JP2802009B2 - Solid state relay - Google Patents

Solid state relay

Info

Publication number
JP2802009B2
JP2802009B2 JP3973593A JP3973593A JP2802009B2 JP 2802009 B2 JP2802009 B2 JP 2802009B2 JP 3973593 A JP3973593 A JP 3973593A JP 3973593 A JP3973593 A JP 3973593A JP 2802009 B2 JP2802009 B2 JP 2802009B2
Authority
JP
Japan
Prior art keywords
side heat
heat radiating
state relay
input
solid state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3973593A
Other languages
Japanese (ja)
Other versions
JPH06252297A (en
Inventor
勝則 真喜屋
篤志 村山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP3973593A priority Critical patent/JP2802009B2/en
Publication of JPH06252297A publication Critical patent/JPH06252297A/en
Application granted granted Critical
Publication of JP2802009B2 publication Critical patent/JP2802009B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はソリッドステートリレー
の構造、特にその放熱構造の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure of a solid state relay, and more particularly to an improvement of a heat dissipation structure thereof.

【0002】[0002]

【従来の技術】従来におけるソリッドステートリレーの
内部構造を図4及び図5に従って説明する。図4に示す
ように、ソリッドステートリレー1は、入力側に発光ダ
イオード2を配達する一方、出力側にトライアック素子
3とこれを点弧する受光素子4とを配置した内部構造を
有し、前記トライアック素子3の電極T1,T2間に電流
を流して外部の負荷を駆動するようになっている。
2. Description of the Related Art The internal structure of a conventional solid state relay will be described with reference to FIGS. As shown in FIG. 4, the solid state relay 1 has an internal structure in which a light emitting diode 2 is delivered to an input side, and a triac element 3 and a light receiving element 4 for igniting the triac element 3 are arranged on an output side. A current flows between the electrodes T 1 and T 2 of the triac element 3 to drive an external load.

【0003】一方、この時に流れる電流は前記トライア
ック素子3を発熱させ、そのジャンクション温度(接合
部温度)を上昇させるため、そのまま放置しておくと特
性の悪化や信頼性の低下を招くことになる。
On the other hand, the current flowing at this time causes the triac element 3 to generate heat and raises its junction temperature (junction temperature). If left unattended, the characteristics will be degraded and the reliability will be lowered. .

【0004】そこで、従来のソリッドステートリレー1
では熱抵抗を下げる方法として、図4に示すように、リ
レー本体1’の外側面に入力側放熱端子5,6,7,8
及び出力側放熱端子9,10を設け、該入出力側放熱端
子5,6,7,8,9,10を介して前記トライアック
素子3の熱を外部に放熱することにより、その温度上昇
を抑えるように構成されていた。
Therefore, the conventional solid state relay 1
As a method of reducing the thermal resistance, as shown in FIG. 4, the input side heat radiating terminals 5, 6, 7, 8 are provided on the outer surface of the relay body 1 '.
And the heat radiation terminals 9 and 10 on the output side are provided, and the heat of the triac element 3 is radiated to the outside through the heat radiation terminals 5, 6, 7, 8, 9 and 10 on the input / output side to suppress the temperature rise. Was configured as follows.

【0005】前記出力側放熱端子9,10と連結された
出力側放熱部11は、前記トライアック素子3を搭載す
る搭載部でもあるため、前記出力側放熱端子9,10は
直接前記トライアック素子3の熱をひろい、外部に放出
している。また、前記入力側放熱端子5,6,7,8と
連結された入力側放熱部12は、前記発光ダイオード2
と共に、前記トライアック素子3及び受光素子4と対向
配置されており、さらに、これら全体が光透過性の絶縁
樹脂13により封止されているので、前記入力側放熱部
12は前記絶縁樹脂13介して前記トライアック素子3
の熱をひろい、その熱を前記入力側放熱端子5,6,
7,8から外部に放出している。
[0005] Since the output side heat radiating portion 11 connected to the output side heat radiating terminals 9 and 10 is also a mounting portion on which the triac element 3 is mounted, the output side heat radiating terminals 9 and 10 are directly connected to the triac element 3. It spreads heat and releases it to the outside. Further, the input side heat radiating portion 12 connected to the input side heat radiating terminals 5, 6, 7, 8 is provided with the light emitting diode 2.
At the same time, the input side heat radiating section 12 is disposed via the insulating resin 13 because the triac element 3 and the light receiving element 4 are disposed to face each other, and the entirety thereof is sealed with a light transmitting insulating resin 13. The triac element 3
And dissipate the heat to the input side heat radiation terminals 5, 6,
It is released to the outside from 7,8.

【0006】[0006]

【発明が解決しようとする課題】上記のようなソリッド
ステートリレーにおいては、一般に、トライアック素子
に流せる実効オン電流が大きければ大きいほど、その利
用分野が広がるので、その意味では、できるだけ大きな
実効オン電流を流せるようにするのが望ましい。
In the solid state relay as described above, in general, the larger the effective on-current that can be passed through the triac element, the more the field of application is expanded. It is desirable to be able to flow.

【0007】一方、この実効オン電流と周囲温度との間
には、図6の実線で示すような関係がある。すなわち、
トライアック素子の動作温度範囲において流せる実効オ
ン電流ITは、リレー本体パッケージの熱抵抗Rth
(j−a)により同図実線のようなディレーティング特
性を示す。これによれば、周囲温度Taが或る一定の温
度t1を越えた時に実効オン電流ITが低下するから、
同図の高温側では大きな実効オン電流を流せないことと
なる。
On the other hand, there is a relationship between the effective ON current and the ambient temperature as shown by a solid line in FIG. That is,
The effective on-current IT that can flow in the operating temperature range of the triac element is the thermal resistance Rth of the relay body package.
(Ja) shows a derating characteristic as shown by the solid line in FIG. According to this, when the ambient temperature Ta exceeds a certain temperature t 1 , the effective on-current IT decreases.
On the high temperature side in the figure, a large effective on-current cannot flow.

【0008】従って、高温側で大きな実効オン電流を流
せるようにするには、パッケージの熱抵抗Rth(j−
a)を小さくすることにより、つまり放熱性を高めるこ
とにより、同図において実効オン電流が低下しはじめる
温度t1を高温側にシフトさせる必要がある。
Accordingly, in order to allow a large effective on-current to flow on the high temperature side, the thermal resistance Rth (j−
by reducing the a), i.e. by increasing the heat dissipation, it is necessary to shift the temperature t 1 of the effective on-current starts to decrease in the figure to the high temperature side.

【0009】ところが、上述した従来のソリッドステー
トリレーにおいて、出力側放熱端子9,10はトライア
ック素子3の熱を直接出力側放熱部11を介して放熱し
ているが、入力側放熱端子5〜8はトライアック素子3
の熱を絶縁樹脂13を介して入力側放熱部12でひろ
い、その後放熱しているため、あまり高い放熱性が望め
ず、パッケージの熱抵抗Rth(j−a)を小さくする
ことができなかったため、上記図6の実線で示したよう
なディレーティング特性しか得られず、高温側では大き
な実効オン電流を流せないのが実情であった。
However, in the above-mentioned conventional solid state relay, the output side heat radiating terminals 9 and 10 radiate the heat of the triac element 3 directly through the output side heat radiating portion 11, but the input side heat radiating terminals 5 to 8. Is the triac element 3
Is spread in the input side heat radiating portion 12 through the insulating resin 13 and then radiated, so that a very high heat radiating property cannot be expected, and the thermal resistance Rth (ja) of the package cannot be reduced. However, only the derating characteristic shown by the solid line in FIG. 6 was obtained, and a large effective on-current could not be passed on the high temperature side.

【0010】本発明は、ソリッドステートリレーにおけ
る上記のような事情に鑑みてなされたもので、放熱性を
高めることで実効オン電流の周囲温度に対するディレー
ティング特性を改善し、もって高温側で従来のものより
も大きな実効オン電流を流すことができるソリッドステ
ートリレーを提供することを目的とする。
The present invention has been made in view of the above-mentioned circumstances in a solid state relay, and improves the derating characteristic of the effective on-current with respect to the ambient temperature by increasing the heat radiation. It is an object of the present invention to provide a solid-state relay capable of flowing an effective on-current larger than that of a solid-state relay.

【0011】[0011]

【課題を解決するための手段】本発明のソリッドステー
トリレーは、電気信号を光に変換する発光素子と、光を
電気信号に変換する受光素子と、該受光素子に接続され
たトライアック素子とをリレー本体に内蔵し、且つ、前
記リレー本体の外周には当該リレー本体で発生する熱を
外部に放出する入力側放熱端子及び出力側放熱端子を設
けてなるソリッドステートリレーにおいて、前記出力側
放熱端子に連結され、且つ、前記トライアック素子を搭
載する出力側放熱部と、前記入力側放熱端子に連結され
た入力側放熱部とを直接接触させてなることを特徴とす
るものである。
A solid state relay according to the present invention comprises a light emitting element for converting an electric signal to light, a light receiving element for converting light to an electric signal, and a triac element connected to the light receiving element. A solid-state relay which is built in the relay body and provided on the outer periphery of the relay body with an input side heat dissipation terminal and an output side heat dissipation terminal for releasing heat generated in the relay body to the outside; And an output-side heat radiating section mounted with the triac element and an input-side heat radiating section connected to the input-side heat radiating terminal are brought into direct contact with each other.

【0012】[0012]

【作用】上記の構成によれば、出力側放熱端子に連結さ
れ、且つ、トライアック素子を搭載する出力側放熱部
と、入力側放熱端子に連結された入力側放熱部とを直接
接触させてなるので、発熱体となる前記トライアック素
子の熱は効率良く前記入力側放熱端子及び出力側放熱端
子へ伝達され、各放熱端子から放熱でき、放熱量が大き
くなる。従って放熱効果が高くなりリレー本体の熱抵抗
を小さくできる。
According to the above construction, the output side heat radiating portion connected to the output side heat radiating terminal and mounting the triac element is brought into direct contact with the input side heat radiating portion connected to the input side heat radiating terminal. Therefore, the heat of the triac element, which is a heating element, is efficiently transmitted to the input-side radiating terminal and the output-side radiating terminal, and can be radiated from each of the radiating terminals. Therefore, the heat radiation effect is enhanced, and the thermal resistance of the relay body can be reduced.

【0013】[0013]

【実施例】図1は本発明の一実施例を示す図であり、同
図(a)は側面断面図であり、同図(b)は上面側から
の透視図であり、同図(c)は下面側からの透視図であ
る。図2は図1に示すソリッドステートリレーの内部結
線図である。
FIG. 1 is a view showing an embodiment of the present invention. FIG. 1 (a) is a side sectional view, FIG. 1 (b) is a perspective view from the top side, and FIG. () Is a perspective view from the lower surface side. FIG. 2 is an internal connection diagram of the solid state relay shown in FIG.

【0014】図1及び図2の如く、本発明のソリッドス
テートリレー21は、リレー本体22の入力側に電気信
号を光信号に変換する発光素子23を設け、出力側に前
記発光素子23からの光信号を受光して電気信号に変換
する点弧用フォトトライアックチップ等の受光素子24
と、該受光素子24に接続されたトライアック素子25
とを設けた構成である。そして、前記トライアック素子
25の電極T1,T2間に流れる電流によって外部の負荷
を駆動するとともに、その時の電流がゲートg側からの
電気信号で制御されるようになっている。
As shown in FIGS. 1 and 2, the solid state relay 21 of the present invention is provided with a light emitting element 23 for converting an electric signal to an optical signal on the input side of a relay main body 22 and on the output side. A light receiving element 24 such as a phototriac chip for ignition which receives an optical signal and converts it into an electric signal
And a triac element 25 connected to the light receiving element 24.
Is provided. An external load is driven by a current flowing between the electrodes T 1 and T 2 of the triac element 25, and the current at that time is controlled by an electric signal from the gate g side.

【0015】一方、図1の如く、本発明ソリッドステー
トリレー21は、入力側リードフレーム26及び出力側
リードフレーム27とを含む。前記入力側リードフレー
ム26は、前記発光素子23が搭載された外部リード端
子28、前記発光素子23の上部電極から金線で結線さ
れた外部リード端子29と、入力側放熱端子30,3
1,32,33に連結された入力側放熱部34とから構
成される。また前記出力側リードフレーム27は、前記
受光素子24を搭載した搭載部35と、出力側放熱端子
36,37,38,39に連結され、且つ、前記トライ
アック素子25を搭載した出力側放熱部40とから構成
される。前記トライアック素子25は前記出力側放熱部
40における前記受光素子24側に載置されており、ま
た前記入力側放熱部34は前記トライアック素子25と
重ならない構造及び配置となっている。尚、図中41,
42は外部リード端子であり、所望の端子−素子間が金
線にて接続されている。
On the other hand, as shown in FIG. 1, the solid state relay 21 of the present invention includes an input lead frame 26 and an output lead frame 27. The input side lead frame 26 includes an external lead terminal 28 on which the light emitting element 23 is mounted, an external lead terminal 29 connected to the upper electrode of the light emitting element 23 by a gold wire, and input side heat radiating terminals 30 and 3.
1, 32, and 33, which are connected to the input side heat radiating section 34. Further, the output side lead frame 27 is connected to a mounting portion 35 on which the light receiving element 24 is mounted and output side heat radiating terminals 36, 37, 38, 39, and is connected to an output side heat radiating portion 40 on which the triac element 25 is mounted. It is composed of The triac element 25 is mounted on the light receiving element 24 side of the output side heat radiating section 40, and the input side heat radiating section 34 is structured and arranged so as not to overlap with the triac element 25. Incidentally, 41,
Reference numeral 42 denotes an external lead terminal, and a desired terminal and element are connected by a gold wire.

【0016】また、前記入力側リードフレーム26と出
力側リードフレーム27とは、互いに相対向する位置に
配置されるが、前記入力側リードフレーム26における
入力側放熱部34については、前記出力側リードフレー
ム27における出力側放熱部40と接するよう前記発光
素子23の載置部とは逆に下方に折り曲げられ、前記入
力側放熱部34と出力側放熱部40とは、ポット溶接等
の溶接にて前記トライアック素子25を搭載した部分を
除くほぼ全域が接続される。
The input-side lead frame 26 and the output-side lead frame 27 are arranged at positions facing each other. The mounting portion of the light emitting element 23 is bent downward to be in contact with the output side heat radiating portion 40 of the frame 27, and the input side heat radiating portion 34 and the output side heat radiating portion 40 are welded by pot welding or the like. Almost the entire area is connected except for the portion where the triac element 25 is mounted.

【0017】光透過性の絶縁樹脂43は上記構造をモー
ルドするものであり、この上に外乱光を遮断するための
遮光性樹脂44がさらにモールドされている。
The light-transmissive insulating resin 43 molds the above structure, and a light-shielding resin 44 for blocking disturbance light is further molded thereon.

【0018】このように、本発明のソリッドステートリ
レー21は、リレー本体22の外側部分が直方体形状の
パッケージで覆われ、その長手方向に延びる外側面に
は、外部端子28,29,41,42及び入力側放熱端
子30,31,32,33並びに出力側放熱端子36,
37,38,39をそれぞれ設けた構成となっている。
As described above, in the solid state relay 21 of the present invention, the outer portion of the relay main body 22 is covered with the rectangular parallelepiped package, and the outer terminals extending in the longitudinal direction have the external terminals 28, 29, 41, 42. And the input side heat radiation terminals 30, 31, 32, 33 and the output side heat radiation terminals 36,
37, 38, and 39 are provided.

【0019】このような構成のソリッドステートリレー
21において、図1及び図2の如く、トライアック素子
25の電極T1,T2間に電流が流れると、この時の電流
によって前記トライアック素子25が発熱するが、この
熱はリレー本体22の外側面における前記入力側放熱端
子30,31,32,33及び出力側放熱端子36,3
7,38,39により外部に放出される。尚、図2にお
けるa及びbは発光素子23のアノード及びカソードで
ある。
In the solid state relay 21 having such a configuration, when a current flows between the electrodes T 1 and T 2 of the triac element 25 as shown in FIGS. 1 and 2, the triac element 25 generates heat due to the current at this time. However, this heat is applied to the input side heat radiating terminals 30, 31, 32, 33 and the output side heat radiating terminals 36, 3 on the outer surface of the relay body 22.
It is released to the outside by 7, 38, 39. Note that a and b in FIG. 2 are an anode and a cathode of the light emitting element 23.

【0020】すなわち、図1の如く、熱の伝達経路とな
る前記トライアック素子25及び入力側放熱端子30,
31,32,33間と前記トライアック素子25及び出
力側放熱端子36,37,38,39間は熱的に直結さ
れた構成なので、熱の伝達経路はトライアック素子2
5,出力側放熱部40,入力側放熱部34,入力側放熱
端子30,31,32,33と、トライアック素子2
5,出力側放熱部40,出力側放熱端子36,37,3
8,39となり、それぞれ順次に伝達される。この熱の
伝達経路は共に熱の伝導性の高いリードフレームである
ため、熱を効率よく伝達し、また放熱することから放熱
効果を向上することができる。
That is, as shown in FIG. 1, the triac element 25 and the input side heat radiation terminal 30, which serve as a heat transmission path,
Since the connection between the components 31, 32, and 33 and the connection between the triac element 25 and the output side heat radiation terminals 36, 37, 38, and 39 are thermally directly connected, the heat transmission path is the triac element 2
5, the output side heat radiating section 40, the input side heat radiating section 34, the input side heat radiating terminals 30, 31, 32, 33, and the triac element 2
5, output side heat radiating section 40, output side heat radiating terminals 36, 37, 3
8, 39, which are sequentially transmitted. Since both of these heat transmission paths are lead frames having high heat conductivity, heat can be efficiently transmitted and heat is radiated, so that the heat radiation effect can be improved.

【0021】図3は他の実施例を示す図であり、同図
(a)は側面断面図であり、同図(b)は上面側からの
透視図であり、同図(c)は右側面断面図である。
FIG. 3 is a view showing another embodiment. FIG. 3A is a side sectional view, FIG. 3B is a perspective view from the top side, and FIG. 3C is the right side. FIG.

【0022】本実施例は、図4に示す従来例と相違する
点のみ説明する。図3の如く、本実施例のソリッドステ
ートリレー21は、入力側放熱部34における長手方向
中央部に切り込みが形成されており、該切り込み部を境
にトライアック素子25と重ならない部分34′が出力
側放熱部40と接するよう下方に折り曲げられ、前記出
力側放熱部40と接するほぼ全域が溶接にて接続されて
なる構成となっている。
In this embodiment, only points different from the conventional example shown in FIG. 4 will be described. As shown in FIG. 3, the solid-state relay 21 of the present embodiment has a cutout formed at the center in the longitudinal direction of the input side heat radiating portion 34, and a portion 34 'that does not overlap with the triac element 25 is output at the cutout portion. The heat radiation portion 40 is bent downward so as to be in contact with the heat radiation portion 40, and substantially the entire region in contact with the output heat radiation portion 40 is connected by welding.

【0023】このような高い放熱性により、ソリッドス
テートリレーにおけるパッケージの熱抵抗Rth(j−
a)を小さくでき、その結果、実効オン電流の周囲温度
に対するディレーテイングの特性が改善され、高温側に
おいても大きな実効オン電流を流すことができる。
Due to such high heat dissipation, the thermal resistance Rth (j−
a) can be reduced, and as a result, the characteristics of the derating of the effective on-current with respect to the ambient temperature are improved, and a large effective on-current can flow even on the high temperature side.

【0024】[0024]

【発明の効果】以上のように、本発明のソリッドステー
トリレーによれば、出力側放熱端子に連結され、且つ、
トライアック素子を搭載する出力側放熱部と、入力側放
熱端子に連結された入力側放熱部とを直接接触させてな
る構成なので、リレー本体のパッケージの放熱性が向上
され、該パッケージの熱抵抗Rth(j−a)が小さく
なる。従って、実効オン電流の周囲温度に対するディレ
ーテイング特性が改善され、高温側でも大きな実効オン
電流を流すことが可能となり、利用分野が広がる。
As described above, according to the solid state relay of the present invention, the solid state relay is connected to the output side heat radiation terminal, and
Since the output radiator on which the triac element is mounted is in direct contact with the input radiator connected to the input radiator terminal, the heat dissipation of the package of the relay body is improved, and the thermal resistance Rth of the package is improved. (Ja) becomes smaller. Accordingly, the derating characteristic of the effective on-current with respect to the ambient temperature is improved, and a large effective on-current can be passed even on a high temperature side, and the field of application is expanded.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を示す図であり、図(a)は
側面断面図であり、図(b)は上面側からの透視図であ
り、図(c)は下面側からの透視図である。
FIG. 1 is a view showing one embodiment of the present invention, FIG. 1 (a) is a side sectional view, FIG. 1 (b) is a perspective view from the upper side, and FIG. It is a perspective view.

【図2】図1に示すソリッドステートリレーの内部結線
図である。
FIG. 2 is an internal connection diagram of the solid state relay shown in FIG.

【図3】本発明の他の実施例を示す図であり、図(a)
は側面断面図であり、図(b)は上面側からの透視図で
あり、図(c)は右側面断面図である。
FIG. 3 is a view showing another embodiment of the present invention, and FIG.
Is a side cross-sectional view, FIG. (B) is a perspective view from the top side, and FIG. (C) is a right side cross-sectional view.

【図4】従来例を示す構成図であり、図(a)は側面断
面図であり、図(b)は上面側からの透視図であり、図
(c)は下面側からの透視図である。を示す内部結線図
である。
4A and 4B are configuration diagrams showing a conventional example, FIG. 4A is a side cross-sectional view, FIG. 4B is a perspective view from the upper side, and FIG. 4C is a perspective view from the lower side. is there. FIG.

【図5】図4に示すソリッドステートリレーの内部結線
図である。
5 is an internal connection diagram of the solid state relay shown in FIG.

【図6】実効オン電流の周囲温度に対するディレーテイ
ング特性図である。
FIG. 6 is a graph showing a derating characteristic of an effective on-current with respect to an ambient temperature.

【符号の説明】[Explanation of symbols]

21 ソリッドステートリレー 22 リレー本体 23 発光素子 24 受光素子 25 トライアック素子 30,31,32,33 入力側放熱端子 34 入力側放熱部 36,37,38,39 出力側放熱端子 40 出力側放熱部 DESCRIPTION OF SYMBOLS 21 Solid state relay 22 Relay main body 23 Light emitting element 24 Light receiving element 25 Triac element 30, 31, 32, 33 Input side heat dissipation terminal 34 Input side heat dissipation part 36, 37, 38, 39 Output side heat dissipation terminal 40 Output side heat dissipation part

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平6−232720(JP,A) 特開 平2−171019(JP,A) 特開 平3−277012(JP,A) 特開 昭62−298145(JP,A) 特開 昭60−97652(JP,A) 実開 昭63−95248(JP,U) 実開 平4−91024(JP,U) 実開 平3−32443(JP,U) 実開 昭63−51453(JP,U) 実開 昭64−37063(JP,U) (58)調査した分野(Int.Cl.6,DB名) H01L 23/34 - 23/473 H03K 17/00 - 17/98 H01L 31/12──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-6-232720 (JP, A) JP-A-2-171010 (JP, A) JP-A-3-277012 (JP, A) JP-A-62-1987 298145 (JP, A) JP-A-60-97652 (JP, A) JP-A-63-95248 (JP, U) JP-A-4-91024 (JP, U) JP-A-3-32443 (JP, U) Japanese Utility Model Application Showa 63-51453 (JP, U) Japanese Utility Model Application Showa 64-37063 (JP, U) (58) Fields investigated (Int. Cl. 6 , DB name) H01L 23/34-23/473 H03K 17/00 -17/98 H01L 31/12

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 電気信号を光に変換する発光素子と、光
を電気信号に変換する受光素子と、該受光素子に接続さ
れたトライアック素子とをリレー本体に内蔵し、且つ、
前記リレー本体の外周には当該リレー本体で発生する熱
を外部に放出する入力側放熱端子及び出力側放熱端子を
設けてなるソリッドステートリレーにおいて、前記出力
側放熱端子に連結され、且つ、前記トライアック素子を
搭載する出力側放熱部と、前記入力側放熱端子に連結さ
れた入力側放熱部とを直接接触させてなることを特徴と
するソリッドステートリレー。
1. A relay body including a light emitting element for converting an electric signal to light, a light receiving element for converting light to an electric signal, and a triac element connected to the light receiving element, and
A solid state relay having an input side heat dissipation terminal and an output side heat dissipation terminal for releasing heat generated in the relay body to the outside on the outer periphery of the relay body, wherein the triac is connected to the output side heat dissipation terminal; A solid-state relay in which an output-side heat radiating portion on which an element is mounted is directly contacted with an input-side heat radiating portion connected to the input-side heat radiating terminal.
JP3973593A 1993-03-01 1993-03-01 Solid state relay Expired - Fee Related JP2802009B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3973593A JP2802009B2 (en) 1993-03-01 1993-03-01 Solid state relay

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3973593A JP2802009B2 (en) 1993-03-01 1993-03-01 Solid state relay

Publications (2)

Publication Number Publication Date
JPH06252297A JPH06252297A (en) 1994-09-09
JP2802009B2 true JP2802009B2 (en) 1998-09-21

Family

ID=12561229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3973593A Expired - Fee Related JP2802009B2 (en) 1993-03-01 1993-03-01 Solid state relay

Country Status (1)

Country Link
JP (1) JP2802009B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4611472B2 (en) * 1999-08-04 2011-01-12 浜松ホトニクス株式会社 Emitter / receiver
JP2003124500A (en) * 2001-10-15 2003-04-25 Sharp Corp Optocoupler

Also Published As

Publication number Publication date
JPH06252297A (en) 1994-09-09

Similar Documents

Publication Publication Date Title
JP3516789B2 (en) Semiconductor power module
US7501700B2 (en) Semiconductor power module having an electrically insulating heat sink and method of manufacturing the same
JP3345241B2 (en) Semiconductor device
JPH09260550A (en) Semiconductor device
JP2004047883A (en) Electric power semiconductor device
US6720662B1 (en) Semiconductor device of chip-on-chip structure with a radiation noise shield
JP2802009B2 (en) Solid state relay
JP4019993B2 (en) Semiconductor device
JP2001036001A (en) Power semiconductor module
JPH04123462A (en) Semiconductor mounting device
JPH073848B2 (en) Semiconductor device
JP2851985B2 (en) Power semiconductor device
JP4045404B2 (en) Power module and its protection system
JPS636864A (en) Transistor device
JP3240575B2 (en) Solid state relay
CN218975436U (en) Semiconductor device and electronic apparatus
JPH07283349A (en) Semiconductor device
JP2665170B2 (en) Semiconductor device
JP2001068578A (en) Structure of ccd mold package and radiating method therefor
JPS5918685Y2 (en) Hybrid thick film integrated circuit device
JP2713141B2 (en) Semiconductor device
JPH07231065A (en) Resin-sealed semiconductor device
JP3115721B2 (en) Solid state relay
JP3449312B2 (en) Semiconductor device
JPH06120295A (en) Semiconductor device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees