JP2802730B2 - Etching method of aluminum foil for electrolytic capacitor - Google Patents

Etching method of aluminum foil for electrolytic capacitor

Info

Publication number
JP2802730B2
JP2802730B2 JP33241294A JP33241294A JP2802730B2 JP 2802730 B2 JP2802730 B2 JP 2802730B2 JP 33241294 A JP33241294 A JP 33241294A JP 33241294 A JP33241294 A JP 33241294A JP 2802730 B2 JP2802730 B2 JP 2802730B2
Authority
JP
Japan
Prior art keywords
wave
etching
aluminum foil
alternating current
amplitude
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP33241294A
Other languages
Japanese (ja)
Other versions
JPH07235456A (en
Inventor
善夫 米山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Capacitor Industrial Co Ltd
Original Assignee
Japan Capacitor Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Capacitor Industrial Co Ltd filed Critical Japan Capacitor Industrial Co Ltd
Priority to JP33241294A priority Critical patent/JP2802730B2/en
Publication of JPH07235456A publication Critical patent/JPH07235456A/en
Application granted granted Critical
Publication of JP2802730B2 publication Critical patent/JP2802730B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、電解コンデンサに使
用するアルミニウム箔のエッチング方法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for etching an aluminum foil used for an electrolytic capacitor.

【0002】[0002]

【従来の技術】一般に電解コンデンサ用アルミニウム箔
の製造には、その有効表面積を拡大する目的で、電解エ
ッチング処理が行われている。この電解エッチングに使
用される電源電流には、直流と交流とがあるが、陰極箔
や低圧用陽極箔をエッチングする場合には微細な腐食ピ
ット形状の得られる交流電流が広く利用されている。電
解コンデンサの小形化を実現するためにはエッチング箔
の有効拡面倍率を高める必要があり、エッチング液組成
の工夫、改善が行われる一方で、使用する交流電源の周
波数や、正弦波、方形波、三角波、台形波、ひずみ波等
の波形に関する発明が行われている。また、印加する交
流電流の正側半周期と負側半周期の電流密度や印加時間
を変えてエッチングする方法やエッチングを前段と後段
とに分けて、前段にて直流電流によるエッチングを行
い、後段にて交流電流によりエッチングを行う方法も開
発されているが、前者の場合は、正側・負側の電流波形
が非対称になるため、交流エッチング法の利点である2
つの電極間にアルミニウム箔を配して電流を印加する間
接電気導入法が行えず、アルミニウム箔から直接電気導
入を行わねばならないし、また後者の場合には、エッチ
ング設備を2つに分けねばならないという問題がある。
2. Description of the Related Art Generally, in the production of aluminum foil for electrolytic capacitors, electrolytic etching is performed in order to increase the effective surface area. The power supply current used for the electrolytic etching includes a direct current and an alternating current. When etching a cathode foil or an anode foil for low pressure, an alternating current that can obtain a fine corrosion pit shape is widely used. In order to reduce the size of the electrolytic capacitor, it is necessary to increase the effective area expansion ratio of the etching foil, and the composition of the etching solution is devised and improved, while the frequency of the AC power supply used, sine wave, square wave , A triangular wave, a trapezoidal wave, a distortion wave and the like. In addition, the method of etching by changing the current density and the application time of the positive half cycle and the negative half cycle of the applied AC current and dividing the etching into the former stage and the latter stage, performing the etching with the DC current in the former stage, and performing the latter stage In the former case, the positive and negative current waveforms are asymmetric, which is an advantage of the AC etching method.
The indirect electric induction method in which an aluminum foil is disposed between two electrodes and current is applied cannot be performed, and electric induction must be performed directly from the aluminum foil. In the latter case, the etching equipment must be divided into two. There is a problem.

【0003】[0003]

【発明が解決しようとする課題】交流電流によるエッチ
ング方法の工夫・改善により、有効拡面倍率が向上し、
高容量エッチド箔の製造が可能となってきているが、そ
の半面、引張り強度や折曲げ強度で代表されるエッチド
箔の機械的強度が低下し、化成して使用する場合もろく
なって切断しやすく、そのためコンデンサ素子巻きを行
う時に大きな問題となっている。しかし、従来にも増し
てコンデンサ小型化の必要性が高まっており、さらにエ
ッチド箔の高容量化を計る必要がある。エッチド箔の機
械的強度を保持しつつ、有効拡面倍率を高めることは、
特性上相反する関係にあるものを同時に解決することで
あり、極めて困難なことである。この問題の解決方法の
ひとつは腐食減量あたりの静電容量(以下、エッチング
効率と呼ぶ)を、さらに高めることである。すなわち、
同一静電容量のエッチド箔でも、エッチング効率の高い
箔の場合には、腐食減量が少なく、エッチングされてい
ない芯部が多く残るので機械的強度の強い箔となる。ま
た腐食減量が同じで、機械的強度が同等でも、エッチン
グ効率の高いエッチド箔は静電容量の高い箔となる。そ
こで本発明は前記した困難な問題を解決するためエッチ
ング効率の高いエッチング方法を開発することを目的と
したものである。
SUMMARY OF THE INVENTION By devising and improving an etching method using an alternating current, the effective enlargement magnification is improved.
Although it has become possible to manufacture high-capacity etched foil, on the other hand, the mechanical strength of the etched foil, represented by tensile strength and bending strength, is reduced, and it becomes brittle and easily cut when used in chemical formation. Therefore, this is a major problem when winding the capacitor element. However, the necessity of miniaturizing the capacitor is increasing more than before, and it is necessary to further increase the capacity of the etched foil. To increase the effective enlargement ratio while maintaining the mechanical strength of the etched foil,
It is an extremely difficult task to simultaneously solve conflicting relations in characteristics. One solution to this problem is to further increase the capacitance per corrosion loss (hereinafter referred to as etching efficiency). That is,
Even in the case of an etched foil having the same capacitance, in the case of a foil having a high etching efficiency, the corrosion loss is small and a large number of unetched core portions remain, so that the foil has high mechanical strength. Further, even if the corrosion loss is the same and the mechanical strength is the same, an etched foil having a high etching efficiency becomes a foil having a high capacitance. Therefore, an object of the present invention is to develop an etching method with high etching efficiency in order to solve the above-mentioned difficult problem.

【0004】[0004]

【課題を解決するための手段】そこで、上記した目的を
達成するために本願発明者は、交流電流によるエッチン
グの正側半周期中で起こるピットの開始、伸長、拡大と
いったピット形成機構に着目し、これらピットの成長の
各段階が正側半周期中の別々の時間域で起こるものと考
え研究を重ねた結果、図1のように半周期中に振幅の同
じ、または異なる2つの半波を含み、かつ2つの半波の
間に振幅が0ないし正側または負側に微小電流が最大振
幅の1/15以内で印加される休止期を〔休止期の時間
(以下、t0 )〕/〔半周期の時間(以下、T)〕で
0.18から0.85の範囲で設けた交流電流でエッチ
ングした場合、従来の単一波形でエッチングした場合に
比べて、エッチング効率が高くなることを見い出した。
即ち〔前の半波の振幅(以下、a1 )〕/〔後の半波の
振幅(以下、a2 )〕が0.4から4.0の範囲にある
交流電流でエッチングすると、陰極箔および5V化成か
ら140V化成の範囲に適した微細なピットが高密度に
形成され、しかもピット形成にとって無駄な腐食が少な
くなり、エッチング効率の高い箔の製造が可能となるこ
とを見い出した。a1 /a2 が4.0を超えて大きくな
ると低い電圧の化成に適した細かいピットが形成される
がエッチング効率が減少する。また、a1 /a2 が0.
4未満の場合は高い電圧の化成に適した太いピットが形
成されるが、この場合もエッチング効率は少し低下す
る。これらのことから、前の半波(W1 )でピットの開
始伸長が高密度に起こり、後の半波(W2 )により前の
半波(W1 )で発生したピットが太くなると考えれば、
その効果がよく理解される。
In order to achieve the above object, the present inventor has focused on a pit formation mechanism such as pit initiation, extension, and enlargement occurring during the positive half cycle of etching by an alternating current. Assuming that each stage of pit growth occurs in a different time zone during the positive half cycle, as a result of repeated studies, as shown in FIG. 1, two half waves having the same or different amplitudes during the half cycle are generated. A rest period in which a small current is applied to the positive side or the negative side within 0/15 within 1/15 of the maximum amplitude between two half-waves [time of rest period (hereinafter, t 0 )] / When the etching is performed with the alternating current provided in the range of 0.18 to 0.85 in [half cycle time (hereinafter, T)], the etching efficiency is higher than that in the conventional etching with a single waveform. I found
That is, when etching is performed with an alternating current in which [amplitude of the preceding half-wave (hereinafter, a 1 )] / [amplitude of the subsequent half-wave (hereinafter, a 2 )] is in the range of 0.4 to 4.0, the cathode foil In addition, it has been found that fine pits suitable for the range of 5V to 140V formation are formed at high density, furthermore, unnecessary corrosion for pit formation is reduced, and a foil with high etching efficiency can be manufactured. When a 1 / a 2 is larger than 4.0, fine pits suitable for low voltage formation are formed, but the etching efficiency is reduced. Also, a 1 / a 2 is equal to 0.
If it is less than 4, thick pits suitable for forming a high voltage are formed, but also in this case, the etching efficiency is slightly reduced. From these, it occurs prior to the start elongation of pits in a high density in the half-wave (W 1), considering the pit generated in the half-wave (W 2) by the previous half-wave (W 1) after becomes thick ,
The effect is well understood.

【0005】次に2つの半波の間の休止期がto/Tで
0.18から0.85の範囲を超えるとエッチング効率
が低下する。適度の休止期を設けるとエッチング効率が
向上することから、この休止期中にエッチド箔表面やす
でに形成されているピット内壁および前の半波(W1
により形成されたピット内壁に皮膜が形成され、後の半
波(W2 )によるピットの拡大時において箔表面やピッ
ト内壁の弱点部が補修され、効率の良いピットの拡大を
可能にするものと理解される。また、この休止期中に印
加される電流は、0であることが好ましく、正側および
負側いづれでも最大振幅の1/15を超えて電流を印加
するとエッチング効率が低下することからも休止期を設
けた効果が理解される。次に、前の半波の印加時間(以
下、t1 )と後の半波の印加時間(以下、t2)の比
が、t1 /t2 で0.5未満の時、または3.0を超え
て大きくなるとエッチング効率は低下する。これは前の
半波(W1 )によるピットの開始伸長と後の半波
(W2 )によるピットの拡大が効果的に起こるために
は、各々の半波の印加時間の比に最適値があると理解さ
れる。なお本願発明において、電解液温度が5℃未満ま
たは50℃を超える場合、周波数が1.0Hz未満また
は30Hzを超えた場合、および電流密度が25mA/
cm2 未満または450mA/cm2 を超えた場合には、腐
食減量の増加にともなう静電容量の増大が低下し、エッ
チング効率が低下するため本願発明の効果は見られなく
なる。
Next, when the rest period between two half-waves exceeds to / T in the range of 0.18 to 0.85, the etching efficiency decreases. Since the etching efficiency is improved by providing an appropriate rest period, during the rest period, the etched foil surface, the already formed pit inner wall, and the previous half wave (W 1 )
A film is formed on the inner wall of the pit formed by the above process, and when the pit is enlarged by the subsequent half-wave (W 2 ), the weak points of the foil surface and the inner wall of the pit are repaired, and the pit can be efficiently expanded. Understood. Further, the current applied during this pause period is preferably 0, and when a current exceeding 1/15 of the maximum amplitude is applied to both the positive side and the negative side, the etching efficiency is reduced. The effect provided is understood. Next, when the ratio of the application time of the preceding half-wave (hereinafter, t 1 ) to the application time of the subsequent half-wave (hereinafter, t 2 ) is less than 0.5 at t 1 / t 2 , or 3. When the value exceeds 0, the etching efficiency decreases. In order for the pit onset and extension by the first half-wave (W 1 ) and the pit expansion by the second half-wave (W 2 ) to occur effectively, the optimal value should be set to the ratio of the application time of each half-wave. It is understood that there is. In the present invention, when the electrolyte temperature is lower than 5 ° C. or higher than 50 ° C., when the frequency is lower than 1.0 Hz or higher than 30 Hz, and when the current density is 25 mA /
If it is less than 2 cm 2 or more than 450 mA / cm 2 , the increase in capacitance due to the increase in corrosion loss is reduced, and the etching efficiency is reduced, so that the effect of the present invention cannot be seen.

【0006】[0006]

【実施例】以下、本願発明を実施例と比較例により具体
的に説明する。 実施例1 純度99.86%、厚さ50μm のアルミニウム箔の軟
質材を用い、塩酸を4.5wt%、リン酸を0.9wt
%、塩化アルミニウムを2.0wt%を含む電解液中で
45℃にてエッチングした。交流電流として図1.Aの
波形を使用し、a1 /a2 =3.45、t1 /t2
2.67、t0 /T=0.45、周波数を15.0Hz
とし、電流密度を280mA/cm2 とした。次いで純水で
洗浄した後、アジピン酸アンモニウム水溶液中にて3V
の通常おこなわれている化成を行い、静電容量を測定し
た。 比較例1 実施例1と同じアルミニウム箔および電解液を使用し、
45℃にて交流電流として周波数33.0Hzの三角波
にて電流密度280mA/cm2 でエッチングし、実施例
1と同様の化成を行い静電容量を測定した。図2は、縦
軸に3V化成静電容量(μF /cm2 )を横軸に腐食減量
(g/m2)をとり、実施例1と比較例1とで得られる
エッチド箔の3V化成静電容量におけるエッチング効率
を示すグラフである。この図2を参照して、エッチング
効率を同一腐食減量で比較すると、実施例1の静電容量
は比較例1より高く、例えば腐食減量30g/m2 で比
較すると、比較例1の98μF /cm2 に対し、実施例1
では113μF /cm2 であった。
The present invention will be specifically described below with reference to examples and comparative examples. Example 1 A soft material of aluminum foil having a purity of 99.86% and a thickness of 50 μm was used, and 4.5% by weight of hydrochloric acid and 0.9% by weight of phosphoric acid.
% And aluminum chloride at 45 ° C. in an electrolytic solution containing 2.0 wt%. As an alternating current, FIG. Using the waveform of A, a 1 / a 2 = 3.45, t 1 / t 2 =
2.67, t 0 /T=0.45, frequency 15.0 Hz
And the current density was 280 mA / cm 2 . Then, after washing with pure water, 3 V in an aqueous solution of ammonium adipate.
Was performed, and the capacitance was measured. Comparative Example 1 Using the same aluminum foil and electrolytic solution as in Example 1,
Etching was performed at 45 ° C. as an alternating current with a triangular wave having a frequency of 33.0 Hz at a current density of 280 mA / cm 2 , and the same formation as in Example 1 was performed to measure the capacitance. In FIG. 2, the vertical axis represents the 3V formation capacitance (μF / cm 2 ), and the horizontal axis represents the corrosion loss (g / m 2 ). The 3V formation static of the etched foil obtained in Example 1 and Comparative Example 1 is shown. 4 is a graph showing an etching efficiency in a capacitance. Referring to FIG. 2, when the etching efficiency is compared with the same corrosion weight loss, the capacitance of Example 1 is higher than that of Comparative Example 1. For example, when compared with the corrosion weight loss of 30 g / m 2 , the capacitance of Comparative Example 1 is 98 μF / cm 2. Example 2 vs. 2
Was 113 μF / cm 2 .

【0007】実施例2 純度99.98%、厚さ100μm のアルミニウム箔の
軟質材を用い、塩酸を4.0wt%、リン酸を1.5w
t%、硝酸を0.6wt%、塩化アルミニウムを4.2
wt%含む電解液中で18℃にてエッチングした。交流
電流として、図1.Bの波形を使用し、a1 /a2
2.0、a3 /a 1 =0.025、t1 /t2 =1.4
0、to /T=0.40、周波数を5.0Hzとした。
電流密度を140mA/cm2 でエッチングし、純水で洗
浄した後、アジピン酸アンモニウム水溶液中で20Vの
通常おこなわれている化成を行った。 比較例2 実施例2と同じアルミニウム箔および電解液を使用し、
18℃にて交流電流として周波数12.0Hzの正弦波
にて、電流密度140mA/cm2 でエッチングし、実施
例2と同様の化成を行った。図3は、実施例2と比較例
2とで得られるエッチド箔の20V化成静電容量におけ
るエッチング効率を比較するグラフである。この図3を
参照して、同一腐食減量で比較すると、実施例2の20
V化成静電容量は比較例2の静電容量より高く、例えば
腐食減量90g/m2 で比較すると、比較例2の38μ
F /cm2 に対して、実施例2は42μF /cm2 であっ
た。
Example 2 A soft material of aluminum foil having a purity of 99.98% and a thickness of 100 μm was used, and 4.0 wt% of hydrochloric acid and 1.5 w of phosphoric acid were used.
t%, nitric acid 0.6 wt%, aluminum chloride 4.2
Etching was performed at 18 ° C. in an electrolytic solution containing wt%. As an alternating current, FIG. Using the waveform of B, a 1 / a 2 =
2.0, a 3 / a 1 = 0.025, t 1 / t 2 = 1.4
0, t o /T=0.40, and the frequency was 5.0 Hz.
After etching at a current density of 140 mA / cm 2 and washing with pure water, normal chemical conversion at 20 V was performed in an aqueous solution of ammonium adipate. Comparative Example 2 Using the same aluminum foil and electrolytic solution as in Example 2,
Etching was performed at a current density of 140 mA / cm 2 with a sine wave having a frequency of 12.0 Hz as an alternating current at 18 ° C., and the same formation as in Example 2 was performed. FIG. 3 is a graph comparing the etching efficiencies of the etched foils obtained in Example 2 and Comparative Example 2 at a capacitance of 20 V formed. Referring to FIG. 3 and comparing with the same corrosion weight loss, 20
The V-formation capacitance is higher than the capacitance of Comparative Example 2, and for example, when compared at a corrosion loss of 90 g / m 2 ,
In contrast to F 2 / cm 2 , Example 2 had 42 μF / cm 2 .

【0008】実施例3 純度99.98%、厚さ70μm のアルミニウム箔の軟
質材を用い、塩酸を4.5wt%、シュウ酸を0.9wt
%、硝酸を0.5wt%、塩化アルミニウムを2.0w
t%含む電解液中35℃にてエッチングした。交流電流
として図1.Cの波形を使用し、a1 /a2 =1.1
1、a3 /a 1 =0.03、t1 /t2 =2.13、t
o /T=0.53、周波数を10.5Hzとした。電流
密度276mA/cm2 でエッチングし、純水で洗浄した
後、アジピン酸アンモニウム水溶液中で40Vの通常お
こなわれている化成を行った。 比較例3 実施例3と同じアルミニウム箔および電解液を使用し、
35℃にて交流電流として、周波数24.0Hzの単一
な三角波にて、電流密度276mA/cm2 でエッチング
し、実施例3と同様の化成を行った。図4は実施例3と
比較例3とで得られるエッチド箔の40V化成静電容量
におけるエッチング効率を比較するグラフである。図4
を参照して、同一腐食量で比較すると、実施例3の40
V化成静電容量は比較例3の静電容量より高く、腐食減
量50g/m2 において、実施例3の静電容量は10.
3μF /cm2 と比較例3の9.0μF /cm2 より高かっ
た。
Example 3 A soft material of aluminum foil having a purity of 99.98% and a thickness of 70 μm was used, containing 4.5% by weight of hydrochloric acid and 0.9% by weight of oxalic acid.
%, Nitric acid 0.5wt%, aluminum chloride 2.0w
Etching was performed at 35 ° C. in an electrolytic solution containing t%. As an alternating current, FIG. Using the waveform of C, a 1 / a 2 = 1.1
1, a 3 / a 1 = 0.03, t 1 / t 2 = 2.13, t
o / T = 0.53, and the frequency was 10.5 Hz. After etching at a current density of 276 mA / cm 2 and washing with pure water, normal conversion of 40 V was performed in an aqueous solution of ammonium adipate. Comparative Example 3 Using the same aluminum foil and electrolytic solution as in Example 3,
Etching was performed at 35 ° C. as an alternating current with a single triangular wave having a frequency of 24.0 Hz at a current density of 276 mA / cm 2 , and the same chemical conversion as in Example 3 was performed. FIG. 4 is a graph comparing the etching efficiencies of the etched foils obtained in Example 3 and Comparative Example 3 at 40 V chemical conversion capacitance. FIG.
, And the same corrosion amount is compared, 40
The V-formation capacitance was higher than the capacitance of Comparative Example 3, and the capacitance of Example 3 was 10.3 at a corrosion loss of 50 g / m 2 .
3 μF / cm 2 was higher than 9.0 μF / cm 2 of Comparative Example 3.

【0009】実施例4 純度99.98%、厚さ80μmのアルミニウム箔の軟
質材を用い、塩酸を9.0wt%、シュウ酸を0.4w
t%、硫酸を0.08wt%、塩化アルミニウムを2.
0wt%含む電解液中で25℃にてエッチングした。交
流電流として図1.Dの波形を使用し、a1 /a2
0.67、t1 /t2 =1.0、to /T=0.7、周
波数を7.0Hzとした。電流密度を270mA/cm2
でエッチングし、純水で洗浄した後、アジピン酸アンモ
ニウム水溶液中で80Vの通常おこなわれている化成を
行った。 比較例4 実施例4と同じアルミニウム箔および電解液を使用し、
25℃にて交流電流として周波数10.5Hzの単一な
台形波にて、電流密度132mA/cm2 でエッチング
し、実施例4と同様の化成を行った。図5は、実施例4
と比較例4とで得られるエッチド箔の80V化成静電容
量におけるエッチング効率を比較するグラフである。図
5を参照して、同一腐食減量で比較すると、実施例4の
80V化成静電容量は比較例4の静電容量より高く、腐
食減量70g/m2 において、実施例4の静電容量は
5.7μF /cm2 と比較例の5.0μF /cm2 より14
%高かった。
Example 4 Using a soft material of aluminum foil having a purity of 99.98% and a thickness of 80 μm, 9.0 wt% of hydrochloric acid and 0.4 w of oxalic acid were used.
t%, sulfuric acid 0.08 wt%, aluminum chloride 2.
Etching was performed at 25 ° C. in an electrolytic solution containing 0 wt%. As an alternating current, FIG. Using the waveform of D, a 1 / a 2 =
0.67, t 1 / t 2 = 1.0, t o /T=0.7, was 7.0Hz frequency. Current density of 270 mA / cm 2
After washing with pure water, a normal chemical conversion at 80 V was performed in an aqueous solution of ammonium adipate. Comparative Example 4 Using the same aluminum foil and electrolytic solution as in Example 4,
Etching was performed at 25 ° C. with a single trapezoidal wave having a frequency of 10.5 Hz as an alternating current at a current density of 132 mA / cm 2 , and the same formation as in Example 4 was performed. FIG. 5 shows the fourth embodiment.
9 is a graph comparing the etching efficiencies of the etched foils obtained in Comparative Example 4 and Comparative Example 4 at 80 V chemical conversion capacitance. Referring to FIG. 5, when compared at the same corrosion weight loss, the 80 V chemical conversion capacitance of Example 4 is higher than the capacitance of Comparative Example 4, and the capacitance of Example 4 at a corrosion weight loss of 70 g / m 2 is 5.7μF / cm 2 and Comparative example 5.0μF / cm 2 from 14
%it was high.

【0010】前記、実施例1,2,3,4および比較例
1,2,3,4でエッチングした箔の折曲げ強度および
引張り強度を測定した。表1に示すように、この発明の
エッチング方法によれば、腐食減量が同じで、機械的強
度が同程度であっても静電容量の高い箔の製造が可能で
ある。
The bending strength and tensile strength of the foils etched in Examples 1, 2, 3, and 4 and Comparative Examples 1, 2, 3, and 4 were measured. As shown in Table 1, according to the etching method of the present invention, it is possible to produce a foil having a high capacitance with the same corrosion loss and the same mechanical strength.

【表1.】実施例1,2,3,4に示した交流電流波形
以外に方形波や、ひずみ波でも同じ効果が得られ、前の
半波(W1 )と後の半波(W2 )が異なった波形の組み
合わせでも同じ効果が得られた。
[Table 1. In addition to the alternating current waveforms shown in the first, second, third and fourth embodiments, the same effect can be obtained with a square wave or a distorted wave, and the former half wave (W 1 ) and the latter half wave (W 2 ) are different. The same effect was obtained with a combination of different waveforms.

【0011】[0011]

【発明の効果】以上説明したように、本願発明によれ
ば、半周期中に2つの半波を含み2つの半波間に振幅が
0ないし正側または負側に微小電流が最大振幅の1/1
5以内で印加される休止期を設けた交流電流をエッチン
グ電源として用いることによりエッチング効率の高い箔
の製造が可能となり、機械的強度を低下させることなし
に有効拡面倍率を高めることができる。また半周期中に
2つの半波を設け、交流電流の1サイクルのピット形成
過程を前段と後段とに分けてエッチング効率の向上を計
っているので、エッチング設備を2つに分ける必要がな
く、生産設備の合理化にも適している。本発明により製
造された箔は、陰極箔および低圧用陽極箔として電解コ
ンデンサの小型化に寄与するものである。
As described above, according to the present invention, two half-waves are included in a half-period, and the amplitude between the two half-waves is 0 or a minute current is on the positive side or the negative side and is 1 / the maximum amplitude. 1
By using an alternating current having a rest period applied within 5 as an etching power source, a foil having high etching efficiency can be manufactured, and the effective enlargement ratio can be increased without lowering the mechanical strength. Further, since two half waves are provided in a half cycle to improve the etching efficiency by dividing the pit forming process of one cycle of the alternating current into the former stage and the latter stage, it is not necessary to divide the etching equipment into two. It is also suitable for rationalizing production equipment. The foil produced according to the present invention contributes to the miniaturization of the electrolytic capacitor as a cathode foil and an anode foil for low pressure.

【図面の簡単な説明】[Brief description of the drawings]

【図1A】実施例1における交流電流波形を示す図FIG. 1A is a diagram showing an alternating current waveform in Example 1.

【図1B】実施例2における交流電流波形を示す図FIG. 1B is a diagram showing an alternating current waveform in the second embodiment.

【図1C】実施例3における交流電流波形を示す図FIG. 1C is a diagram showing an AC current waveform in the third embodiment.

【図1D】実施例4における交流電流波形を示す図FIG. 1D is a diagram showing an AC current waveform in Example 4.

【図2】実施例1と比較例1とで得られる箔の3V化成
静電容量におけるエッチング効率の比較
FIG. 2 is a comparison of the etching efficiency of the foils obtained in Example 1 and Comparative Example 1 at 3V formation capacitance.

【図3】実施例2と比較例2とで得られる箔の20V化
成静電容量におけるエッチング効率の比較
FIG. 3 shows a comparison of the etching efficiency of the foils obtained in Example 2 and Comparative Example 2 at 20V chemical conversion capacitance.

【図4】実施例3と比較例3とで得られる箔の40V化
成静電容量におけるエッチング効率の比較
FIG. 4 is a comparison of the etching efficiency of the foils obtained in Example 3 and Comparative Example 3 at 40V formation capacitance.

【図5】実施例4と比較例4とで得られる箔の80V化
成静電容量におけるエッチング効率の比較
FIG. 5 is a comparison of the etching efficiency of the foils obtained in Example 4 and Comparative Example 4 at 80V formation capacitance.

【表1】 [Table 1]

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 アルミニウム箔に塩素イオンを含有する
電解液中で交流電流を印加してエッチングする電解コン
デンサ用アルミニウム箔の製造方法において、前記交流
電流が正側および負側半周期中に、波形、振幅、印加時
間のいずれか1つまたはその全てが同じかまたは異なる
半波を2つ含み、かつ振幅が0ないし、正側または負側
に微小電流が最大振幅の1/15以内で印加される休止
期を各々の半波の間に設けたことを特徴とする電解コン
デンサ用アルミニウム箔のエッチング方法。
1. A method of manufacturing an aluminum foil for an electrolytic capacitor, wherein an alternating current is applied to an aluminum foil in an electrolytic solution containing chlorine ions to perform etching, wherein the alternating current has a waveform during a positive half cycle and a negative half cycle. Any one or all of the amplitude and the application time include two half-waves that are the same or different, and the amplitude is 0 or a minute current is applied to the positive or negative side within 1/15 of the maximum amplitude. A method for etching an aluminum foil for an electrolytic capacitor, wherein a rest period is provided between each half-wave.
【請求項2】 交流電流の半周期中の2つの半波が正弦
波、三角波、台形波、方形波、およびひずみ波のいずれ
かであり、前の半波の振幅と後の半波の振幅との比が
(前の半波の振幅)/(後の半波の振幅)で0.4から
4.0の範囲である請求項1記載の電解コンデンサ用ア
ルミニウム箔のエッチング方法。
2. The method according to claim 1, wherein two half-waves in the half-cycle of the alternating current are one of a sine wave, a triangular wave, a trapezoidal wave, a square wave, and a distorted wave. 2. The method for etching an aluminum foil for an electrolytic capacitor according to claim 1, wherein the ratio of (the amplitude of the former half wave) / (the amplitude of the latter half wave) is in the range of 0.4 to 4.0.
【請求項3】 交流電流の半周期において前の半波の印
加時間と後の半波の印加時間の比が(前の半波の印加時
間)/(後の半波の印加時間)で0.5から3.0の範
囲である請求項1または2記載の電解コンデンサ用アル
ミニウム箔のエッチング方法。
3. In the half cycle of the alternating current, the ratio of the application time of the previous half wave to the application time of the subsequent half wave is (the application time of the previous half wave) / (the application time of the subsequent half wave) is 0. 3. The method for etching an aluminum foil for an electrolytic capacitor according to claim 1, wherein the thickness is in the range of 0.5 to 3.0.
【請求項4】 交流電流の半周期において、振幅が0な
いし、正側または負側に微小電流が最大振幅の1/15
以内で印加される休止期を2つの半波の間に、(休止期
の時間)/(半周期の時間)で0.18から0.85ま
で設けた請求項1,2または3記載の電解コンデンサ用
アルミニウム箔のエッチング方法。
4. In a half cycle of the alternating current, the amplitude is 0 or less, and a minute current is present on the positive or negative side at 1/15 of the maximum amplitude.
4. The electrolysis according to claim 1, wherein a rest period applied within two half-waves is set to 0.18 to 0.85 by (pause time) / (half cycle time). Method for etching aluminum foil for capacitors.
【請求項5】 電解液は塩素イオンを主成分として含
み、これにりん酸イオン、硫酸イオン、硝酸イオン,し
ゅう酸イオンなどを単独もしくは組み合わせて含む水溶
液であり、温度が5℃から50℃の範囲であるこれら電
解液中で周波数が1.0Hzから30Hzの範囲にて電
流密度が25mA/cm2 から450mA/cm2 の範囲である
交流電流をアルミニウム箔に印加することを特徴とする
請求項1,2,3または4記載の電解コンデンサ用アル
ミニウム箔のエッチング方法。
5. The electrolytic solution is an aqueous solution containing chloride ions as a main component and further containing phosphate ions, sulfate ions, nitrate ions, oxalate ions or the like alone or in combination, and has a temperature of 5 ° C. to 50 ° C. claims a range frequencies in these electrolyte solution and applying an alternating current the current density is in the range of 25mA / cm 2 of 450 mA / cm 2 to the aluminum foil at 30Hz in the range of 1.0Hz The method for etching an aluminum foil for an electrolytic capacitor according to 1, 2, 3, or 4.
JP33241294A 1993-12-28 1994-12-14 Etching method of aluminum foil for electrolytic capacitor Expired - Lifetime JP2802730B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33241294A JP2802730B2 (en) 1993-12-28 1994-12-14 Etching method of aluminum foil for electrolytic capacitor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5-348929 1993-12-28
JP34892993 1993-12-28
JP33241294A JP2802730B2 (en) 1993-12-28 1994-12-14 Etching method of aluminum foil for electrolytic capacitor

Publications (2)

Publication Number Publication Date
JPH07235456A JPH07235456A (en) 1995-09-05
JP2802730B2 true JP2802730B2 (en) 1998-09-24

Family

ID=26574185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33241294A Expired - Lifetime JP2802730B2 (en) 1993-12-28 1994-12-14 Etching method of aluminum foil for electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP2802730B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100988802B1 (en) * 2002-08-30 2010-10-20 가부시키가이샤 무라타 세이사쿠쇼 Metal foil for capacitor, solid electrolytic capacitor using the foil and production methods of the foil and the capacitor
AU2003265173A1 (en) 2002-08-30 2004-03-19 Showa Denko K.K. Metal foil for capacitor, solid electrolytic capacitor using the foil and production methods of the foil and the capacitor
JP4653644B2 (en) * 2005-11-24 2011-03-16 ニチコン株式会社 Method for producing aluminum electrode foil for electrolytic capacitor
US9206523B2 (en) * 2012-09-28 2015-12-08 Intel Corporation Nanomachined structures for porous electrochemical capacitors
CN116752198A (en) * 2023-07-26 2023-09-15 深圳市凯琦佳科技股份有限公司 Novel formation method of anode foil of aluminum electrolytic capacitor

Also Published As

Publication number Publication date
JPH07235456A (en) 1995-09-05

Similar Documents

Publication Publication Date Title
US5500101A (en) Method of etching aluminum foil for electrolytic capacitor
JP2802730B2 (en) Etching method of aluminum foil for electrolytic capacitor
US4455200A (en) Method for etching aluminum foil for electrolytic capacitors
JPH06204094A (en) Manufacture of aluminium material for electrode of electrolytic capacitor
JP4653644B2 (en) Method for producing aluminum electrode foil for electrolytic capacitor
JP2758040B2 (en) Electrode etching method for electrolytic capacitor
JP3582451B2 (en) Manufacturing method of anode foil for aluminum electrolytic capacitor
JPS6357935B2 (en)
JP2847717B2 (en) Method for etching electrode foil for aluminum electrolytic capacitor
JP2673312B2 (en) Method for manufacturing aluminum electrode foil for electrolytic capacitor
JP4089333B2 (en) Manufacturing method of electrode foil for aluminum electrolytic capacitor
JP2005268427A (en) Method for manufacturing etching foil for aluminum electrode capacitor
JPS61198710A (en) Etching of electrode foil for aluminum electrolytic capacitor
JP3460418B2 (en) Manufacturing method of electrode foil for aluminum electrolytic capacitor
JPS63299309A (en) Manufacture of electrode foil for aluminum electrolytic capacitor
KR920006723B1 (en) Etching method
JPH0561770B2 (en)
JPH0561769B2 (en)
JPH08241832A (en) Manufacture of electrode foil for aluminum electrolytic capacitor
JP2005203530A (en) Production method of electrode foil for aluminium electrolytic capacitor
JPH0561768B2 (en)
JP2762556B2 (en) Method for producing electrode foil for aluminum electrolytic capacitor
JPH07272985A (en) Manufacturing method for anode foil for aluminum electrolytic capacitor
JP2009094376A (en) Method for manufacturing aluminum electrode foil for use of electrolytic capacitor
JP2005251884A (en) Method for manufacturing electrode foil for aluminum electrolytic capacitor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080717

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20080717

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090717

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090717

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100717

Year of fee payment: 12