JP2800235B2 - Semiconductor pressure sensor - Google Patents

Semiconductor pressure sensor

Info

Publication number
JP2800235B2
JP2800235B2 JP1061822A JP6182289A JP2800235B2 JP 2800235 B2 JP2800235 B2 JP 2800235B2 JP 1061822 A JP1061822 A JP 1061822A JP 6182289 A JP6182289 A JP 6182289A JP 2800235 B2 JP2800235 B2 JP 2800235B2
Authority
JP
Japan
Prior art keywords
semiconductor
semiconductor region
oxide film
semiconductor substrate
pressure sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1061822A
Other languages
Japanese (ja)
Other versions
JPH02240971A (en
Inventor
哲夫 藤井
吉孝 後藤
進 畔柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP1061822A priority Critical patent/JP2800235B2/en
Publication of JPH02240971A publication Critical patent/JPH02240971A/en
Application granted granted Critical
Publication of JP2800235B2 publication Critical patent/JP2800235B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体圧力センサに関し、電気的影響が少な
いものに関する。
Description: BACKGROUND OF THE INVENTION The present invention relates to a semiconductor pressure sensor, and more particularly to a semiconductor pressure sensor having a small electric influence.

〔従来の技術〕[Conventional technology]

従来、機械的応力を加える事によってピエゾ抵抗効果
によりその抵抗値が変化することを利用して、単結晶シ
リコン基板の一部の肉厚を薄くしてダイヤフラムを形成
し、そのダイヤフラムに加わる圧力により歪ゲージを変
形させ、ピエゾ抵抗効果により抵抗値の変化を検出して
圧力を測定する半導体圧力センサが広く知られている。
なかでも、特開昭61ー239675号公報記載の半導体圧力セ
ンサにおいては、ピエゾ抵抗層が形成された半導体基板
と、半導体圧力センサの支持部となる半導体層との間に
埋設絶縁体層を設け、薄肉ダイヤフラム部とその表面に
形成する他の絶縁物層に起因するバイメタル動作を抑制
する方法を採用している。
Conventionally, utilizing the fact that the resistance value changes due to the piezo resistance effect by applying mechanical stress, a part of the single crystal silicon substrate is made thinner to form a diaphragm, and the pressure applied to the diaphragm 2. Description of the Related Art A semiconductor pressure sensor that measures a pressure by deforming a strain gauge and detecting a change in resistance value by a piezoresistance effect is widely known.
In particular, in the semiconductor pressure sensor described in JP-A-61-239675, a buried insulator layer is provided between a semiconductor substrate on which a piezoresistive layer is formed and a semiconductor layer serving as a support portion of the semiconductor pressure sensor. In addition, a method of suppressing a bimetal operation caused by a thin diaphragm portion and another insulating layer formed on the surface thereof is adopted.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

しかし、上記の半導体圧力センサにおいては、半導体
基板と半導体層との間に挟まれた埋設絶縁体層の厚さが
約1〜2μmと非常に薄いために、ウェハをチップに分
割するダイシングを行った際に半導体基板と半導体層が
接触したり、正常な製品となった後でも、埋設絶縁体層
の外周側面付近に水滴やホコリ等が付着した場合、ある
いはノイズ等により半導体基板と半導体層との間に沿面
放電開始電圧以上の電圧が印加された場合には半導体基
板と半導体層が導通してしまい、外部の電位が半導体基
板に導かれる結果、半導体圧力センサ駆動電源や各種回
路が一体化されたワンチップ圧力センサの回路との間に
おいて相互作用を引き起こし、誤動作や出力の変動等の
原因になるという問題点を有していた。
However, in the above-mentioned semiconductor pressure sensor, since the thickness of the buried insulator layer sandwiched between the semiconductor substrate and the semiconductor layer is very thin, about 1-2 μm, dicing for dividing the wafer into chips is performed. When the semiconductor substrate and the semiconductor layer come into contact with each other, even after the product becomes a normal product, if the water droplets or dust adhere to the vicinity of the outer peripheral side surface of the buried insulator layer, or the semiconductor substrate and the semiconductor layer may be disturbed due to noise or the like. If a voltage higher than the creeping discharge start voltage is applied during this time, the semiconductor substrate and the semiconductor layer conduct, and an external potential is led to the semiconductor substrate. As a result, the semiconductor pressure sensor drive power supply and various circuits are integrated. This causes a problem in that an interaction is caused between the circuit of the one-chip pressure sensor and a malfunction or a change in output.

本発明は上記問題点に鑑みてなされたもので、半導体
圧力センサ支持部と半導体基板との電気的絶縁を確実に
行うことのできる半導体圧力センサを提供することを目
的とする。
The present invention has been made in view of the above problems, and an object of the present invention is to provide a semiconductor pressure sensor capable of reliably performing electrical insulation between a semiconductor pressure sensor support and a semiconductor substrate.

〔課題を解決するための手段〕[Means for solving the problem]

上記目的を達成するために、本発明においては、 第1の半導体領域、第2の半導体領域、及びこれら第
1、第2の半導体領域間に埋設された第1の絶縁体層と
を有する半導体基板と、 該半導体基板の前記第2の半導体領域の主表面より該
第2の半導体領域側に形成された凹部と、 該凹部に対応する前記第1の半導体領域側に形成され
た歪検知部と、 前記第1の半導体領域側であって前記凹部と異なる領
域に形成された回路素子と、 前記歪検知部と前記回路素子を同時に包囲する矩形の
環形状であって、前記第1の絶縁体層を突き抜け前記第
2の半導体領域の内部にまで達するように前記第1の半
導体領域から前記半導体基板の厚み方向に延びて形成さ
れたトレンチと、 該トレンチ内部表面全面に形成された熱酸化膜と、 該熱酸化膜を介して前記トレンチ内部全体に埋め込ま
れて形成された多結晶シリコンと を備え、 前記多結晶シリコンが埋め込まれた部分が前記半導体
基板の側面側全周にわたって外部に露出するように前記
半導体基板がダイシングカットされてチップ状態に形作
られてなる ことを特徴とする構成としている。
In order to achieve the above object, according to the present invention, there is provided a semiconductor having a first semiconductor region, a second semiconductor region, and a first insulator layer embedded between the first and second semiconductor regions. A substrate; a concave portion formed on the second semiconductor region side from a main surface of the second semiconductor region of the semiconductor substrate; and a strain detecting portion formed on the first semiconductor region side corresponding to the concave portion. A circuit element formed in a region different from the recess on the first semiconductor region side; and a rectangular ring shape surrounding the distortion detecting section and the circuit element at the same time, wherein the first insulating A trench extending from the first semiconductor region in the thickness direction of the semiconductor substrate so as to penetrate the body layer and reach the inside of the second semiconductor region; and a thermal oxidation formed on the entire inner surface of the trench. Through the film and the thermal oxide film And a polycrystalline silicon formed so as to be buried in the entire inside of the trench. The dicing cut is performed so that the portion in which the polycrystalline silicon is buried is exposed to the outside over the entire side surface side of the semiconductor substrate. And formed into a chip state.

〔実施例〕〔Example〕

以下、図面に示す実施例により本発明を説明する。 Hereinafter, the present invention will be described with reference to embodiments shown in the drawings.

第1図(a)〜(g)は、本発明の第1実施例を示す
断面図であって、その製造工程を順に説明する。第1図
(a)において、1は(100)面を持つ平滑な単結晶の
N型シリコン半導体基板であり、2は1000℃のWet酸化
により形成された0.2〜1μmの厚さの酸化膜(SiO2
である。又、3は100〜20Ω・cmの比抵抗の(100)面を
持つ単結晶のP型シリコン半導体基板であり、この基板
を第1図(b)に示すようにウェハ直接接合により(例
えば窒素又は酸化雰囲気中、1100℃で1時間)接合す
る。次に第1図(c)に示すように、ラッピングにより
P型シリコン半導体基板3を研磨した後、ミラーポリッ
シュ面仕上げを行ない5〜100μmの厚さにする。引き
続き、N埋め込み層4をイオン注入により形成し、そ
の上に5〜15μmのN型エピタキシャル層5を形成す
る。
1 (a) to 1 (g) are cross-sectional views showing a first embodiment of the present invention. In FIG. 1A, 1 is a smooth single-crystal N-type silicon semiconductor substrate having a (100) plane, and 2 is an oxide film (0.2-1 μm thick) formed by wet oxidation at 1000 ° C. SiO 2 )
It is. Reference numeral 3 denotes a single crystal P-type silicon semiconductor substrate having a (100) plane having a specific resistance of 100 to 20 Ω · cm, and this substrate is bonded by direct wafer bonding (for example, nitrogen) as shown in FIG. Alternatively, bonding is performed at 1100 ° C. for 1 hour in an oxidizing atmosphere. Next, as shown in FIG. 1 (c), after polishing the P-type silicon semiconductor substrate 3 by lapping, a mirror polished surface is finished to a thickness of 5 to 100 μm. Subsequently, an N * buried layer 4 is formed by ion implantation, and an N-type epitaxial layer 5 of 5 to 15 μm is formed thereon.

引き続き、第1図(d)に示すように、いわゆるトレ
ンチエッチングをN型エピタキシャル層5,P型シリコン
半導体基板3,酸化膜(SiO2)2およびシリコン半導体基
板1にわたって行う。次に、熱酸化により表面及びトレ
ンチ内に酸化膜(SiO2)6を0.2〜1μmの厚さ形成
し、続いてPoly(多結晶)Si7をトレンチ内に埋め込
み、表面研磨により表面の平滑化を行う。
Subsequently, as shown in FIG. 1D, so-called trench etching is performed over the N-type epitaxial layer 5, the P-type silicon semiconductor substrate 3, the oxide film (SiO 2 ) 2, and the silicon semiconductor substrate 1. Next, an oxide film (SiO 2 ) 6 is formed to a thickness of 0.2 to 1 μm on the surface and in the trench by thermal oxidation, and subsequently, poly (polycrystalline) Si 7 is embedded in the trench, and the surface is smoothed by polishing the surface. Do.

次に第1図(e)に示すように、通常のバイポーラIC
工程により、アイソレーション層8,バイポーラトランジ
スタ9,ダイオード10等の素子、更にP型ピエゾ抵抗層1
1,酸化膜12を形成し、 次に第1図(f)に示すように、酸化膜12にコンタク
ト穴を開け、Al酸化層13,パッシベーション膜14を形成
する。ここでデバイス形成領域は酸化膜2と酸化膜6に
より基板とは絶縁分離される。更に圧力センサのダイア
フラムとなる領域をKOH等のエッチング液により除去
し、凹部15を形成する。尚、エッチングは酸化膜2に達
するまで行ってもよい事は言うまでもない。次に図中点
線を引いた箇所をダイシングソーによりダイシングを行
い、第1図(g)に示すようなチップ状態にする。な
お、圧力センサの特性安定化のためSiウェハと熱膨張係
数がほぼ等しいパイレックスガラス(商品名)と陽極接
合を行ない、台座となる部分をウェハ状態で形成後にダ
イシングを行いチップ状態にしてもよい。
Next, as shown in FIG. 1 (e), a normal bipolar IC
Depending on the process, elements such as an isolation layer 8, a bipolar transistor 9, a diode 10, and a P-type piezoresistive layer 1
1. An oxide film 12 is formed. Then, as shown in FIG. 1 (f), a contact hole is made in the oxide film 12, and an Al oxide layer 13 and a passivation film 14 are formed. Here, the device formation region is insulated from the substrate by the oxide films 2 and 6. Further, a region serving as a diaphragm of the pressure sensor is removed with an etching solution such as KOH to form a concave portion 15. It goes without saying that the etching may be performed until the oxide film 2 is reached. Next, dicing is performed on a portion indicated by a dotted line in the drawing with a dicing saw to obtain a chip state as shown in FIG. 1 (g). In addition, in order to stabilize the characteristics of the pressure sensor, anodic bonding may be performed with Pyrex glass (product name) having substantially the same thermal expansion coefficient as that of the Si wafer, and a pedestal portion may be formed in a wafer state and then diced into a chip state. .

