JP2791875B2 - Highly impregnated three-dimensional fabric, carbon fiber reinforced composite material and ceramic composite material using the fabric - Google Patents
Highly impregnated three-dimensional fabric, carbon fiber reinforced composite material and ceramic composite material using the fabricInfo
- Publication number
- JP2791875B2 JP2791875B2 JP8038835A JP3883596A JP2791875B2 JP 2791875 B2 JP2791875 B2 JP 2791875B2 JP 8038835 A JP8038835 A JP 8038835A JP 3883596 A JP3883596 A JP 3883596A JP 2791875 B2 JP2791875 B2 JP 2791875B2
- Authority
- JP
- Japan
- Prior art keywords
- composite material
- fabric
- dimensional
- impregnated
- carbon fiber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Moulding By Coating Moulds (AREA)
- Woven Fabrics (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は、表面から内部まで
連続した気孔を有し、容易にCVI(Chemical
Vapor Infiltration)又は樹脂含
浸等により高密度化ができる高含浸性三次元織物、並び
にこの高含浸性三次元織物を用いて作った炭素繊維強化
複合材料及びセラミックス系複合材料に関するものであ
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention has continuous pores from the surface to the inside, and can easily perform CVI (Chemical).
The present invention relates to a highly impregnated three-dimensional woven fabric that can be densified by Vapor Infiltration or resin impregnation, and the like, and a carbon fiber reinforced composite material and a ceramic-based composite material made using the highly impregnated three-dimensional woven fabric.
【0002】[0002]
【従来の技術】炭素繊維強化複合材料やセラミックス系
複合材料は、高温強度や耐熱性の面で非常に優れた材料
であり、航空宇宙分野及び原子炉分野等における高温部
材に適用され始めており、適用分野の拡大が期待されて
いる。耐熱複合材料の繊維強化方法としては、不織布、
一方向強化織物、二次元織物積層体及び三次元織物等を
用いる方法が知られている。この場合、用途により強化
方法が選定されるが、三次元織物による強化方法が、よ
り等方的になることから、高性能部材への適用が期待さ
れている。2. Description of the Related Art Carbon fiber reinforced composite materials and ceramic-based composite materials are extremely excellent materials in terms of high-temperature strength and heat resistance, and have begun to be applied to high-temperature members in the fields of aerospace and nuclear reactors. The application field is expected to expand. Non-woven fabric,
Methods using one-way reinforced fabrics, two-dimensional fabric laminates, three-dimensional fabrics, and the like are known. In this case, a reinforcing method is selected depending on the application, but since the reinforcing method using a three-dimensional fabric becomes more isotropic, application to a high-performance member is expected.
【0003】炭素繊維強化複合材料及びセラミックス系
複合材料は、織物等の成形物を樹脂含浸法(炭素質樹
脂、炭素質ピッチ又は有機金属ポリマー等を含浸させる
方法)、あるいはCVI法(メタンやプロパン等の炭化
水素ガス又はSiH4 やSiCl4 等のガスを原料とし
て成形物の組織内に直接炭素やSiC等のセラミックス
を沈着させる方法)等により緻密化させることにより、
高強度化させる必要がある。ここでいう炭素質樹脂と
は、フェノール樹脂あるいはフラン樹脂単独あるいはそ
れらの混合樹脂あるいはエポキシ樹脂など他の樹脂と混
合した樹脂をいう。含浸の際には粘度を下げるために、
メチルエチルケトン、メタノールあるいはキシレン等の
溶剤でカットバックしたり、加熱することもできる。炭
素質ピッチとは、軟化点100〜400℃、好ましくは
150〜350℃の範囲の石炭系あるいは石油系のピッ
チである。炭素質ピッチは、光学的に等方性のピッチあ
るいは異方性のピッチのいずれも使用できるが、光学的
異方性相の含量が60〜100%のピッチが特に好まし
く用いられる。ピッチ含浸は、加熱・溶融することによ
り達成されるが、含浸時の粘度を下げるために、溶剤で
カット・バックすることもできる。溶剤としては、芳香
族炭化水素、ピリジン、キノリン等が使用できる。ま
た、有機金属ポリマーとは、炭化物セラミックス、窒化
物セラミックス及び酸化物セラミックスよりなる群から
選ばれる少なくとも1種のセラミックスの前駆体であ
る。具体的には、ポリカルボシラン、ポリシラザン、ポ
リシラスチレン、金属アルコキシド、アルキルメタル等
である。樹脂含浸法では、含浸・熱処理(炭化又は転
化)を繰り返すことにより緻密化を図り、CVI法で
は、長時間かけて緻密化を図っている。[0003] Carbon fiber reinforced composite materials and ceramic composite materials are prepared by impregnating a molded product such as a woven fabric with a resin (a method of impregnating a carbonaceous resin, a carbonaceous pitch or an organometallic polymer) or a CVI method (methane or propane). A method of depositing ceramics such as carbon or SiC directly into the structure of a molded product using a hydrocarbon gas such as SiC or a gas such as SiH 4 or SiCl 4 as a raw material.
It is necessary to increase the strength. Here, the carbonaceous resin refers to a resin mixed with another resin such as a phenol resin or a furan resin alone, a mixed resin thereof, or an epoxy resin. To lower the viscosity during impregnation,
Cutback with a solvent such as methyl ethyl ketone, methanol or xylene, or heating can also be performed. The carbonaceous pitch is a coal-based or petroleum-based pitch having a softening point of 100 to 400C, preferably 150 to 350C. As the carbonaceous pitch, any of an optically isotropic pitch and an anisotropic pitch can be used, but a pitch having an optically anisotropic phase content of 60 to 100% is particularly preferably used. The pitch impregnation is achieved by heating and melting, but it can be cut back with a solvent to reduce the viscosity during the impregnation. As the solvent, an aromatic hydrocarbon, pyridine, quinoline or the like can be used. The organometallic polymer is a precursor of at least one ceramic selected from the group consisting of carbide ceramics, nitride ceramics, and oxide ceramics. Specific examples include polycarbosilane, polysilazane, polysilastyrene, metal alkoxide, and alkyl metal. In the resin impregnation method, densification is achieved by repeating impregnation and heat treatment (carbonization or conversion), and in the CVI method, densification is performed over a long time.
【0004】従来から、特公平5−4945号公報に示
されるように、炭素繊維のトウに軟化点100〜400
℃の炭素質ピッチを含浸させ、この含浸物を開放型処理
物容器に入れ、熱間静水圧装置を使用し、液体加圧媒体
を介在させることなく、気体加圧媒体により50〜10
000kg/cm2 に加圧し、100〜3000℃で熱処理
し、必要に応じてさらに炭化あるいは黒鉛化する炭素繊
維強化複合材料の製造方法が知られている。Conventionally, as disclosed in Japanese Patent Publication No. 5-4945, a softening point of 100 to 400
° C carbonaceous pitch, put the impregnated material in an open-type treated container, use a hot isostatic device, and pressurize with a gas pressurized medium without using a liquid pressurized medium.
There is known a method for producing a carbon fiber reinforced composite material which is pressurized to 000 kg / cm 2 , heat-treated at 100 to 3000 ° C., and further carbonized or graphitized as necessary.
【0005】従来、通常用いられる直交三次元織物は図
4〜図6に示すような構造である。図4はX(縦)−Y
(横)面の最表面構造を示し、図5はX−Y面の内部構
造を示し、図6はY(横)−Z(厚み)断面構造を示し
ている。10はX(縦)方向糸の束、12はY(横)方
向糸の束、14はZ(厚み)方向糸の束である。Conventionally, a generally used orthogonal three-dimensional fabric has a structure as shown in FIGS. FIG. 4 shows X (vertical) -Y
FIG. 5 shows the internal structure of the XY plane, and FIG. 6 shows the Y (horizontal) -Z (thickness) cross-sectional structure. 10 is a bundle of X (vertical) direction yarns, 12 is a bundle of Y (horizontal) direction yarns, and 14 is a bundle of Z (thickness) direction yarns.
【0006】また、特開平2−47350号公報には、
中央から放射状に伸びる多数の径方向糸、円周方向に渦
巻き状に織り込まれる周方向糸、及び厚さ方向に貫通す
る厚さ方向糸からなり、径方向糸は織布の厚さ方向に多
重に積み重ねられており、径方向糸の間を周方向糸と厚
さ方向糸が貫通している構造の三次元三軸立体賦形用織
物が記載されている。[0006] Japanese Patent Application Laid-Open No. 2-47350 discloses that
It consists of a number of radial threads extending radially from the center, a circumferential thread woven spirally in the circumferential direction, and a thickness thread penetrating in the thickness direction, and the radial threads are multiplexed in the thickness direction of the woven fabric. And a three-dimensional three-dimensional three-dimensional shaping fabric having a structure in which a circumferential yarn and a thickness yarn penetrate between radial yarns.
【0007】[0007]
【発明が解決しようとする課題】図4〜図6に示す従
来、通常用いられる直交三次元織物では、構造上、表面
に気孔(空隙)がほとんどなく、独立した閉気孔を有し
ているため、前記の緻密化処理を施しても、内部まで十
分緻密化することができない。The conventional three-dimensional orthogonally woven fabric shown in FIGS. 4 to 6 has almost no pores (voids) on its surface and has independent closed pores. However, even if the above-mentioned densification treatment is performed, the inside cannot be sufficiently densified.
【0008】表面及び内部に気孔を設けるために、図7
〜図9に示すような構造の三次元織物が考えられるが、
図11に示すように、丸印の部分(空隙の部分)に表面
から含浸させても、隣接するX(縦)方向糸又はY
(横)方向糸を隔てた位置に気孔(空隙)がなく、すな
わち独立した気孔しか有さないので、これ以上含浸させ
ることができず、十分な緻密化を図ることができない。To provide pores on the surface and inside, FIG.
~ A three-dimensional fabric having a structure as shown in Fig. 9 is conceivable,
As shown in FIG. 11, even if the circled portion (gap portion) is impregnated from the surface, the adjacent X (vertical) direction yarn or Y
Since there are no pores (voids) at positions separated from the (horizontal) direction yarn, that is, there are only independent pores, further impregnation cannot be performed, and sufficient densification cannot be achieved.
【0009】また、前記の特開平2−47350号公報
に記載された三次元織物は、図4〜図6に示す従来の三
次元織物と同様に、表面に気孔(空隙)がほとんどな
く、独立した閉気孔となるので、前述の緻密化処理を施
しても、内部まで十分緻密化することができない。Further, the three-dimensional fabric described in the above-mentioned Japanese Patent Application Laid-Open No. 2-47350 has almost no pores (voids) on the surface and is independent of the conventional three-dimensional fabric as shown in FIGS. Even if the above-described densification treatment is performed, the inside cannot be sufficiently densified.
【0010】本発明は上記の諸点に鑑みなされたもの
で、本発明の目的は、最表面に空隙(気孔)を有し、内
部まで連続した多数の空隙(気孔)を有する構造とする
ことにより、厚肉部材でも容易に高密度化、すなわち、
十分な緻密化が可能な強化用の高含浸性三次元織物を提
供することにある。また、本発明の他の目的は、上記の
高含浸性三次元織物を用いて製造した炭素繊維強化複合
材料及びセラミックス系複合材料を提供することにあ
る。[0010] The present invention has been made in view of the above points, and an object of the present invention is to provide a structure having a plurality of voids (pores) having a void (pores) on the outermost surface and continuous to the inside. , Even thick members can be easily densified,
An object of the present invention is to provide a highly impregnated three-dimensional fabric for reinforcement that can be sufficiently densified. Further, another object of the present invention is to provide a carbon fiber reinforced composite material and a ceramics composite material manufactured using the three-dimensional fabric having high impregnation.
【0011】[0011]
【課題を解決するための手段】上記の目的を達成するた
めに、本発明の高含浸性三次元織物は、最表面に厚み方
向(Z方向)の多数の空隙を有し、これらの空隙に隣接
する縦方向糸(X方向糸)の束又は横方向糸(Y方向
糸)の束を隔てた位置に、厚み方向の空隙が少なくとも
1個設けられるように構成したものである。そして、こ
のように構成された高含浸性三次元織物を用いて、十分
緻密化された炭素繊維強化複合材料及び十分緻密化され
たセラミックス繊維系複合材料を製造することができ
る。In order to achieve the above object, the highly impregnated three-dimensional fabric of the present invention has a large number of voids in the outermost surface in the thickness direction (Z direction). At least one gap in the thickness direction is provided at a position separating a bundle of adjacent longitudinal yarns (X-direction yarns) or a bundle of horizontal yarns (Y-direction yarns). Then, by using the three-dimensional woven fabric having high impregnation configured as described above, a sufficiently densified carbon fiber reinforced composite material and a sufficiently densified ceramic fiber-based composite material can be manufactured.
【0012】炭素繊維を用いる場合は、ピッチ系、ポリ
アクリロニトリル系又はレーヨン系のいずれも使用でき
るが、ピッチ系炭素繊維が好ましい。ここでいうピッチ
系炭素繊維とは、炭素質ピッチを溶融紡糸し、これを不
融化、炭化及び必要に応じて黒鉛化することにより得ら
れる繊維である。また、セラミックス繊維とは、Si
C、TiCなどの炭化物セラミックス、Al2 O3 など
の酸化物セラミックス、Si3 N4 などの窒化物セラミ
ックスあるいはこれらの混合物からなる繊維である。さ
らに、炭素繊維の表面に前記セラミックスを被覆したも
のも含む。これらの炭素繊維及びセラミックス繊維は、
通常直径5〜数十μm であり、この繊維を500〜10
0,000本の束にして、織物を製織する。When carbon fibers are used, pitch-based, polyacrylonitrile-based or rayon-based fibers can be used, but pitch-based carbon fibers are preferred. The pitch-based carbon fiber referred to here is a fiber obtained by melt-spinning a carbonaceous pitch, making it infusible, carbonized and, if necessary, graphitized. In addition, the ceramic fiber is Si
Fibers made of carbide ceramics such as C and TiC, oxide ceramics such as Al 2 O 3 , nitride ceramics such as Si 3 N 4 or a mixture thereof. In addition, carbon fibers coated on the surface with the above ceramics are also included. These carbon fibers and ceramic fibers are
Usually, the diameter is 5 to several tens μm, and this fiber is
The woven fabric is woven into a bundle of 0000 pieces.
【0013】[0013]
【発明の実施の形態】図1〜図3は本発明の高含浸性三
次元織物の一例を示している。図1はX(縦)−Y
(横)面の最表面構造を示し、図2はX(縦)−Y
(横)面の内部構造を示し、図3はY(横)−Z(厚
み)断面構造を示している。10はX(縦)方向糸の
束、12はY(横)方向糸の束、14はZ(厚み)方向
糸の束である。図1〜図3に示すように、本発明の高含
浸性三次元織物は、最表面に厚み方向の多数の空隙16
を有し、これらの空隙16に隣接するX方向糸(縦方向
糸)の束10又はY方向糸(横方向糸)の束12を隔て
た位置に、Z方向糸(厚み方向糸)の束14のZ方向へ
の織込みが4方向のうち、少なくとも1方向存在しない
ような構造を有している。このような構造の直交高含浸
性三次元織物であれば、表面から内部まで連続した空隙
を有することになるので、十分な緻密化が可能な高含浸
性三次元織物となる。1 to 3 show an example of a highly impregnated three-dimensional fabric according to the present invention. FIG. 1 shows X (vertical) -Y
FIG. 2 shows the outermost surface structure of the (horizontal) plane, and FIG.
FIG. 3 shows the internal structure of the (horizontal) plane, and FIG. 3 shows the cross-sectional structure of Y (horizontal) -Z (thickness). 10 is a bundle of X (vertical) direction yarns, 12 is a bundle of Y (horizontal) direction yarns, and 14 is a bundle of Z (thickness) direction yarns. As shown in FIGS. 1 to 3, the highly impregnated three-dimensional fabric of the present invention has a large number of voids 16 in the thickness direction on the outermost surface.
And a bundle of Z-direction yarns (thickness direction yarns) is located at a position separated by a bundle 10 of X-direction yarns (longitudinal yarns) or a bundle 12 of Y-direction yarns (lateral yarns) adjacent to these gaps 16. 14 has a structure in which weaving in the Z direction does not exist in at least one of the four directions. The orthogonally impregnated three-dimensional fabric having such a structure has continuous voids from the surface to the inside, so that the highly impregnated three-dimensional fabric can be sufficiently densified.
【0014】本発明の高含浸性三次元織物では、図10
に示すように、丸印の部分(空隙16の部分)に表面か
ら含浸させると、隣接するX(縦)方向糸の束又はY
(横)方向糸の束を隔てた位置の厚み方向の空隙16
は、1個又は2個又は3個存在するので、矢印で示すよ
うに、さらに含浸が進み、十分緻密化されて高密度化を
図ることができる。なお、強度の観点からは、Z方向
(厚さ方向)については繊維含有率が下がり若干の強度
低下が生じるものの、X方向(縦方向)及びY方向(横
方向)については、従来の三次元織物と同等以上の強度
となり、実用上、何ら問題はない。本発明の三次元織物
の構造は、円筒座標系の場合でも適用可能である。この
場合は、例えば、X方向が径方向に、Y方向が周方向と
なる。[0014] In the highly impregnated three-dimensional fabric of the present invention, FIG.
As shown in the figure, when the circled portion (portion of the void 16) is impregnated from the surface, a bundle of adjacent X (vertical) direction yarns or Y
A gap 16 in the thickness direction at a position separating the bundle of (horizontal) yarns.
Since one, two, or three are present, the impregnation proceeds further as shown by the arrows, and is sufficiently densified to achieve high density. From the viewpoint of strength, although the fiber content decreases in the Z direction (thickness direction) and a slight decrease in strength occurs, in the X direction (vertical direction) and the Y direction (horizontal direction), a conventional three-dimensional structure is used. The strength is equal to or higher than that of the woven fabric, and there is no problem in practical use. The structure of the three-dimensional fabric of the present invention is applicable even in the case of a cylindrical coordinate system. In this case, for example, the X direction is the radial direction, and the Y direction is the circumferential direction.
【0015】[0015]
【実施例】つぎに、本発明の実施例及び比較例について
説明する。 実施例1 厚さ(Z方向)20mm、幅(X方向)80mm、長さ(Y
方向)130mmの図1〜図3に示す構造の炭素繊維強化
三次元織物を作製した。繊維含有率は42%であった。
この織物にフェノール樹脂を含浸し、CFRP(Car
bonfiber Reinforced Plast
ic)成形した後に、窒素雰囲気で1700℃焼成し
た。この後、ピッチ含浸・1000℃、100MPa 加圧
炭化及び1700℃焼成の緻密化処理を6回行った。こ
の結果、内部まで緻密化でき、空隙率を6%まで低減で
きた。Next, examples of the present invention and comparative examples will be described. Example 1 Thickness (Z direction) 20 mm, width (X direction) 80 mm, length (Y
A carbon fiber reinforced three-dimensional woven fabric having a structure shown in FIGS. The fiber content was 42%.
This fabric is impregnated with a phenol resin, and CFRP (Car
Bonfiber Reinforced Plast
ic) After molding, firing was performed at 1700 ° C. in a nitrogen atmosphere. Thereafter, densification treatment of pitch impregnation, pressure carbonization at 1000 ° C. and 100 MPa, and firing at 1700 ° C. were performed six times. As a result, the inside could be densified, and the porosity could be reduced to 6%.
【0016】比較例1 厚さ(Z方向)20mm、幅(X方向)80mm、長さ(Y
方向)130mmの図4〜図6に示す構造の炭素繊維強化
三次元織物を作製した。繊維含有率は47%であった。
この織物にフェノール樹脂を含浸し、CFRP成形した
後に、窒素雰囲気で1700℃焼成した。この後、ピッ
チ含浸・1000℃、100MPa 加圧炭化及び1700
℃焼成の緻密化処理を6回行ったが、内部はほとんど緻
密化できず、空隙率は15%程度までしか低減できなか
った。Comparative Example 1 Thickness (Z direction) 20 mm, width (X direction) 80 mm, length (Y
(Direction) A carbon fiber reinforced three-dimensional woven fabric having a structure shown in FIGS. The fiber content was 47%.
The woven fabric was impregnated with a phenolic resin, CFRP molded, and then fired at 1700 ° C. in a nitrogen atmosphere. Thereafter, pitch impregnation, 1000 ° C., 100 MPa pressure carbonization and 1700
Although the densification treatment of sintering at ℃ was performed six times, the inside could hardly be densified, and the porosity could only be reduced to about 15%.
【0017】実施例2 厚さ(Z方向)20mm、幅(X方向)60mm、長さ(Y
方向)100mmの図1〜3に示す構造のSiC繊維(S
i−Ti−C−O系、チラノLoxM)強化三次元織物
を作製した。繊維含有率は35%であった。この織物へ
の有機金属ポリマー(ポリカルボシラン)の加圧含浸
(120℃、1MPa )・転化(1000℃、Ar中)の
緻密化工程を6回繰り返した。この結果、内部まで緻密
化でき、空隙率を15%まで低減できた。Example 2 Thickness (Z direction) 20 mm, width (X direction) 60 mm, length (Y
Direction) 100 mm SiC fiber (S
An i-Ti-CO-based, Tyranno-LoxM) reinforced three-dimensional fabric was produced. The fiber content was 35%. The densification process of pressure impregnation (120 ° C., 1 MPa) and conversion (1000 ° C., in Ar) of the organometallic polymer (polycarbosilane) into the woven fabric was repeated six times. As a result, the inside could be densified, and the porosity could be reduced to 15%.
【0018】比較例2 厚さ(Z方向)20mm、幅(X方向)60mm、長さ(Y
方向)100mmの図4〜6に示す構造のSiC繊維(S
i−Ti−C−O系、チラノLoxM)強化三次元織物
を作製した。繊維含有率は40%であった。この織物へ
の有機金属ポリマー(ポリカルボシラン)の加圧含浸
(120℃、1MPa )・転化(1000℃、Ar中)の
緻密化工程を8回繰り返したが、内部はほとんど緻密化
できず、空隙率を23%までしか低減できなかった。Comparative Example 2 Thickness (Z direction) 20 mm, width (X direction) 60 mm, length (Y
Direction) 100 mm SiC fiber (S
An i-Ti-CO-based, Tyranno-LoxM) reinforced three-dimensional fabric was produced. The fiber content was 40%. The densification process of pressure impregnation (120 ° C., 1 MPa) and conversion (1000 ° C., in Ar) of the organometallic polymer (polycarbosilane) into the woven fabric was repeated eight times, but the inside could hardly be densified. The porosity could only be reduced to 23%.
【0019】[0019]
【発明の効果】本発明は上記のように構成されているの
で、つぎのような効果を奏する。 (1) 本発明の高含浸性三次元織物は、低コストで製
造でき、表面から内部まで連続した気孔を有し、容易に
CVI又は樹脂含浸等により高密度化を図ることができ
る。 (2) 上記(1)の効果により、本発明の高含浸性三
次元織物を用いて、高強度を有する炭素繊維強化複合材
料及びセラミックス系複合材料を製造することができ
る。As described above, the present invention has the following effects. (1) The highly impregnated three-dimensional fabric of the present invention can be manufactured at low cost, has continuous pores from the surface to the inside, and can easily achieve high density by CVI or resin impregnation. (2) By the effect of the above (1), a carbon fiber reinforced composite material and a ceramics composite material having high strength can be manufactured using the highly impregnated three-dimensional woven fabric of the present invention.
【図1】本発明の高含浸性三次元織物の一実施例を示す
X(縦)−Y(横)面の最表面構造図である。FIG. 1 is an outermost surface structural diagram of an X (vertical) -Y (horizontal) plane showing an embodiment of a highly impregnated three-dimensional fabric of the present invention.
【図2】図1におけるX−Y面の内部構造図である。FIG. 2 is an internal structure diagram of an XY plane in FIG.
【図3】図1におけるA−A線断面図で、Y−Z(厚
み)断面構造図である。FIG. 3 is a sectional view taken along the line AA in FIG. 1 and a sectional view taken along the line YZ (thickness).
【図4】従来の通常の三次元織物の一例を示すX−Y面
の最表面構造図である。FIG. 4 is an outermost surface structure diagram of an XY plane showing an example of a conventional ordinary three-dimensional fabric.
【図5】図4におけるX−Y面の内部構造図である。FIG. 5 is an internal structural diagram of an XY plane in FIG. 4;
【図6】図4におけるB−B線断面図で、Y−Z断面構
造図である。6 is a sectional view taken along the line BB in FIG. 4 and a sectional view taken along the line YZ.
【図7】比較例として考えられる三次元織物のX−Y面
の最表面構造図である。FIG. 7 is a diagram showing the outermost surface structure of the XY plane of a three-dimensional fabric considered as a comparative example.
【図8】図7におけるX−Y面の内部構造図である。8 is an internal structure diagram of the XY plane in FIG. 7;
【図9】図7におけるC−C線断面図で、Y−Z断面構
造図である。9 is a sectional view taken along the line CC in FIG. 7 and a sectional view taken along the line YZ.
【図10】本発明の高含浸性三次元織物のX−Y面の内
部構造を示す図(図2)における空隙に表面から含浸さ
せた場合の含浸行程(含浸状態)を示す説明図である。FIG. 10 is an explanatory view showing an impregnation process (impregnation state) when the voids are impregnated from the surface in the diagram (FIG. 2) showing the internal structure on the XY plane of the highly impregnated three-dimensional fabric of the present invention. .
【図11】比較例として考えられる三次元織物のX−Y
面の内部構造を示す図(図8)における空隙に表面から
含浸させた場合の含浸行程(含浸状態)を示す説明図で
ある。FIG. 11: XY of a three-dimensional woven fabric considered as a comparative example
It is explanatory drawing which shows the impregnation process (impregnation state) in the case where the space | gap in the figure (FIG. 8) which shows the internal structure of a surface is impregnated from the surface.
10 X方向糸の束 12 Y方向糸の束 14 Z方向糸の束 16 空隙 10 Bundle of X-direction yarns 12 Bundle of Y-direction yarns 14 Bundle of Z-direction yarns 16 Void
───────────────────────────────────────────────────── フロントページの続き (72)発明者 松田 喜宏 兵庫県明石市川崎町1番1号 川崎重工 業株式会社 明石工場内 (58)調査した分野(Int.Cl.6,DB名) B29C 70/10 - 70/24 C04B 35/80 D03D 25/00 C08J 5/04 - 5/10────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yoshihiro Matsuda 1-1, Kawasaki-cho, Akashi-shi, Hyogo Kawasaki Heavy Industries, Ltd. Akashi Plant (58) Field surveyed (Int. Cl. 6 , DB name) B29C 70 / 10-70/24 C04B 35/80 D03D 25/00 C08J 5/04-5/10
Claims (3)
これらの空隙に隣接する縦方向糸の束又は横方向糸の束
を隔てた位置に、厚み方向の空隙が少なくとも1個設け
られていることを特徴とする高含浸性三次元織物。1. An outermost surface having a number of voids in a thickness direction,
A highly impregnated three-dimensional fabric, wherein at least one void in the thickness direction is provided at a position separated by a bundle of longitudinal yarns or a bundle of lateral yarns adjacent to these voids.
造を有する炭素繊維強化複合材料。2. A carbon fiber reinforced composite material having the structure of the highly impregnated three-dimensional woven fabric according to claim 1.
造を有するセラミックス系複合材料。3. A ceramic composite material having the structure of the highly impregnated three-dimensional woven fabric according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8038835A JP2791875B2 (en) | 1996-01-31 | 1996-01-31 | Highly impregnated three-dimensional fabric, carbon fiber reinforced composite material and ceramic composite material using the fabric |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8038835A JP2791875B2 (en) | 1996-01-31 | 1996-01-31 | Highly impregnated three-dimensional fabric, carbon fiber reinforced composite material and ceramic composite material using the fabric |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09207236A JPH09207236A (en) | 1997-08-12 |
JP2791875B2 true JP2791875B2 (en) | 1998-08-27 |
Family
ID=12536281
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8038835A Expired - Fee Related JP2791875B2 (en) | 1996-01-31 | 1996-01-31 | Highly impregnated three-dimensional fabric, carbon fiber reinforced composite material and ceramic composite material using the fabric |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2791875B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4568204B2 (en) * | 2004-10-15 | 2010-10-27 | 株式会社豊田自動織機 | Three-dimensional woven fabric, three-dimensional woven method, three-dimensional woven device and friction material |
CN104389086B (en) * | 2014-11-12 | 2016-09-07 | 森织汽车内饰(武汉)有限公司 | A kind of orthogonal three-dimensional weave of multifunctional carbon fiber and finishing technique thereof |
US20220379523A1 (en) * | 2019-11-11 | 2022-12-01 | Toray Industries, Inc. | Carbon fiber tape material, and reinforcing fiber laminate and molded body produced with the same |
-
1996
- 1996-01-31 JP JP8038835A patent/JP2791875B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH09207236A (en) | 1997-08-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8999439B2 (en) | Process for manufacturing a thermostructural composite part | |
CA2459491C (en) | Making a blank by reinforcing a fiber structure and/or bonding fiber structures together, and use in making composite material parts | |
US20080299385A1 (en) | Method for Making a Part of Composite Material with Ceramic Matrix and Resulting Part | |
US20120196107A1 (en) | Method of fabricating a thermostructural composite material part, and a part obtained thereby | |
US20100209659A1 (en) | Carbon-carbon composite | |
CN111943726B (en) | High-performance C/SiBCN composite material and preparation method and application thereof | |
EP2572866A1 (en) | Corrugated carbon fiber preform | |
US7186360B2 (en) | Method of making ceramic composite devices with unidirectionally aligned reinforcing fibers | |
CN109320278A (en) | A kind of complement heat conduction ceramic matric composite and preparation method thereof | |
JP2004269353A (en) | Method of manufacturing porous component from ceramic matrix composite material | |
US5228175A (en) | Process for the manufacture of a fibrous preform formed of refractory fibers for producing a composite material article | |
US5392500A (en) | Process for the manufacture of a fibrous preform formed of refractory fibers for producing a composite material article | |
US4554024A (en) | Method for preparing an improved pitch impregnant for a carbon-carbon composite | |
US5486379A (en) | Method of manufacturing a part made of composite material comprising fiber reinforcement consolidated by a liquid process | |
CN114276157A (en) | High-purity carbon-based composite material | |
JP2791875B2 (en) | Highly impregnated three-dimensional fabric, carbon fiber reinforced composite material and ceramic composite material using the fabric | |
CN115124361B (en) | Ceramic matrix composite material with hybrid structure and preparation method thereof | |
US9988750B2 (en) | Method of fabricating a composite material part with improved intra-yarn densification | |
JPH11292647A (en) | Carbon fiber-reinforced material and its production | |
KR102015279B1 (en) | Fabrication Method of Carbon Composite having Improved Mechanical Properties | |
KR102046783B1 (en) | Fabrication Method of Carbon Fiber Preform Using In-Situ Coupling | |
Ghosh et al. | Fundamentals of Carbon‐Fiber‐Reinforced Composite and Structures | |
JP2000169250A (en) | Production of carbon fiber reinforced carbon composite material | |
JP2003012374A (en) | Method of manufacturing carbon fiber reinforcing carbon material | |
Fitzer et al. | Processing of carbon/carbon composites |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |