JP2802439B2 - Semiconductor substrate - Google Patents
Semiconductor substrateInfo
- Publication number
- JP2802439B2 JP2802439B2 JP16884389A JP16884389A JP2802439B2 JP 2802439 B2 JP2802439 B2 JP 2802439B2 JP 16884389 A JP16884389 A JP 16884389A JP 16884389 A JP16884389 A JP 16884389A JP 2802439 B2 JP2802439 B2 JP 2802439B2
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- semiconductor
- compound
- thermal expansion
- mixed crystal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
- Recrystallisation Techniques (AREA)
Description
【発明の詳細な説明】 (産業上の利用分野) 本発明はシリコン基板上にII−VI族化合物半導体(あ
るいはその混晶)を得るためのII−VI化合物(あるいは
その混晶)半導体基板に関するものである。Description: TECHNICAL FIELD The present invention relates to a II-VI compound (or mixed crystal) semiconductor substrate for obtaining a II-VI group compound semiconductor (or mixed crystal thereof) on a silicon substrate. Things.
(従来の技術) ZnSe,ZnS等のII−VI族化合物半導体、あるいはZnSSe
等のII−VI化合物混晶半導体は、その優れた特徴を活か
して、高性能,高機能デバイスに利用されつつある。し
かし化合物半導体は一般に高価であり、また大面積の高
品質基板結晶を得にくい等の問題点がある。このような
問題点を克服するための試みとして、安価で、良質,軽
量,大面積なシリコンを基板としこのシリコン基板上に
化合物半導体を積層し、この化合物半導体層にデバイス
を製造することが試みられている。(Prior art) II-VI group compound semiconductors such as ZnSe and ZnS, or ZnSSe
II-VI compound mixed crystal semiconductors are being used for high-performance, high-performance devices by utilizing their excellent features. However, compound semiconductors are generally expensive and have problems such as difficulty in obtaining large-area high-quality substrate crystals. As an attempt to overcome such problems, an inexpensive, high-quality, light-weight, large-area silicon substrate is used as a substrate, and a compound semiconductor is stacked on the silicon substrate to manufacture a device on the compound semiconductor layer. Have been.
(発明が解決しようとする課題) このようなSi基板上のII−VIの成長として、MBE法に
よるZnS on Si(100)が、文献(M.YOKOYAMAら(Journa
l of Crystal Growth 81(1987)73)に報告されてい
る。(Problems to be Solved by the Invention) As growth of II-VI on the Si substrate, ZnS on Si (100) by MBE method is described in the literature (M. YOKOYAMA et al. (Journa).
l of Crystal Growth 81 (1987) 73).
このようなシリコン基板を用いて化合物半導体基板を
積層する構造は従来より幾つか提案されているが、いま
だ結晶品質の点でバルク結晶に劣るのが現状である。Several structures in which a compound semiconductor substrate is stacked using such a silicon substrate have been proposed, but they are still inferior to bulk crystals in terms of crystal quality.
その原因は、半導体の熱膨張係数と格子定数がシリコ
ンと異なるためである。特に熱膨張係数差に基づく熱応
力はGaAs on Siなどでは109dyn/cm2以上となり、欠陥や
クラックを引起こす主要因となっている。たとえば、成
長温度TgでSi基板上にGaAs層を成長させた後、冷却を開
始するとSi基板の熱膨張係数αSiとGaAsの熱膨張係数α
GaAsとの差に基づく応力σT=(αGaAs−αSi)・(Tg
−T)・E/(1−ν)が発生する。この応力はSiとGaAs
が密着している限りは不可避で、Si基板より薄いGaAs層
にクラックや欠陥を導入させて緩和する。これは、III
−V半導体の例っであるが、II−VI半導体においても同
様である。This is because the semiconductor has a different coefficient of thermal expansion and lattice constant from silicon. In particular, the thermal stress based on the difference in thermal expansion coefficient is 10 9 dyn / cm 2 or more in GaAs on Si or the like, which is a main factor causing defects and cracks. For example, after the GaAs layer is grown on the Si substrate at the growth temperature Tg, when the cooling is started, the thermal expansion coefficient αSi of the Si substrate and the thermal expansion coefficient α
Stress based on difference from GaAs σ T = (αGaAs−αSi) · (Tg
−T) · E / (1−ν) occurs. This stress is Si and GaAs
It is inevitable as long as they adhere to each other, and the cracks and defects are introduced into the GaAs layer thinner than the Si substrate to mitigate them. This is III
Although this is an example of a -V semiconductor, the same applies to an II-VI semiconductor.