本実施例によれば、第1図(g)に示す半導体圧力セ
ンサにおいては、ピエゾ抵抗層11を含むデバイスが形成
される基板3が酸化膜2および酸化膜6により基板1と
は絶縁分離されているので、絶縁体層2の側面2a部分に
おいて水滴やホコリ等が直接基板に付着するのを防ぐこ
とができ、両基板1,3が導通することがない。又、絶縁
体層6に酸化膜を用いたが、酸化膜より誘電率の小さな
物質を用いる事により電界集中は緩和される。また別の
構造としては絶縁体層6に酸化膜を用いて、酸化膜2の
かわりに窒素酸化膜(誘電率:大)・酸化膜・窒化酸化
膜等の誘電率の高い物質ではさまれた三層構造の絶縁体
を用いる事により電界は緩和され、電気的特性は向上す
る。センサがノイズ等の影響を受けた場合にも基板1か
ら基板3への電気的影響を小さくすることができる。
According to this embodiment, in the semiconductor pressure sensor shown in FIG. 1 (g), the substrate 3 on which the device including the piezoresistive layer 11 is formed is insulated and separated from the substrate 1 by the oxide film 2 and the oxide film 6. Therefore, it is possible to prevent water droplets and dust from directly adhering to the substrate at the side surface 2a of the insulator layer 2, and the two substrates 1 and 3 do not conduct. Although an oxide film is used for the insulator layer 6, the electric field concentration is reduced by using a material having a smaller dielectric constant than the oxide film. As another structure, an oxide film is used for the insulator layer 6, and instead of the oxide film 2, a material having a high dielectric constant such as a nitrogen oxide film (large dielectric constant), an oxide film, or a nitrided oxide film is used. By using an insulator having a three-layer structure, an electric field is reduced and electric characteristics are improved. Even when the sensor is affected by noise or the like, the electric influence from the substrate 1 to the substrate 3 can be reduced.

具体的には第1図(g)に示した半導体圧力センサは
第2図に示されるような構造の装置100内に設置され使
用されるものであるが、この装置100が吸入空気圧を検
出する為に自動車のサージタンク200等の直接搭載され
る場合には、サージタンク200内に入ってきた水分やゴ
ミ等の異物粒子が図中矢印で示すように装置100内にも
入ってしまい、これが結露して半導体圧力センサの基板
1にまで達すると、不安定なボディーアースレベルの影
響を受けることになる。しかしながら上記実施例の半導
体圧力センサによると基板1の電位が基板3の電位に影
響を及ぼすことがないので、このような場合においても
精度が高い圧力検出を行える。
Specifically, the semiconductor pressure sensor shown in FIG. 1 (g) is installed and used in a device 100 having a structure as shown in FIG. 2, and this device 100 detects an intake air pressure. Therefore, when mounted directly on the surge tank 200 or the like of an automobile, foreign particles such as moisture and dust entering the surge tank 200 also enter the device 100 as shown by the arrow in the figure, and this is When dew condensation reaches the substrate 1 of the semiconductor pressure sensor, it is affected by an unstable body earth level. However, according to the semiconductor pressure sensor of the above embodiment, since the potential of the substrate 1 does not affect the potential of the substrate 3, highly accurate pressure detection can be performed even in such a case.

尚、第2図において、101はハウジングであり、この
中に圧力センシングユニット102が収納される。圧力セ
ンシングユニット102はステム103とキャップ104を溶接
接合したカンパッケージ内にガラス台座105及び第1図
(g)に示した半導体圧力センサ106を備え、又、半導
体圧力センサ106からの電気信号を外部へ導くために半
導体圧力センサ106からワイヤ107、及びハーメチックシ
ールされたリード108が導出される。そしてリード108に
導びかれた電気信号はさらにリード109を介して外部装
置へ導かれる。又、110はシール用のOリングであり、1
11は圧力導入口112から入ってきた異物粒子が半導体圧
力センサ106に導びかれるのを極力防止するためにその
先端が内側方向に折れ曲がった圧力導入パイプ、113は
貫通コンデンサである。
In FIG. 2, reference numeral 101 denotes a housing in which the pressure sensing unit 102 is housed. The pressure sensing unit 102 includes a glass pedestal 105 and a semiconductor pressure sensor 106 shown in FIG. 1 (g) in a can package in which a stem 103 and a cap 104 are welded, and an electric signal from the semiconductor pressure sensor 106 is externally provided. A wire 107 and a hermetically sealed lead 108 are led out of the semiconductor pressure sensor 106 to guide the lead. The electric signal led to the lead 108 is further led to an external device via the lead 109. Reference numeral 110 denotes an O-ring for sealing.
Reference numeral 11 denotes a pressure introduction pipe whose tip is bent inward in order to prevent foreign particles entering from the pressure introduction port 112 from being guided to the semiconductor pressure sensor 106 as much as possible. Reference numeral 113 denotes a through condenser.

さらに本実施例によると上述した効果の他に、次のよ
うな効果も有する。即ち、本実施例においてはトレンチ
エッチングにより開けられた穴(トレンチ)の表面に酸
化膜6を形成した後にその穴内にPolySi7を充填してい
るので、酸化膜6形成後のAl配線層13の形成行程等にお
いてこの穴内にレジスト等の物質が入ることなく、安定
にプロセスを流す事ができる。また、例えば穴(トレン
チ)の形成を機械的に行なう場合においては酸化膜側面
がダメージを受けそのままでは電気的特性が劣化するが
本実施例においては酸化膜6を熱酸化法により形成して
いるので塑性流動した成分を絶縁体(酸化物)にするこ
とができ、基板1及び3の電気的絶縁をより確実に達成
することができる。
Further, according to the present embodiment, in addition to the above-described effects, the following effects are also obtained. That is, in this embodiment, since the oxide film 6 is formed on the surface of the hole (trench) formed by the trench etching and then the hole is filled with PolySi7, the formation of the Al wiring layer 13 after the formation of the oxide film 6 is performed. During the process or the like, a process such as a resist can be stably flowed without a substance such as a resist entering the hole. Further, for example, when the hole (trench) is formed mechanically, the oxide film 6 is formed by a thermal oxidation method in the present embodiment, although the side surface of the oxide film is damaged and the electrical characteristics are deteriorated as it is. Therefore, the plastically flowed component can be made into an insulator (oxide), and the electrical insulation of the substrates 1 and 3 can be more reliably achieved.

次に、本発明の第2実施例を第3図を用いて説明す
る。本実施例は上記第1実施例の第1図(d)の行程に
おいて穴内にPolySi7を埋める事なしに形成した例であ
り、図は第1図(f)に相当する状態を示している。酸
化膜2の側面に形成する酸化膜6の形成工程は、ウェハ
工程の途中でトレンチエッチング,酸化膜6を形成する
行程と、チップをカットするための最終工程で形成する
工程が可能である。チップカット時においてはスクライ
ブラインを入れた後等に例えば酸素雰囲気中、又は酸素
雰囲気とSiH4,TEOS(tetraethoxysilane)雰囲気中でス
クライブライン部にレーザービーム(レーザーCVD)等
を照射して、SiO2膜等を形成,緻密化できる。又、チッ
プにカットした後、各々のチップの表面、および裏面を
治具等で覆い、側面のみを露出して、絶縁膜のプラズマ
溶射、上記と同様にレーザーCVDまたは絶縁体フリット
ガラスSOG等の塗布,緻密化,樹脂の塗布等により側面
全面に絶縁体層を形成してもよい。
Next, a second embodiment of the present invention will be described with reference to FIG. This embodiment is an example in which the hole is not filled with PolySi7 in the process of FIG. 1D of the first embodiment, and the figure shows a state corresponding to FIG. 1F. The process of forming the oxide film 6 formed on the side surface of the oxide film 2 can be a trench etching process in the middle of a wafer process, a process of forming the oxide film 6, and a process of forming a final process for cutting chips. During such, for example, an oxygen atmosphere after the scribe line at the time of chip cutting, or in an oxygen atmosphere and SiH 4, TEOS (tetraethoxysilane) atmosphere scribe line portion by irradiating a laser beam (laser CVD) or the like, SiO 2 A film or the like can be formed and densified. Also, after cutting into chips, the front and back surfaces of each chip are covered with a jig or the like, only the side surfaces are exposed, and plasma spraying of the insulating film, laser CVD or insulating frit glass SOG etc. An insulating layer may be formed on the entire side surface by coating, densification, resin coating, or the like.

次に、本発明の第3実施例を第4図を用いて説明す
る。上記第2実施例においては基板3側表面より穴を形
成しているが、本実施例のように基板1側表面より形成
しても良い。
Next, a third embodiment of the present invention will be described with reference to FIG. In the second embodiment, the holes are formed from the substrate 3 side surface, but they may be formed from the substrate 1 side surface as in this embodiment.

以上、本発明を上記第1〜第3実施例を用いて説明し
たが、本発明はそれらに限定されることなくその主旨を
逸脱しない限り種々変形可能であり、例えば、本発明で
言う第2の絶縁体層としては酸化膜の他の窒化膜等の他
の絶縁体でも良く、又、各半導体基板の導電型は他の導
電型であっても良い。又、半導体基板の結晶面は(10
0)面の他に(110)面等も使用できることは言うまでも
ない。
As described above, the present invention has been described with reference to the first to third embodiments. However, the present invention is not limited thereto, and can be variously modified without departing from the gist thereof. The insulator layer may be another insulator such as a nitride film other than an oxide film, and the conductivity type of each semiconductor substrate may be another conductivity type. The crystal plane of the semiconductor substrate is (10
It goes without saying that a (110) plane or the like can be used in addition to the (0) plane.

〔発明の効果〕〔The invention's effect〕

本発明によると、第1の絶縁第層を突き抜け第2の半
導体領域の内部にまで達するように第1の半導体領域か
ら半導体基板の厚み方向に延びてトレンチを形成し、ト
レンチ内部表面全面に熱酸化を形成し、熱酸化膜を介し
てトレンチ内部全体に多結晶シリコンを埋め込んで形成
し、しかも、トレンチは歪検知部と回路素子を同時に包
囲する矩形の環形状としており、また、多結晶シリコン
が埋め込まれた部分が半導体基板の側面側全周にわたっ
て外部に露出するように半導体基板がダイシングカット
されてチップ状態に形作られるので、効率よく歪検知部
と回路素子と第2の半導体領域から完全に絶縁分離する
ことができる。
According to the present invention, a trench is formed extending from the first semiconductor region in the thickness direction of the semiconductor substrate so as to penetrate the first insulating first layer and reach the inside of the second semiconductor region. Oxidation is formed, polycrystalline silicon is buried in the whole trench through a thermal oxide film, and the trench is formed in a rectangular ring shape that simultaneously surrounds the strain sensing portion and the circuit element. The semiconductor substrate is diced and formed into a chip state so that the portion in which is embedded is exposed to the outside over the entire periphery of the side surface of the semiconductor substrate, so that the strain detecting portion, the circuit element, and the second semiconductor region are efficiently removed completely. Can be insulated and separated.

【図面の簡単な説明】[Brief description of the drawings]

第1図(a)〜(g)は本発明の第1実施例の製造工程
を示す断面図、第2図は第1実施例を具体的に装置に設
置した例を示す断面図、第3図は本発明の第2実施例を
説明するための断面図、第4図は本発明の第3実施例を
説明するための断面図である。 1……シリコン半導体基板,2……酸化膜,3……シリコン
半導体基板,6……酸化膜,7……PolySi。
1 (a) to 1 (g) are cross-sectional views showing a manufacturing process of a first embodiment of the present invention, FIG. 2 is a cross-sectional view showing an example in which the first embodiment is specifically installed in an apparatus, and FIG. FIG. 4 is a sectional view for explaining a second embodiment of the present invention, and FIG. 4 is a sectional view for explaining a third embodiment of the present invention. 1 ... Silicon semiconductor substrate, 2 ... Oxide film, 3 ... Silicon semiconductor substrate, 6 ... Oxide film, 7 ... PolySi.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭62−54477(JP,A) 特開 昭63−90148(JP,A) 特開 昭63−245939(JP,A) 特開 昭60−109244(JP,A) 特開 平2−237166(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01L 29/84 G01L 9/04 101 H01L 21/762 H01L 21/763──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-62-54477 (JP, A) JP-A-63-90148 (JP, A) JP-A-63-245939 (JP, A) 109244 (JP, A) JP-A-2-237166 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) H01L 29/84 G01L 9/04 101 H01L 21/762 H01L 21/763

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】第1の半導体領域、第2の半導体領域、及
びこれら第1、第2の半導体領域間に埋設された第1の
絶縁体層とを有する半導体基板と、 該半導体基板の前記第2の半導体領域の主表面より該第
2の半導体領域側に形成された凹部と、 該凹部に対応する前記第1の半導体領域側に形成された
歪検知部と、 前記第1の半導体領域側であって前記凹部と異なる領域
に形成された回路素子と、 前記歪検知部と前記回路素子を同時に包囲する矩形の還
形状であって、前記第1の絶縁体層を突き抜け前記第2
の半導体領域の内部にまで達するように前記第1の半導
体領域から前記半導体基板の厚み方向に延びて形成され
たトレンチと、 該トレンチ内部表面全面に形成された熱酸化膜と、 該熱酸化膜を介して前記トレンチ内部全体に埋め込まれ
て形成された多結晶シリコンと を備え、 前記多結晶シリコンが埋め込まれた部分が前記半導体基
板の側面側全周にわたって外部に露出するように前記半
導体基板がダイシングカットされてチップ状態に形作ら
れてなる ことを特徴とする半導体圧力センサ。
A semiconductor substrate having a first semiconductor region, a second semiconductor region, and a first insulator layer buried between the first and second semiconductor regions; A concave portion formed on the second semiconductor region side from the main surface of the second semiconductor region; a strain detecting portion formed on the first semiconductor region side corresponding to the concave portion; and the first semiconductor region A circuit element formed on the side and in a region different from the recess; a rectangular return shape surrounding the distortion detecting section and the circuit element at the same time, the second element penetrating the first insulator layer;
A trench extending from the first semiconductor region in the thickness direction of the semiconductor substrate so as to reach the inside of the semiconductor region, a thermal oxide film formed over the entire inner surface of the trench, and the thermal oxide film And a polycrystalline silicon formed so as to be buried in the whole inside of the trench through the semiconductor substrate, wherein the portion in which the polycrystalline silicon is buried is exposed to the outside over the entire side surface side periphery of the semiconductor substrate. A semiconductor pressure sensor formed by dicing and cutting into a chip state.
JP1061822A 1989-03-14 1989-03-14 Semiconductor pressure sensor Expired - Lifetime JP2800235B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1061822A JP2800235B2 (en) 1989-03-14 1989-03-14 Semiconductor pressure sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1061822A JP2800235B2 (en) 1989-03-14 1989-03-14 Semiconductor pressure sensor

Publications (2)

Publication Number Publication Date
JPH02240971A JPH02240971A (en) 1990-09-25
JP2800235B2 true JP2800235B2 (en) 1998-09-21

Family

ID=13182160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1061822A Expired - Lifetime JP2800235B2 (en) 1989-03-14 1989-03-14 Semiconductor pressure sensor

Country Status (1)

Country Link
JP (1) JP2800235B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5382823A (en) * 1990-11-27 1995-01-17 Terumo Kabushiki Kaisha Semiconductor device and method for production thereof
JPH06317475A (en) * 1991-07-19 1994-11-15 Terumo Corp Infrared sensor and fabrication thereof
JPH06160174A (en) * 1991-09-27 1994-06-07 Terumo Corp Infrared sensor
JP4710147B2 (en) 2000-06-13 2011-06-29 株式会社デンソー Semiconductor pressure sensor
EP1752640A4 (en) * 2004-05-26 2011-08-31 Mikuni Kogyo Kk Throttle system and sensor unit

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6254477A (en) * 1985-09-03 1987-03-10 Nippon Denso Co Ltd Manufacture of semiconductor pressure sensor
JPS6390148A (en) * 1986-10-03 1988-04-21 Hitachi Ltd Semiconductor device and its manufacture

Also Published As

Publication number Publication date
JPH02240971A (en) 1990-09-25

Similar Documents

Publication Publication Date Title
US5320705A (en) Method of manufacturing a semiconductor pressure sensor
US7704774B2 (en) Pressure sensor having a chamber and a method for fabricating the same
US4791465A (en) Field effect transistor type semiconductor sensor and method of manufacturing the same
US5095349A (en) Semiconductor pressure sensor and method of manufacturing same
US5770883A (en) Semiconductor sensor with a built-in amplification circuit
US6653702B2 (en) Semiconductor pressure sensor having strain gauge and circuit portion on semiconductor substrate
US8785231B2 (en) Method of making semiconductor device
USRE34893E (en) Semiconductor pressure sensor and method of manufacturing same
JPH11201844A (en) Semiconductor pressure sensor and its manufacture
JPH08316496A (en) Manufacture of semiconductor device
JP2800235B2 (en) Semiconductor pressure sensor
US6507103B2 (en) Semiconductor device
US7989894B2 (en) Fusion bonding process and structure for fabricating silicon-on-insulation (SOI) semiconductor devices
JP2876617B2 (en) Semiconductor pressure sensor and method of manufacturing the same
JP2001358345A (en) Manufacturing method of semiconductor pressure sensor
JP3278926B2 (en) Semiconductor pressure sensor
JP3156681B2 (en) Semiconductor strain sensor
JP2014102225A (en) Physical quantity sensor and method for manufacturing the same
JP3329150B2 (en) Insulated semiconductor device
JP2800334B2 (en) Semiconductor pressure sensor and method of manufacturing the same
JP2897581B2 (en) Manufacturing method of semiconductor strain sensor
JP3351100B2 (en) Method for manufacturing semiconductor device
JPH09223678A (en) Manufacturing method of semiconductor device
JPH0636980A (en) Manufacture of thin film
JPH09129897A (en) Manufacture of semiconductor sensor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090710

Year of fee payment: 11