JP2796943B2 - Construction method of multi-span continuous steel girder with reinforced concrete slab - Google Patents

Construction method of multi-span continuous steel girder with reinforced concrete slab

Info

Publication number
JP2796943B2
JP2796943B2 JP25631194A JP25631194A JP2796943B2 JP 2796943 B2 JP2796943 B2 JP 2796943B2 JP 25631194 A JP25631194 A JP 25631194A JP 25631194 A JP25631194 A JP 25631194A JP 2796943 B2 JP2796943 B2 JP 2796943B2
Authority
JP
Japan
Prior art keywords
steel girder
slab
floor slab
span
deflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP25631194A
Other languages
Japanese (ja)
Other versions
JPH0892915A (en
Inventor
邦夫 大樋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAWADA KENSETSU KK
Original Assignee
KAWADA KENSETSU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAWADA KENSETSU KK filed Critical KAWADA KENSETSU KK
Priority to JP25631194A priority Critical patent/JP2796943B2/en
Publication of JPH0892915A publication Critical patent/JPH0892915A/en
Application granted granted Critical
Publication of JP2796943B2 publication Critical patent/JP2796943B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Bridges Or Land Bridges (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、鋼桁上に鉄筋コンク
リート床版を上載する橋梁等の多径間連続鋼桁の施工方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for constructing a multi-span continuous steel girder such as a bridge in which a reinforced concrete slab is mounted on a steel girder.

【0002】[0002]

【従来の技術】I桁や箱桁からなる鋼桁上に場所打ちの
鉄筋コンクリート床版(以下RC床版と略す)を設ける
橋梁では、RC床版と鋼桁との間にずれ止め又はスラブ
止めが介在しており、それぞれ両者の自由変位を拘束し
ている。橋梁等の長大なRC床版は適切な区間に分割し
て順次構築して行くが、床版構築時の鋼桁の変形に伴っ
てRC床版部には対応する応力が発生する。他区間のコ
ンクリート打設により床版内に引張応力が発生し、この
引張力によってクラックが発生する恐れがあるので、各
分割区間のコンクリート打設に伴う鋼桁の変形は事前に
十分検討しなければならない。
2. Description of the Related Art In a bridge in which a cast-in-place reinforced concrete slab (hereinafter abbreviated as RC slab) is provided on a steel girder composed of an I-girder or a box girder, a bridge or a slab is fixed between the RC slab and the steel girder. Are interposed, and restrain the free displacement of both. A long RC slab, such as a bridge, is divided into appropriate sections and sequentially constructed, but a corresponding stress is generated in the RC slab due to deformation of a steel girder during construction of the slab. Tensile stress is generated in the floor slab due to casting concrete in other sections, and cracks may occur due to this tensile force.Thus, deformation of steel girders due to concrete casting in each divided section must be thoroughly examined in advance. Must.

【0003】従来の多径間連続鋼桁の施工方法は、この
ような引張応力を抑制するために、支間中央部を先行し
て構築し、負のモーメントが生ずる中間支点部を最後に
打設していた。この場合には、区間分割数、1区間のコ
ンクリート打設量、打設順序、打設間隔等の施工管理に
おける綿密な検討が不可欠であった。
[0003] In the conventional method of constructing a multi-span continuous steel girder, in order to suppress such tensile stress, the center of the span is constructed in advance, and the intermediate fulcrum where a negative moment is generated is cast last. Was. In this case, a thorough study on the construction management such as the number of section divisions, the concrete placement amount in the section, the placement order, and the placement interval was indispensable.

【0004】[0004]

【発明が解決しようとする課題】しかし、このような従
来の多径間連続鋼桁の施工方法では、コンクリート打設
を片押しで実施できないため、又打設箇所・順序・間隔
等が著しく限定されるため、資材や工程の面からも効率
的とはいえなかった。
However, in such a conventional method of constructing a multi-span continuous steel girder, since concrete casting cannot be carried out by one-sided pressing, the location, order, spacing, etc. of the concrete placing are extremely limited. Therefore, it was not efficient in terms of materials and processes.

【0005】この発明は、上記課題を解決し、RC床版
の構築を一方向からでも可能とし、資材及び工程の効率
化が図れるRC床版を有する多径間連続鋼桁の施工方法
を提供することを目的としている。
[0005] The present invention solves the above-mentioned problems, and provides a method of constructing a multi-span continuous steel girder having an RC slab that enables construction of an RC slab from one direction and that can improve the efficiency of materials and processes. It is intended to be.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するた
め、この発明のRC床版を有する多径間連続鋼桁の施工
方法は、中間支点で支持される鋼桁上に場所打ちの鉄筋
コンクリート床版を構築する多径間連続鋼桁の施工方法
において、前記床版は鋼桁の一端部から分割施工により
順次構築すると共に、この床版構築支間に隣接するコン
クリート未打設の支間部の鋼桁には、たわみを調整し得
る引張部材を備え、この引張部材を緊張させてたわみ調
整を行った後に前記床版のコンクリート打設を開始する
ことを特徴としている。前記引張部材は、前記支間部の
鋼桁を支持する仮設支柱に併設されており、引張部材を
緊張して鋼桁を完成時の高さで支持した後に前記床版の
コンクリート打設を開始し、床版の構築に伴う前記支間
部の鋼桁のたわみを完成時のたわみに略一致させながら
順次床版構築を行うことを特徴とするものである。
In order to solve the above problems, a method for constructing a multi-span continuous steel girder having an RC floor slab according to the present invention comprises a cast-in-place reinforced concrete floor on a steel girder supported by an intermediate fulcrum. In the method of constructing a multi-span continuous steel girder for constructing a slab, the slab is sequentially constructed by split construction from one end of the steel girder, and the steel of the uncast concrete span adjacent to the slab construction span is provided. The girder is provided with a tension member capable of adjusting the deflection, and after the tension is adjusted by adjusting the tension member, concrete placement of the floor slab is started. The tension member is attached to a temporary column supporting the steel girder of the span, and after tensioning the tension member to support the steel girder at a completed height, concrete casting of the floor slab is started. In addition, the slabs are sequentially constructed while the deflection of the steel girder in the span portion accompanying the slab construction substantially matches the deflection at the time of completion.

【0007】又、前記引張部材は、前記支間部の鋼桁と
橋梁下部構造物又は前記仮設支柱とを連結し伸縮量調整
装置を付設するPC鋼材であるか、あるいは前記支間部
の鋼桁の直下支持地盤にアンカーして伸縮量調整装置を
付設するPC鋼材であって、このPC鋼材を緊張して鋼
桁を完成時の高さに維持した後に前記床版のコンクリー
ト打設を開始し、伸縮量調整装置を使用して床版の構築
に伴う前記支間部の鋼桁のたわみを完成時のたわみに略
一致させながら順次床版構築を行うことを特徴とするも
のである。
The tension member may be a PC steel material that connects the steel girder of the span and the bridge substructure or the temporary strut and is provided with an expansion / contraction adjusting device, or a steel girder of the span. PC steel material to which an expansion and contraction amount adjustment device is attached by anchoring to the directly below support ground, and after the PC steel material is tensioned to maintain the steel girder at the height at the time of completion, concrete casting of the floor slab is started, The present invention is characterized in that the slabs are sequentially constructed by using an expansion / contraction amount adjusting device while substantially matching the deflection of the steel girder of the span portion accompanying the slab with the deflection at the time of completion.

【0008】[0008]

【作用】この発明の施工方法は、連続桁の鋼桁を各支点
上にセットした後、所定支間を引張部材で引き下げて径
間のたわみを調整する。鋼桁には製作キャンバーにより
所定高さの上げ越しが形成されているが、コンクリート
未打設の状態で、先行して床版を構築する支間に隣接す
る支間の鋼桁部分を引張部材で引き下げると、この荷重
を受けて床版構築支間のたわみはより増幅される。この
状態で鋼桁の一端部から分割施工により順次床版のコン
クリート打設を行う。更に中間支点を越えて引き下げ区
間の床版コンクリートを打設すると、床版荷重が引張部
材の緊張力を減退させて行く。この間、既打設支間の床
版には完成時の断面力が常に作用しているため、クラッ
クを生じさせる引張応力は発生しない。
According to the construction method of the present invention, after the steel girder of the continuous girder is set on each fulcrum, a predetermined span is pulled down by a tension member to adjust the deflection of the span. The steel girder has an overhang of a predetermined height formed by the production camber, but in the state where concrete is not cast, the steel girder part between the struts adjacent to the strut to construct the floor slab is pulled down with a tension member Under this load, the deflection between the floor slab construction supports is further amplified. In this state, concrete is placed on the floor slab sequentially from one end of the steel girder by split construction. Further, when the floor slab concrete in the lowering section is cast over the intermediate fulcrum, the floor slab load reduces the tension of the tension member. During this time, since the sectional force at the time of completion is always acting on the floor slab between the already-placed supports, no tensile stress causing cracks is generated.

【0009】請求項2記載の施工方法は、引張部材を緊
張し、鋼桁を仮設支柱で完成時高さで支持した後に床版
コンクリートを打設する。床版構築に伴う断面力によ
り、コンクリート未打設区間のたわみは順次変化しよう
とするが、剛性の高い仮設支柱に支持される鋼桁はこの
間も略完成時高さを維持する。全体の床版構築が完成し
た時点では、死荷重のみで完成時高さを実現することに
なるので、引張部材及び仮設支柱に作用する荷重は消散
する。
In the construction method according to the second aspect, the tension member is tensioned, and the steel beam is supported by the temporary support at the height at the time of completion, and then the floor slab concrete is poured. Due to the sectional force caused by the construction of the floor slab, the deflection of the section where concrete is not cast tends to change sequentially, but the steel girder supported by the temporary rigid support column maintains the almost completed height during this time. When the entire floor slab is completed, the height at the time of completion is realized only by the dead load, so that the load acting on the tension member and the temporary support is dissipated.

【0010】請求項3記載の施工方法は、引張部材であ
るPC鋼材を緊張して鋼桁を完成時高さに維持する。P
C鋼材の下端は橋脚等の橋梁下部構造物あるいは仮設支
柱にアンカーしており、付設するセンサー付油圧ジャッ
キ等の伸縮量調整装置を使用することでPC鋼材の長さ
を一定に保持する。床版構築に伴い引き下げ区間のたわ
みは順次変化しようとするが、PC鋼材の引張荷重を適
宜変化させることで当該区間の鋼桁を常に完成時高さに
維持する。又請求項4記載の施工方法は、PC鋼材を鋼
桁直下の支持地盤にアンカーする。
According to a third aspect of the present invention, the steel girder is maintained at a completed height by tensioning a PC steel material as a tensile member. P
The lower end of the C steel material is anchored to a bridge substructure such as a bridge pier or a temporary support, and the length of the PC steel material is kept constant by using an expansion and contraction amount adjusting device such as a hydraulic jack with a sensor attached thereto. Deflection of the lowered section tends to change sequentially with the construction of the floor slab, but the steel girder of the section is always maintained at the completed height by appropriately changing the tensile load of the PC steel material. In the construction method according to the fourth aspect, the PC steel material is anchored to the supporting ground immediately below the steel girder.

【0011】[0011]

【実施例】次にこの発明の一実施例を添付図面に基づき
詳細に説明する。図1はこの発明の施工方法で架設する
橋梁の側面図である。鋼桁1は両端部を橋台2a,2b
で支持し、その中間部を橋脚3a,3b,3c,3d,
3e,・・・3(n−1),3nにて支持する(n+
1)径間の連続桁であり、上面に場所打ちのRC床版4
を載置する。RC床版4は鋼桁1の上フランジ上面に固
着する図示しないスラブ止めを介して鋼桁1に連結して
おり、又鋼桁1とコンクリートの付着力により相互の自
由変位は拘束されている。従って、非合成桁であっても
橋軸方向の水平せん断力が伝えられるため、鋼桁1の変
形に伴ってRC床版4には応力が発生する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a side view of a bridge constructed by the construction method of the present invention. Steel girder 1 has abutments 2a and 2b at both ends.
, And the middle part of the piers 3a, 3b, 3c, 3d,
3e,... Supported by 3 (n-1), 3n (n +
1) RC slab 4 that is a continuous girder span and is cast in place on the top
Is placed. The RC slab 4 is connected to the steel girder 1 via a slab stopper (not shown) fixed to the upper flange upper surface of the steel girder 1, and mutual free displacement is restricted by the adhesive force between the steel girder 1 and concrete. . Therefore, even if it is a non-composite girder, a horizontal shearing force in the bridge axis direction is transmitted, so that a stress is generated in the RC slab 4 with the deformation of the steel girder 1.

【0012】鋼桁1は死荷重によって生ずるたわみを製
作キャンバーにより所定高さ上げ越した状態で分割して
製作し、橋台,橋脚間に設ける仮設支柱を利用して1本
の連続桁とする。この時、仮設支柱5a,5bの上端部
には鋼桁1に連結する締結部材6a,6bを併設し、下
端部には支持地盤に打設する支持杭7a,7bを設け
る。この締結部材、仮設支柱及び支持杭が一体となって
引張部材を構成する。
The steel girder 1 is manufactured by dividing a deflection caused by a dead load with a predetermined height raised by a manufacturing camber and making a single continuous girder using a temporary support provided between an abutment and a pier. At this time, fastening members 6a, 6b connected to the steel girder 1 are provided at the upper ends of the temporary supporting columns 5a, 5b, and supporting piles 7a, 7b are provided at the lower end thereof. The fastening member, the temporary support column, and the support pile constitute a tensile member integrally.

【0013】RC床版4を橋台2a側から構築する場
合、予め締結部材6a,6bを鋼桁1に連結し完成時高
さまで引き下げてから床版コンクリートを打設する。床
版構築に伴う断面力により、コンクリート未打設区間の
たわみは順次変化しようとするが、剛性の高い仮設支柱
5a,5b等の引張材に拘束される鋼桁1はこの間も略
完成時高さを維持する。橋脚3aを越えて引き下げ区間
の床版コンクリートを打設すると、床版荷重が引張部材
に作用する荷重を減退させて行く。この間、既打設支間
のRC床版4には完成時の断面力が常に作用することに
なるため、クラックを生じさせる引張応力は発生しな
い。
When the RC slab 4 is constructed from the abutment 2a side, the fastening members 6a and 6b are connected to the steel girder 1 in advance, lowered to the height at the time of completion, and then slab concrete is poured. Due to the sectional force caused by the construction of the floor slab, the deflection of the section where concrete is not cast tends to change sequentially. However, the steel girder 1 restrained by the tensile members such as the temporary rigid supporting columns 5a and 5b also has a substantially high height during this period. To maintain. When the slab concrete in the lowering section is cast over the pier 3a, the slab load decreases the load acting on the tension member. During this time, since the sectional force at the time of completion always acts on the RC floor slab 4 between the already installed supports, no tensile stress causing cracks is generated.

【0014】仮設支柱を引張部材として利用しない場合
には、鋼桁1にPC鋼棒又はPCケーブル等のPC鋼材
を連結し、これにセンサー付油圧ジャッキ等の伸縮量調
整装置を介在させ、PC鋼材の長さを一定に保持するこ
とで鋼桁1を常に完成時高さに維持する。PC鋼材は下
端部を不動点としなければならないので、例えば図1に
示すようにPC鋼材8a,8bを橋脚3b,3cにアン
カーしたり、あるいはPC鋼材8c,8dを鋼桁1直下
の支持地盤にアースアンカーする。これら各PC鋼材の
両端部にはセンサー付油圧ジャッキ9を設け、所定長さ
を保持するように引張荷重を適宜変化させる。
When the temporary support is not used as a tension member, a PC steel bar or a PC steel material such as a PC cable is connected to the steel girder 1 and an expansion / contraction adjusting device such as a hydraulic jack with a sensor is interposed between the steel girder 1 and the PC. By keeping the length of the steel material constant, the steel girder 1 is always maintained at the completed height. Since the lower end of the PC steel material must be a fixed point, for example, as shown in FIG. 1, the PC steel materials 8a and 8b are anchored to the piers 3b and 3c, or the PC steel materials 8c and 8d are supported on the supporting ground immediately below the steel girder 1. Earth anchor. Hydraulic jacks 9 with sensors are provided at both ends of each PC steel material, and the tensile load is appropriately changed so as to maintain a predetermined length.

【0015】以上説明したような引張部材を用いて床版
構築支間に隣接するコンクリート未打設の支間部の鋼桁
1を常に完成時高さとしつつ順次RC床版4の構築を行
う。全体の床版構築が完成した時点では、死荷重のみで
完成時高さを実現することになるので、各引張部材に作
用する荷重は消散する。
Using the tension members as described above, the RC slabs 4 are sequentially constructed while always keeping the steel girder 1 at the span where the concrete is not cast and adjacent to the slab construction spans at the completed height. When the entire floor slab construction is completed, the height at the time of completion is realized only by the dead load, so that the load acting on each tension member is dissipated.

【0016】次に図2乃至図5に基づき鋼桁の架設手順
及び鋼桁のたわみの変化の一例を詳細に説明する。図2
はこの発明の施工方法で架設する2径間連続鋼桁の橋梁
の側面図、図3は架設手順の説明図、図4は架設時にお
ける鋼桁のたわみ変化図、図5は架設時における引張部
材の引張荷重変化図である。鋼桁11は両端部及びその
中間部を橋台12a,12bと橋脚13にて各々支持す
る。橋脚13及び橋台12a間の所定の位置に構築する
仮設支柱15a,15bの上端部には締結部材16a,
16bを併設し、下端部には支持杭17a,17bを設
ける。RC床版14を橋台12b側から構築する場合、
予め締結部材16a,16bを鋼桁11に連結し完成時
高さまで引き下げてから床版コンクリートを打設する。
Next, an example of the procedure for erection of the steel girder and the change in the deflection of the steel girder will be described in detail with reference to FIGS. FIG.
Fig. 3 is a side view of a two-span continuous steel girder bridge constructed by the construction method of the present invention, Fig. 3 is an explanatory view of the construction procedure, Fig. 4 is a diagram showing a change in bending of the steel girder during construction, and Fig. It is a tension load change figure of a member. The steel girder 11 supports both ends and an intermediate portion thereof with abutments 12a and 12b and a pier 13, respectively. A fastening member 16a, a fastening member 16a is provided at an upper end portion of the temporary supporting columns 15a, 15b constructed at a predetermined position between the pier 13 and the abutment 12a.
16b and support piles 17a and 17b are provided at the lower end. When building RC floor slab 14 from abutment 12b side,
The fastening members 16a and 16b are connected to the steel girder 11 in advance, lowered to the height at the time of completion, and then the slab concrete is poured.

【0017】図3に示すように引き下げ区間の鋼桁11
aを仮設支柱15a,15b等により完成時高さまで引
き下げると、この引張荷重を受けて床版構築支間の鋼桁
11bのそりはより上方に増幅される(図3(b)、図
4)。この状態で橋台12b側の1ブロックより分割施
工で順次RC床版14のコンクリート打設を行う(図3
(c)〜(e))。順次増加するRC床版荷重により、
鋼桁11のたわみは図4に示すように逐次変化する。こ
の時、床版構築に伴う断面力により、コンクリート未打
設区間のたわみも順次変化しようとするが、剛性の高い
仮設支柱15a,15b等の引張材に拘束される鋼桁1
1aはこの間も略完成時高さを維持する。
As shown in FIG. 3, the steel girder 11 in the lowered section is shown.
When "a" is lowered to the height at the time of completion by the temporary columns 15a, 15b and the like, the warp of the steel girder 11b between the floor slabs is amplified further upward due to the tensile load (FIGS. 3B and 4). In this state, concrete is laid on the RC floor slab 14 sequentially from one block on the side of the abutment 12b by divisional construction (FIG.
(C)-(e)). Due to the sequentially increasing RC slab load,
The deflection of the steel girder 11 changes sequentially as shown in FIG. At this time, due to the cross-sectional force caused by the construction of the floor slab, the deflection of the section where the concrete is not cast tends to change sequentially, but the steel girder 1 restrained by the tensile members such as the temporary supporting columns 15a and 15b having high rigidity.
1a maintains a substantially completed height during this time.

【0018】一方コンクリート打設前に導入する引張荷
重は床版構築に伴う断面力を受けるため図5に示すよう
に逐次変化する。なお図3(e)に示す5ブロック完成
時点では引張荷重F1,F2及びRC床版荷重により完
成時の死荷重と同等の荷重が作用することになり、鋼桁
11全体の完成時高さが実現する。
On the other hand, the tensile load introduced before the concrete is cast changes as shown in FIG. 5 because of the cross-sectional force accompanying the construction of the floor slab. At the time of completion of the five blocks shown in FIG. 3 (e), a load equivalent to the dead load at the time of completion is applied due to the tensile loads F1, F2 and the RC slab load. Realize.

【0019】橋脚13を越えて引き下げ区間の床版コン
クリートを打設すると、床版荷重が引張部材に作用する
荷重を漸次減退させて行く(図5)。この間、既打設支
間のRC床版14には完成時の断面力が常に作用するこ
とになるため、クラックを生じさせる引張応力は発生し
ない。全体のRC床版14が完成した時点で引張部材で
ある仮設支柱15a,15bに作用する荷重は消散す
る。
When the slab concrete in the lowering section is cast over the bridge pier 13, the slab load gradually reduces the load acting on the tension member (FIG. 5). During this time, since the sectional force at the time of completion always acts on the RC floor slab 14 between the already-placed supports, no tensile stress causing cracks is generated. When the entire RC floor slab 14 is completed, the load acting on the temporary supporting columns 15a and 15b, which are tension members, is dissipated.

【0020】図2乃至図5に基づき説明した施工方法で
は、鋼桁を完成時の高さに保持するため仮設支柱を引張
部材として用いたが、PC鋼材を用いる施工方法でも同
様な手順で実施することができる。但しその場合にはP
C鋼材の張力を図5に示すような状態に積極的に変化さ
せて、床版構築に伴う鋼桁のたわみ変化を吸収する必要
がある。なお、本発明の施工方法は合成桁の多径間連続
鋼桁にも適用することができる。
In the construction method described with reference to FIGS. 2 to 5, the temporary strut is used as a tension member in order to hold the steel girder at the height at the time of completion, but the construction method using PC steel is carried out in the same procedure. can do. However, in that case P
It is necessary to positively change the tension of the C steel material to the state shown in FIG. 5 to absorb the change in the deflection of the steel girder accompanying the construction of the floor slab. The construction method of the present invention can be applied to a multi-span continuous steel girder of a composite girder.

【0021】[0021]

【発明の効果】以上説明したように、この発明のRC床
版を有する多径間連続桁の施工方法は、コンクリート未
打設支間部の鋼桁に備える引張部材を緊張し、たわみ調
整を行った後に床版のコンクリート打設を開始するの
で、先行して構築するRC床版の下がり過ぎを防止する
と共に後打ちのブロックの床版荷重を受けて既打設床版
内に引張応力が発生することを防止できる。このため、
RC床版の構築順序を支間中央部からに限定する必要が
なくなり、端部から片押しの施工が可能となる。従っ
て、資材及び工程の効率化を図ることができる。
As described above, the method for constructing a multi-span continuous girder having an RC slab according to the present invention tensions a tension member provided on a steel girder at a non-concrete cast-in support portion to adjust deflection. After the concrete laying of the slab is started, the RC slab to be built in advance is prevented from falling too much and tensile stress is generated in the already laid slab by receiving the load of the slab of the post-cast block. Can be prevented. For this reason,
It is not necessary to limit the order of construction of the RC slabs from the center of the span, and it is possible to perform single-push construction from the ends. Therefore, the efficiency of materials and processes can be improved.

【0022】又請求項2記載の施工方法は、仮設支柱を
用いて鋼桁を拘束し、そのたわみを完成時のそれに略一
致させながら順次床版構築を行うので、既打設区間のR
C床版には、隣接区間の構築時にも完成時の断面力が常
に作用することになる。従ってクラックを生じさせる引
張応力は発生しない。又、請求項3、4記載の施工方法
は、引張部材として伸縮量調整装置付のPC鋼材を用い
るので、たわみ調整がより正確に実施でき、完成時高さ
も確実に保持することができる。
In the construction method according to the second aspect, the steel girders are constrained by using the temporary columns, and the slabs are sequentially constructed while the deflection thereof substantially matches that at the time of completion.
The sectional force at the time of completion always acts on the C slab even when the adjacent section is constructed. Therefore, no tensile stress causing cracks is generated. Further, in the construction method according to the third and fourth aspects, since a PC steel material with an expansion and contraction amount adjusting device is used as the tension member, the deflection can be adjusted more accurately, and the height at the time of completion can be reliably maintained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】橋梁の側面図である。FIG. 1 is a side view of a bridge.

【図2】2径間連続鋼桁の橋梁の側面図である。FIG. 2 is a side view of a two-span continuous steel girder bridge.

【図3】架設手順の説明図である。FIG. 3 is an explanatory view of an installation procedure.

【図4】架設時における鋼桁のたわみ変化図である。FIG. 4 is a diagram showing a change in deflection of a steel girder during installation.

【図5】架設時における引張部材の引張荷重変化図であ
る。
FIG. 5 is a diagram showing a change in tensile load of a tensile member during installation.

【符号の説明】[Explanation of symbols]

1 鋼桁 2a 橋台 2b 橋台 3a 橋脚 3b 橋脚 4 RC床版 5a 仮設支柱 5b 仮設支柱 6a 締結部材 6b 締結部材 8a PC鋼材 8b PC鋼材 9 センサー付油圧ジャッキ DESCRIPTION OF SYMBOLS 1 Steel girder 2a Abutment 2b Abutment 3a Abutment 3b Abutment 4 RC slab 5a Temporary support 5b Temporary support 6a Fastening member 6b Fastening member 8a PC steel material 8b PC steel material 9 Hydraulic jack with sensor

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 中間支点で支持される鋼桁上に場所打ち
の鉄筋コンクリート床版を構築する多径間連続鋼桁の施
工方法において、前記床版は鋼桁の一端部から分割施工
により順次構築すると共に、この床版構築支間に隣接す
るコンクリート未打設の支間部の鋼桁には、たわみを調
整し得る引張部材を備え、この引張部材を緊張させてた
わみ調整を行った後に前記床版のコンクリート打設を開
始することを特徴とする鉄筋コンクリート床版を有する
多径間連続鋼桁の施工方法。
1. A method of constructing a multi-span continuous steel girder for constructing a cast-in-place reinforced concrete floor slab on a steel girder supported by an intermediate fulcrum, wherein the floor slab is sequentially constructed by split construction from one end of the steel girder. At the same time, the steel girder of the non-concrete strut adjacent to the floor slab is provided with a tension member capable of adjusting the deflection, and after adjusting the deflection by tensioning the tension member, the floor slab is adjusted. A method for constructing a multi-span continuous steel girder having a reinforced concrete slab, characterized by starting concrete casting.
【請求項2】 前記引張部材は、前記支間部の鋼桁を支
持する仮設支柱に併設されており、引張部材を緊張して
鋼桁を完成時の高さで支持した後に前記床版のコンクリ
ート打設を開始し、床版の構築に伴う前記支間部の鋼桁
のたわみを完成時のたわみに略一致させながら順次床版
構築を行うことを特徴とする請求項1記載の鉄筋コンク
リート床版を有する多径間連続鋼桁の施工方法。
2. The tension member is attached to a temporary column supporting the steel girder of the span, and the tension member is tensioned to support the steel girder at a height at the time of completion, and then the concrete of the floor slab is formed. The reinforced concrete slab according to claim 1, wherein casting is started, and the slab is sequentially constructed while substantially matching the deflection of the steel girder of the span portion with the deflection at the time of completion with the construction of the slab. Construction method of multi-span continuous steel girder having.
【請求項3】 前記引張部材は、前記支間部の鋼桁と橋
梁下部構造物又は前記仮設支柱とを連結し伸縮量調整装
置を付設するPC鋼材であって、このPC鋼材を緊張し
て鋼桁を完成時の高さに維持した後に前記床版のコンク
リート打設を開始し、伸縮量調整装置を使用して床版の
構築に伴う前記支間部の鋼桁のたわみを完成時のたわみ
に略一致させながら順次床版構築を行うことを特徴とす
る請求項1記載の鉄筋コンクリート床版を有する多径間
連続鋼桁の施工方法。
3. The tension member is a PC steel member which connects a steel girder of the span portion and a bridge substructure or the temporary support column and is provided with an expansion / contraction amount adjusting device. After maintaining the girder at the height at the time of completion, start concrete casting of the floor slab, and use the expansion and contraction amount adjustment device to reduce the deflection of the steel girder of the span section accompanying the construction of the floor slab to the deflection at the time of completion. The method for constructing a multi-span continuous steel girder having a reinforced concrete floor slab according to claim 1, wherein the floor slabs are sequentially constructed while substantially matching them.
【請求項4】 前記引張部材は、前記支間部の鋼桁の直
下支持地盤にアンカーして伸縮量調整装置を付設するP
C鋼材であって、このPC鋼材を緊張して鋼桁を完成時
の高さに維持した後に前記床版のコンクリート打設を開
始し、伸縮量調整装置を使用して床版の構築に伴う前記
支間部の鋼桁のたわみを完成時のたわみに略一致させな
がら順次床版構築を行うことを特徴とする請求項1記載
の鉄筋コンクリート床版を有する多径間連続鋼桁の施工
方法。
4. The apparatus according to claim 1, wherein the tension member is attached to a support ground immediately below the steel girder of the span section and a stretching amount adjusting device is attached.
After the PC steel is tensioned to maintain the steel girder at the height at the time of completion, the concrete casting of the floor slab is started, and the construction of the floor slab is performed using the expansion and contraction amount adjusting device. The method for constructing a multi-span continuous steel girder having a reinforced concrete floor slab according to claim 1, wherein the slab is sequentially constructed while making the deflection of the steel girder of the span substantially equal to the deflection at the time of completion.
JP25631194A 1994-09-26 1994-09-26 Construction method of multi-span continuous steel girder with reinforced concrete slab Expired - Lifetime JP2796943B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25631194A JP2796943B2 (en) 1994-09-26 1994-09-26 Construction method of multi-span continuous steel girder with reinforced concrete slab

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25631194A JP2796943B2 (en) 1994-09-26 1994-09-26 Construction method of multi-span continuous steel girder with reinforced concrete slab

Publications (2)

Publication Number Publication Date
JPH0892915A JPH0892915A (en) 1996-04-09
JP2796943B2 true JP2796943B2 (en) 1998-09-10

Family

ID=17290908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25631194A Expired - Lifetime JP2796943B2 (en) 1994-09-26 1994-09-26 Construction method of multi-span continuous steel girder with reinforced concrete slab

Country Status (1)

Country Link
JP (1) JP2796943B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100393103B1 (en) * 2001-04-18 2003-07-31 (주)평화엔지니어링 Method for reinforcing resistance force of a bridge using repulsing force of elastic fulcrum
JP2008111309A (en) * 2006-10-31 2008-05-15 Mitsui Eng & Shipbuild Co Ltd Method of manufacturing composite girder of steel and concrete for bridge

Also Published As

Publication number Publication date
JPH0892915A (en) 1996-04-09

Similar Documents

Publication Publication Date Title
JP2002201609A (en) Construction method for concrete arch bridge
JP2007077630A (en) Continuous girder using precast main-girder segment, and its erection method
CN113638304B (en) Concrete beam type bridge hidden cover beam structure system and construction method thereof
KR20030014686A (en) Method of constructing simple and continuous composite bridges
JP2004092078A (en) Structure and construction method for bridge
CN112095495A (en) Bridge underpinning support structure and construction method
KR102227878B1 (en) Construction Method of Long Span Bridge Using PSC Girder
JP4220295B2 (en) Corrugated steel sheet web PC bridge closure method
JP2967874B1 (en) How to build an overhead suspension bridge
JP2796943B2 (en) Construction method of multi-span continuous steel girder with reinforced concrete slab
JP2000104221A (en) Combined truss bridge and erection method of the same
CN213571600U (en) Bridge underpins bearing structure
JP3908816B2 (en) Construction method of suspended floor slab bridge
JP4493245B2 (en) Suspended floor slab bridge and method for reinforcing suspended floor slab
JP2734985B2 (en) Cantilever shed and its construction method
JP3171676B2 (en) Construction method of cast-in-place concrete horizontal member
JP2000104220A (en) Erection of combined truss bridge
JPH0765297B2 (en) How to erection a cane ramen bridge
JP2536373B2 (en) Concrete beam construction method
JP2584418B2 (en) Overhang construction method and stress improvement device for synthetic cable-stayed bridge
JP2006052573A (en) Method of overhangingly erecting bridge, and diagonal member anchoring structure for use therein
KR0151684B1 (en) Girders of the precasting concrete
KR102670768B1 (en) Steel composite ramen bridge reinforced with section steel supports and crossing rebars and its construction method
JP3028159B2 (en) Construction method of railway viaduct
JPH0345178B2 (en)