従来よりこの問題を解決するため、GaAsの熱膨張係数
に近い基板としてアルミナ単結晶を使うが、文献(Jour
nal of Applied Physics,vol.42,No.6(1971)P2519)
および特開昭62−232120号公報に示されている。熱膨張
係数の点から見れば、アルミナ単結晶は4.6×10
-6℃-1、一方、III−V族結晶は4〜6×10-6℃-1であ
るので条件を満たしているが、酸化物の上には元々III
−V族結晶は成長しにくく、良質の単結晶薄膜は得られ
ていない。Conventionally, in order to solve this problem, alumina single crystal is used as a substrate close to the thermal expansion coefficient of GaAs.
nal of Applied Physics, vol. 42, No. 6 (1971) P2519)
And JP-A-62-232120. From the viewpoint of thermal expansion coefficient, alumina single crystal is 4.6 × 10
−6 ° C. −1 , whereas the III-V group crystal satisfies the condition of 4 to 6 × 10 −6 ° C. −1
Group-V crystals are difficult to grow, and a high quality single crystal thin film has not been obtained.
また、他の方法として種類が異なる複数の半導体基材
を積層して一体化する方法がある。特開昭61−182215号
公報によると、Si基板上にInP、そのうえにGaAsを隣り
合わせにし、鏡面同士を密着し熱処理して一体化する方
法が示されている。As another method, there is a method of laminating and integrating a plurality of semiconductor substrates of different types. Japanese Patent Application Laid-Open No. 61-182215 discloses a method in which InP and GaAs are placed next to each other on a Si substrate, mirror surfaces are brought into close contact with each other, and heat treatment is performed to integrate them.
この方法では、隣り合う材料の熱膨張係数差が2×10
-6deg-1になり、かつ接着温度が高々200℃であるため、
熱歪が大幅に緩和される。しかしその大きさはIII−V
族半導体の大きさに限定される上GaAsより高価なInPを
中間に使うため経済的ではない。In this method, the difference in thermal expansion coefficient between adjacent materials is 2 × 10
-6 deg -1 and the bonding temperature is at most 200 ° C.
Thermal strain is greatly reduced. But its size is III-V
It is not economical because it is limited to the size of group semiconductor and uses InP which is more expensive than GaAs.
(発明の目的) 本発明は上記の欠点を解決するために提案されたもの
で、その目的は、Si基板上にクラックや欠陥の無い高品
質なII−VI化合物(あるいはその混晶)半導体層を成長
させる半導体基板を提供することにある。(Object of the Invention) The present invention has been proposed to solve the above-mentioned drawbacks, and an object of the present invention is to provide a high-quality II-VI compound (or mixed crystal thereof) semiconductor layer free of cracks and defects on a Si substrate. It is to provide a semiconductor substrate on which is grown.
(課題を解決するための手段) 上記の目的を達成するため、本発明はSi基板上に成長
するII−VI化合物(あるいはその混晶)半導体におい
て、該II−VI化合物(あるいはその混晶)半導体と同程
度の熱膨張係数を有する基板上に、ガラス、この上にSi
基板、さらにII−VI化合物(あるいはその混晶)半導体
層を積層したことを特徴とする半導体基板を発明の要旨
とするものである。(Means for Solving the Problems) In order to achieve the above object, the present invention relates to a II-VI compound (or a mixed crystal thereof) grown on a Si substrate, wherein the II-VI compound (or a mixed crystal thereof) is used. Glass on a substrate with a coefficient of thermal expansion comparable to that of a semiconductor,
The gist of the present invention is a semiconductor substrate characterized by laminating a substrate and further a semiconductor layer of a II-VI compound (or a mixed crystal thereof).
