Kg/cm 2 G is From the above formula, the power saving ratio = 100 x (1-213/232) = 8.2%, and a power saving of 8.2% is achieved. As the discharge pressure decreases, the pumping loss in the pipeline increases somewhat, but the general load equipment characteristic is that the rejection ratio decreases in proportion to the decrease in supply pressure, so the above 8.2% savings were achieved. is certain.

又、余裕量の計測がなされて、停止又は起動す
べき圧縮機の選択が可能となり、余裕量の最少値
を確保する制御が達成され、異なつた容量を有す
る圧縮機が混在する圧縮機設備において、圧縮機
の最適選択、最適台数の制御ができ、省エネルギ
ーとして優れた効果がある。
In addition, by measuring the margin, it is possible to select which compressor to stop or start, and control to ensure the minimum margin is achieved, which is useful in compressor equipment where compressors with different capacities coexist. , it is possible to optimally select the compressor and control the optimal number of compressors, resulting in an excellent energy saving effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来例を示す全体配置線図、第2図は
同従来例の作用説明図、以下は本発明の実施例を
示し、第3図は全体配置線図、第4図は回路図、
第5図は第4図を簡略化した説明用回路図、第6
図及び第7図は他の実施例を示す回路図及び作用
説明図、第8図は本発明の効果を示す説明図、第
9図は従来技術を説明するためのアンローダ作動
特性を示すグラフ、第10図は本発明の作用を説
明するためのアンローダ作動特性を示すグラフで
ある。 C……圧縮機。
Fig. 1 is an overall layout diagram showing a conventional example, Fig. 2 is an explanatory diagram of the operation of the conventional example, the following shows an embodiment of the present invention, Fig. 3 is an overall layout diagram, and Fig. 4 is a circuit diagram. ,
Figure 5 is an explanatory circuit diagram that is a simplified version of Figure 4;
and FIG. 7 are circuit diagrams and action explanatory diagrams showing other embodiments, FIG. 8 is an explanatory diagram showing the effects of the present invention, and FIG. 9 is a graph showing unloader operating characteristics for explaining the prior art. FIG. 10 is a graph showing unloader operating characteristics for explaining the effect of the present invention. C...Compressor.

Claims (1)

【特許請求の範囲】 1 圧縮機吐出圧力により作動する吸込絞り弁等
の容量制御装置を装備した複数台の圧縮機の稼動
台数制御方法であつて、運転中の各圧縮機の容量
制御装置を作動させつつ、運転中の各圧縮機の吸
込圧力又は中間段圧力と、予め設定値として記憶
させた各圧縮機の定格運転時における吸込圧力と
を夫々比較して各圧縮機における容量の余裕量を
演算し、それらを積算して運転中の総和余裕量を
求め、該総和余裕量と予め設定された余裕量の上
下限値とを比較し、上限値を超える場合には1台
停止し、下限値を割る場合には1台起動せしめ、
上記動作を繰り返すことにより常時、消費圧縮ガ
ス量に相当する台数の圧縮機を稼動せしめること
を特徴とする回転式容積形圧縮機の稼動台数制御
方法。 2 圧縮機吐出圧力により作動する吸込絞り弁等
の容量制御装置を装備した定格容量の異なる複数
台の圧縮機を配設し、これら圧縮機の総和定格容
量に対する各圧縮機の定格容量の比率を予め記憶
させておき、運転中の各圧縮機の容量制御装置を
作動させつつ、各圧縮機の吸込圧力又は中間段圧
力を測定して夫々の定格値と比較して各圧縮機の
容量の余裕率を演算し、該余裕率に前記定格容量
比率を乗じて各圧縮機の余裕率に換算し、該各余
裕率を積算して総和余裕率を求め、該総和余裕率
と予め設定された余裕率の上下限値とを比較演算
し、その結果上限設定値を超える場合には、その
超過分の余裕率に最も近い余裕率の圧縮機を停止
し、下限値を割る場合には不足分の余裕率に最も
近い容量の圧縮機を起動せしめ、上記動作を繰り
返すことにより常時、消費圧縮ガス量に相当する
台数の圧縮機を選定して稼動せしめることを特徴
とする回転式容積形圧縮機の稼動台数制御方法。
[Scope of Claims] 1. A method for controlling the number of operating compressors equipped with a capacity control device such as a suction throttle valve operated by compressor discharge pressure, the method comprising controlling the capacity control device of each compressor during operation. While operating, the suction pressure or intermediate stage pressure of each compressor in operation is compared with the suction pressure at the rated operation of each compressor, which is stored as a preset value, to determine the capacity margin of each compressor. Calculate and integrate them to find the total margin during operation, compare the total margin with the preset upper and lower limits of margin, and if the upper limit is exceeded, stop one unit, If it falls below the lower limit, start one unit,
A method for controlling the number of operating rotary positive displacement compressors, characterized in that by repeating the above operations, a number of compressors corresponding to the amount of compressed gas consumed are always operated. 2. Install multiple compressors with different rated capacities that are equipped with capacity control devices such as suction throttle valves that operate based on the compressor discharge pressure, and calculate the ratio of the rated capacity of each compressor to the total rated capacity of these compressors. Memorize the information in advance, and while operating the capacity control device of each compressor in operation, measure the suction pressure or intermediate stage pressure of each compressor and compare it with the respective rated value to determine the capacity margin of each compressor. calculate the margin rate, multiply the margin rate by the rated capacity ratio to convert it into the margin rate of each compressor, integrate the respective margin rates to obtain the total margin rate, and calculate the total margin rate and the preset margin rate. Compare the upper and lower limit values of the ratio, and if the result exceeds the upper limit set value, stop the compressor with the margin ratio closest to the excess margin ratio, and if the lower limit value is divided, reduce the shortage. A rotary positive displacement compressor characterized in that the compressor with the capacity closest to the margin rate is started and the above operation is repeated to constantly select and operate the number of compressors corresponding to the amount of compressed gas consumed. How to control the number of operating units.
JP11546380A 1980-08-20 1980-08-20 Method for controlling number of rotary displacement type compressor in operation Granted JPS5744787A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11546380A JPS5744787A (en) 1980-08-20 1980-08-20 Method for controlling number of rotary displacement type compressor in operation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11546380A JPS5744787A (en) 1980-08-20 1980-08-20 Method for controlling number of rotary displacement type compressor in operation

Publications (2)

Publication Number Publication Date
JPS5744787A JPS5744787A (en) 1982-03-13
JPS627399B2 true JPS627399B2 (en) 1987-02-17

Family

ID=14663157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11546380A Granted JPS5744787A (en) 1980-08-20 1980-08-20 Method for controlling number of rotary displacement type compressor in operation

Country Status (1)

Country Link
JP (1) JPS5744787A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4520608B2 (en) * 2000-09-20 2010-08-11 株式会社日立プラントテクノロジー Screw compressor
US8291720B2 (en) * 2009-02-02 2012-10-23 Optimum Energy, Llc Sequencing of variable speed compressors in a chilled liquid cooling system for improved energy efficiency
JP5915932B2 (en) * 2012-02-10 2016-05-11 三浦工業株式会社 Compressor number control system
JP6025099B2 (en) * 2012-10-05 2016-11-16 治生 折橋 Compressor operation control device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4910003A (en) * 1972-05-23 1974-01-29

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4910003A (en) * 1972-05-23 1974-01-29

Also Published As

Publication number Publication date
JPS5744787A (en) 1982-03-13

Similar Documents

Publication Publication Date Title
US6499504B2 (en) Control system for controlling multiple compressors
US6652240B2 (en) Method and control system for controlling multiple throttled inlet rotary screw compressors
KR101167556B1 (en) Number-of-compressors controlling system
US20020020178A1 (en) Refrigerating unit
US6287083B1 (en) Compressed air production facility
JPH05187728A (en) Method and device for controlling head pressure of air-conditioning or refrigeration system
US8192171B2 (en) Compressor system
CN102032139B (en) System and method for adjusting energy of magnetic suspension compressor
JP5822745B2 (en) Gas compression device
JPS627399B2 (en)
CN108138757B (en) Gas compressor
JP2005048755A (en) Compressor number control system
EP0614010B1 (en) Improvements in the regulation of fluid conditioning stations
JPH09209949A (en) Screw compressor, and control method thereof
JPH08296566A (en) Control device for the number of compressors
JPH11324963A (en) Pressure control method for screw compressor
JP4043184B2 (en) Compressor control method
JP2000120583A (en) Compressor control method and device therefor
KR100388655B1 (en) Air conditioner control system and control method thereof
JP3403968B2 (en) Compressed gas supply apparatus and parallel operation control method for compressor
JP3002118B2 (en) Operating method of compressor
JP2803238B2 (en) Compressor capacity control device
JP2006312900A (en) Compressed gas supply device
JPH09126176A (en) Variable capacity compressor
JP4399655B2 (en) Compressed air production facility