(作用) 従来の技術では厚いSi基板にII−VI化合物半導体を成
長させた構造であるのに対し、本発明によれば成長させ
るII−VI化合物半導体の熱膨張係数にほぼ等しい熱膨張
係数を持つ基板を使用し、その上に薄いSi層をガラスで
貼りつけ、前記Si層上にII−VI化合物(あるいはその混
晶)半導体結晶を成長させることによって、SiとII−VI
化合物半導体膜との熱膨張係数の差によって発生する内
部応力が低減され、転位密度が少ない高品質のII−VI化
合物半導体膜を得ることができる。(Function) In contrast to the conventional technology having a structure in which a II-VI compound semiconductor is grown on a thick Si substrate, according to the present invention, a thermal expansion coefficient substantially equal to the thermal expansion coefficient of the II-VI compound semiconductor to be grown is obtained. A thin Si layer is adhered to the substrate using a glass substrate, and a II-VI compound (or a mixed crystal thereof) semiconductor crystal is grown on the Si layer.
An internal stress generated due to a difference in thermal expansion coefficient between the compound semiconductor film and the compound semiconductor film is reduced, so that a high-quality II-VI compound semiconductor film having a low dislocation density can be obtained.
次に本発明の実施例について説明する。なお、実施例
は一つの例示であって、本発明の精神を逸脱しない範囲
で、種々の変更あるいは改良を行いうることは言うまで
もない。Next, examples of the present invention will be described. It should be noted that the embodiments are merely examples, and it is needless to say that various changes or improvements can be made without departing from the spirit of the present invention.
(実施例1) 基板材料1として、厚さ2mm,大きさ30×20mm2のステ
アタイト板(熱膨張係数は6.6×10-6)上にPSGガラス2
をプラズマCVD法により積層し、この上に(100)Si基板
3を重ね約1000℃に加熱し、ステアタイト基板とSi基板
とを接着した。この後Si基板3をエッチングにより約1
μmに薄層化した。このようにして作製したステアタイ
トの上のSi基板上を、MOCVDの成長装置内にセットし、
約350℃での成長を行い、ZnSe半導体膜4(熱膨張係数
は7.1×10-61/C)を約5μm成長した。こうして得た第
1図に示す構成のII−VI化合物(あるいはその混晶)半
導体薄膜の内部応力はフォトルミネッセンスのピーク波
長のシフト量から約1.5×108dyn/cm2と見積られた。エ
ッチ・ピット密度(EPD)は約1×105/cm2と見積られ、
これまで得られているSi基板上のZnSe半導体膜に比べ格
段の膜質を示した。(Example 1) as a substrate material 1, the thickness of 2 mm, size 30 × steatite plate 20 mm 2 (coefficient of thermal expansion 6.6 × 10 -6) PSG glass 2 on
Were laminated by a plasma CVD method, and a (100) Si substrate 3 was placed thereon and heated to about 1000 ° C. to bond the steatite substrate and the Si substrate. Thereafter, the Si substrate 3 is etched by about 1
The thickness was reduced to μm. The Si substrate on the steatite thus prepared was set in a MOCVD growth apparatus,
The growth was performed at about 350 ° C., and the ZnSe semiconductor film 4 (the coefficient of thermal expansion was 7.1 × 10 −6 1 / C) was grown to about 5 μm. The internal stress of the thus obtained II-VI compound (or mixed crystal) semiconductor thin film having the structure shown in FIG. 1 was estimated to be about 1.5 × 10 8 dyn / cm 2 from the shift amount of the peak wavelength of photoluminescence. The etch pit density (EPD) is estimated to be about 1 × 10 5 / cm 2 ,
The film quality was remarkably higher than that of the ZnSe semiconductor film on the Si substrate obtained so far.
(実施例2) 基板材料1として、厚さ1mm,大きさ20×20mm2の金属
のタンタル(熱膨張係数は6.5×10-6/C)を用い、実施
例1と全く同様な手順でタンタルの板のうえにPSGガラ
ス2、さらにSi基板3を積層し、この上にMBE(分子線
エピタキシ)法によりZnSe半導体膜4を作製した。実施
例1と全く同様に膜の評価を行った結果ほぼ同程度の膜
質の物が得られた。(Example 2) As a substrate material 1, a metal tantalum having a thickness of 1 mm and a size of 20 × 20 mm 2 (coefficient of thermal expansion: 6.5 × 10 −6 / C) was used, and tantalum was produced in exactly the same procedure as in Example 1. The PSG glass 2 and the Si substrate 3 were laminated on the above-mentioned plate, and a ZnSe semiconductor film 4 was formed thereon by MBE (Molecular Beam Epitaxy). The film was evaluated in exactly the same manner as in Example 1, and as a result, a film having almost the same film quality was obtained.
(実施例3) 基板材料1として、厚さ2mm,大きさ30×30mm2のガラ
ス基板2(組成はCaO,PbO,SiO2からなり、熱膨張係数は
5.8×10-61/C)上に、やはり実施例1と全く同様にPSG
ガラス2,Si基板3を積層し、II−VI混晶半導体成長用基
板とした。この基板をMOCVD薄膜成長装置内にセット
し、実施例1と全く同様に、ZnSe膜4を約5μm成長し
た。こうして作製したZnSe膜は、やはり内部応力は4×
108dyn/cm2、転位密度は1×105/cm2となった。(Example 3) substrate material 1, the thickness of 2 mm, the glass substrate 2 (the composition of the size 30 × 30 mm 2 will CaO, PbO, from SiO 2, the thermal expansion coefficient
5.8 × 10 -6 1 / C)
The glass 2 and the Si substrate 3 were laminated to obtain a substrate for growing a II-VI mixed crystal semiconductor. This substrate was set in a MOCVD thin film growth apparatus, and a ZnSe film 4 was grown to about 5 μm in the same manner as in Example 1. The ZnSe film thus produced has an internal stress of 4 ×
The density was 10 8 dyn / cm 2 and the dislocation density was 1 × 105 / cm 2 .
(実施例4) 基板材料1として、厚さ2mm,大きさ30×30mm2のガラ
ス基板2(組成はCaO,PbO,SiO2からなり、熱膨張係数は
5.8×10-61/C)上に、やはり実施例1と全く同様にPSG
ガラス2,Si基板3を積層し、II−VI混晶半導体成長用基
板とした。この基板をMOCVD薄膜成長装置内にセット
し、実施例1と全く同様に、ZnSxSe1-x(x=0.1,0.2,
0.5,0.7)膜を約5μm成長した。こうして作製したZnS
xSe1-x膜は、やはり内部応力は4×108dyn/cm2、転位密
度は1×105/cm2となった。(Example 4) substrate material 1, the thickness of 2 mm, the glass substrate 2 (the composition of the size 30 × 30 mm 2 will CaO, PbO, from SiO 2, the thermal expansion coefficient
5.8 × 10 -6 1 / C)
The glass 2 and the Si substrate 3 were laminated to obtain a substrate for growing a II-VI mixed crystal semiconductor. This substrate was set in a MOCVD thin film growth apparatus, and ZnS x Se 1-x (x = 0.1, 0.2,
0.5, 0.7) The film was grown to about 5 μm. ZnS fabricated in this way
The xSe 1-x film also had an internal stress of 4 × 10 8 dyn / cm 2 and a dislocation density of 1 × 105 / cm 2 .
(実施例5) 基板材料1として、厚さ2mm,大きさ30×30mm2のガラ
ス基板2(組成はCaO,PbO,SiO2からなり、熱膨張係数は
5.8×10-61/C)上に、やはり実施例1と全く同様にPSG
ガラス2,Si基板3を積層し、II−VI混晶半導体成長用基
板とした。この基板をMOCVD薄膜成長装置内にセットし
た。Si基板上に、GaAs膜をいわゆる二段階成長法(400
℃での低温成長と700℃での高温成長とから成る)によ
り約1μm成長した後、GaAs格子整合するZnSxSe
1-x(x〜0.05)を約5μm成長した。こうして作製し
たGaxIn1-xP膜は、やはり内部応力は4×108dyn/cm2、
転位密度は1×105/cm2となった。(Example 5) The substrate material 1, the thickness of 2 mm, the glass substrate 2 (the composition of the size 30 × 30 mm 2 will CaO, PbO, from SiO 2, the thermal expansion coefficient
5.8 × 10 -6 1 / C)
The glass 2 and the Si substrate 3 were laminated to obtain a substrate for growing a II-VI mixed crystal semiconductor. This substrate was set in a MOCVD thin film growth apparatus. A GaAs film is formed on a Si substrate by a so-called two-step growth method (400
Growth of about 1 μm (low temperature growth at 700 ° C. and high temperature growth at 700 ° C.), followed by ZnS x Se
1-x ( x- 0.05) grew to about 5 μm. The Ga x In 1-x P film thus produced has an internal stress of 4 × 10 8 dyn / cm 2 ,
The dislocation density was 1 × 105 / cm 2 .
この実施例では、ZnS,ZnSeII−VI族化合物半導体およ
びその混晶について記述したが、他のII−VI族化合物半
導体ZnTeなどにおいても、また、ZnTeSSeなどの4元以
上の混晶半導体についても同様な効果が得られた。In this embodiment, ZnS, ZnSeII-VI group compound semiconductors and mixed crystals thereof have been described. However, other II-VI group compound semiconductors such as ZnTe, and quaternary or more mixed crystal semiconductors such as ZnTeSSe can be similarly formed. Effect was obtained.
また、本実施例ではいずれもガラス層として、PSGガ
ラスを用いた場合について記述したが、他のガラスを用
いても同様な効果が得られることは言うまでもない。Further, in this embodiment, the case where PSG glass is used as the glass layer has been described, but it is needless to say that the same effect can be obtained by using other glass.
なお、ガラスとII−VI化合物(あるいはその混晶)の
間に介在せしめられるSi基板の厚さとしては、II−VI化
合物(あるいはその混晶)半導体膜の厚さに対して、1/
5以下あるいは2μm以下とすることが好ましい。The thickness of the Si substrate interposed between the glass and the II-VI compound (or a mixed crystal thereof) is 1/1 of the thickness of the II-VI compound (or a mixed crystal thereof) semiconductor film.
It is preferred to be 5 or less or 2 μm or less.
この理由は次によるものである。 The reason is as follows.
いずれの実施例においても、Siの膜厚を約3μmとし
た場合には、本実施例で行ったSiの膜厚1μmに比べて
膜質の改善の効果が少なかった。In any of the examples, when the thickness of the Si film was set to about 3 μm, the effect of improving the film quality was smaller than in the case of the Si film thickness of 1 μm performed in the present example.
Siの膜厚がII−VI化合物半導体の膜厚の1/5を超過す
ると、SiとII−VI化合物半導体の熱膨張係数差からの応
力が大きくなる。この応力がII−VI化合物半導体に欠陥
あるいはクラックを導入するものと考えられる。その限
界は、II−VI化合物半導体膜に欠陥あるいはクラックが
入る臨界応力σcと、II−VI化合物半導体とSiの熱膨張
係数の違いと成長温度と室温との温度差の積で決まるII
−VI化合物半導体膜中の応力σ0が主な要因と考えら
れ、おおよそσ0<σcの関係である。そのためには、
Siの膜厚はII−VI化合物半導体の膜厚に対して1/5以下
である必要がある。When the thickness of Si exceeds 1/5 of the thickness of the II-VI compound semiconductor, the stress from the difference in thermal expansion coefficient between Si and the II-VI compound semiconductor increases. This stress is considered to introduce defects or cracks in the II-VI compound semiconductor. The limit is determined by the critical stress σ c at which defects or cracks enter the II-VI compound semiconductor film, the difference in the thermal expansion coefficient between the II-VI compound semiconductor and Si, and the product of the temperature difference between the growth temperature and room temperature.
The stress σ 0 in the —VI compound semiconductor film is considered to be a main factor, and is approximately in the relationship of σ 0 <σ c . for that purpose,
The film thickness of Si needs to be 1/5 or less of the film thickness of the II-VI compound semiconductor.
上記の関係からは、II−VI化合物半導体の膜厚が厚い
場合には、Siの膜厚もその1/5であればよい。例えばII
−VI化合物半導体が10μm以上であればSiも2μm以上
でも良い。しかしながら、基板(II−VI化合物半導体と
同程度の熱膨張係数を有する基板)とSiとの熱膨張係数
差から、Si応力が発生する。この応力によって、Si膜厚
が約2μmを超えるとSiにクラックが発生するものと考
えられ、高品質基板が得られなくなるからである。From the above relationship, when the thickness of the II-VI compound semiconductor is large, the thickness of Si only needs to be 1/5 of that. For example II
If the -VI compound semiconductor is 10 µm or more, Si may be 2 µm or more. However, Si stress is generated due to a difference in thermal expansion coefficient between the substrate (a substrate having a thermal expansion coefficient similar to that of the II-VI compound semiconductor) and Si. It is considered that if the Si film thickness exceeds about 2 μm due to this stress, cracks are generated in the Si film, and a high-quality substrate cannot be obtained.
また基板材料としては、II−VI化合物(あるいはその
混晶)半導体との熱膨張係数差が30%以内であるものを
用いることが好ましい。Further, as the substrate material, it is preferable to use a material having a thermal expansion coefficient difference of 30% or less from that of the II-VI compound (or mixed crystal thereof) semiconductor.
これは熱膨張係数との差が30%を超えると、II−VI化
合物半導体膜にかかる熱応力が大きくなり、II−VI化合
物半導体膜に欠陥あるいはクラックを生じるためであ
る。This is because if the difference from the coefficient of thermal expansion exceeds 30%, the thermal stress applied to the II-VI compound semiconductor film increases, causing defects or cracks in the II-VI compound semiconductor film.
II−VI化合物半導体膜にかかる応力は、(成長温度と
室温の温度差)と、前記基板とII−VI化合物半導体の熱
膨張係数差)の積でほとんど決まる。成長温度はII−VI
化合物半導体成長方法で決定されており、熱膨張係数差
が30%を超えると、σ0<σcの関係を超えてしまい、
高品質II−VI化合物半導体膜が得られなかったのであ
る。The stress applied to the II-VI compound semiconductor film is almost determined by the product of (temperature difference between growth temperature and room temperature) and thermal expansion coefficient difference between the substrate and the II-VI compound semiconductor). Growth temperature is II-VI
Determined by the compound semiconductor growth method, if the difference in thermal expansion coefficient exceeds 30%, the relationship of σ 0 <σ c is exceeded,
High quality II-VI compound semiconductor films could not be obtained.
(発明の効果) 叙上のように本発明によれば、Si基板上に成長するII
−VI化合物(あるいはその混晶)半導体において、該II
−VI化合物(あるいはその混晶)半導体と同程度の熱膨
張係数を有する基板上に、ガラス、この上にSi基板、さ
らにII−VI化合物(あるいはその混晶)半導体層を積層
したことにより、SiとII−VI化合物半導体膜との熱膨張
係数の差によって発生する内部応力が低減され、転位密
度が少ない高品質のII−VI化合物半導体膜が得られる効
果を有する。(Effect of the Invention) As described above, according to the present invention, II growing on a Si substrate
-VI compound (or a mixed crystal thereof) semiconductor;
On a substrate having a thermal expansion coefficient similar to that of a -VI compound (or mixed crystal thereof) semiconductor, a glass, a Si substrate thereon, and a II-VI compound (or mixed crystal thereof) semiconductor layer are laminated thereon. The internal stress generated due to the difference in the thermal expansion coefficient between Si and the II-VI compound semiconductor film is reduced, and this has the effect of obtaining a high-quality II-VI compound semiconductor film having a low dislocation density.
第1図は本発明の半導体基板の実施例を示す。 1……基板材料 2……ガラス 3……Si基板 4……II−VI混晶層 FIG. 1 shows an embodiment of a semiconductor substrate according to the present invention. 1 ... substrate material 2 ... glass 3 ... Si substrate 4 ... II-VI mixed crystal layer
───────────────────────────────────────────────────── フロントページの続き (72)発明者 森 英史 東京都千代田区内幸町1丁目1番6号 日本電信電話株式会社内 (72)発明者 今井 和雄 東京都千代田区内幸町1丁目1番6号 日本電信電話株式会社内 (58)調査した分野(Int.Cl.6,DB名) H01L 21/20 H01L 21/36──────────────────────────────────────────────────続 き Continued on the front page (72) Eiji Mori, Inventor 1-1-6 Uchisaiwaicho, Chiyoda-ku, Tokyo Nippon Telegraph and Telephone Corporation (72) Kazuo Imai 1-16-1 Uchisaiwaicho, Chiyoda-ku, Tokyo Japan Telegraph and Telephone Co., Ltd. (58) Field surveyed (Int.Cl. 6 , DB name) H01L 21/20 H01L 21/36
Claims (4)
はその混晶)半導体において、該II−VI化合物(あるい
はその混晶)半導体と同程度の熱膨張係数を有する基板
上に、ガラス、この上にSi基板、さらにII−VI化合物
(あるいはその混晶)半導体層を積層したことを特徴と
する半導体基板。An II-VI compound (or mixed crystal thereof) semiconductor grown on a Si substrate, wherein a glass having a thermal expansion coefficient similar to that of the II-VI compound (or mixed crystal thereof) semiconductor is formed on a substrate. A semiconductor substrate comprising a Si substrate and a II-VI compound (or mixed crystal thereof) semiconductor layer laminated thereon.
−VI化合物(あるいはその混晶)半導体膜の厚さの1/5
あるいは2μm以下の厚さのSi基板を用いることを特徴
とする半導体基板。2. The method according to claim 1, wherein the Si substrate is laminated.
-VI compound (or mixed crystal thereof) 1/5 of semiconductor film thickness
Alternatively, a semiconductor substrate using a Si substrate having a thickness of 2 μm or less.
を用いることを特徴とする半導体基板。3. A semiconductor substrate, wherein PSG glass is used as the glass according to claim 1.
化合物(あるいはその混晶)半導体との熱膨張係数差が
前記化合物半導体の熱膨張係数の30%以内である基板を
用いることを特徴とする半導体基板。4. The substrate according to claim 1, wherein the material of the substrate is II-VI.
A semiconductor substrate, wherein a substrate having a difference in thermal expansion coefficient from a compound (or mixed crystal thereof) semiconductor within 30% of a thermal expansion coefficient of the compound semiconductor is used.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16884389A JP2802439B2 (en) | 1989-06-30 | 1989-06-30 | Semiconductor substrate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16884389A JP2802439B2 (en) | 1989-06-30 | 1989-06-30 | Semiconductor substrate |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0334436A JPH0334436A (en) | 1991-02-14 |
JP2802439B2 true JP2802439B2 (en) | 1998-09-24 |
Family
ID=15875564
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16884389A Expired - Fee Related JP2802439B2 (en) | 1989-06-30 | 1989-06-30 | Semiconductor substrate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2802439B2 (en) |
-
1989
- 1989-06-30 JP JP16884389A patent/JP2802439B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0334436A (en) | 1991-02-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2669368B2 (en) | Method for manufacturing compound semiconductor laminated structure on Si substrate | |
JPH01315159A (en) | Dielectric-isolation semiconductor substrate and its manufacture | |
JP3114809B2 (en) | Semiconductor device | |
TWI834703B (en) | Manufacturing method of GaN laminated substrate | |
JPH073814B2 (en) | Method for manufacturing semiconductor substrate | |
US5433168A (en) | Method of producing semiconductor substrate | |
JP2802439B2 (en) | Semiconductor substrate | |
US4191788A (en) | Method to reduce breakage of V-grooved <100> silicon substrate | |
JPH03284834A (en) | Semiconductor device | |
JP5505845B2 (en) | Hardened layer for strain layer relaxation | |
JP4728460B2 (en) | Method for producing gallium nitride compound semiconductor single crystal | |
JP3350855B2 (en) | Method for manufacturing group III nitride semiconductor substrate | |
JPH05275332A (en) | Manufacture of hetero-epitaxial film | |
JP2791900B2 (en) | Semiconductor substrate and method of manufacturing the same | |
JP2838121B2 (en) | Semiconductor substrate | |
JPS62196813A (en) | Growth method for compound semiconductor | |
JP2862018B2 (en) | Semiconductor substrate | |
US4229474A (en) | Breakage resistant V-grooved <100> silicon substrates | |
JPH10229218A (en) | Manufacture of nitride semiconductor substrate and nitride semiconductor substrate | |
JPS6066811A (en) | Manufacture of compound semiconductor device | |
JPH01227424A (en) | Compound semiconductor substrate | |
JPH0334531A (en) | Semiconductor substrate | |
JP2690769B2 (en) | Method for manufacturing compound semiconductor substrate | |
JPH01218009A (en) | Crystal growing method | |
JPH07107895B2 (en) | Compound semiconductor substrate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |