JP2785542B2 - Semiconductor diffusion layer resistance - Google Patents

Semiconductor diffusion layer resistance

Info

Publication number
JP2785542B2
JP2785542B2 JP3254030A JP25403091A JP2785542B2 JP 2785542 B2 JP2785542 B2 JP 2785542B2 JP 3254030 A JP3254030 A JP 3254030A JP 25403091 A JP25403091 A JP 25403091A JP 2785542 B2 JP2785542 B2 JP 2785542B2
Authority
JP
Japan
Prior art keywords
diffusion layer
conductivity type
semiconductor diffusion
region
impurity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3254030A
Other languages
Japanese (ja)
Other versions
JPH0595085A (en
Inventor
誠一 ▲高▼橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP3254030A priority Critical patent/JP2785542B2/en
Publication of JPH0595085A publication Critical patent/JPH0595085A/en
Application granted granted Critical
Publication of JP2785542B2 publication Critical patent/JP2785542B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は半導体拡散層抵抗に関
し、拡散層−拡散層間の表面反転によるリーク電流を防
止した半導体拡散層抵抗に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a resistance of a semiconductor diffusion layer, and more particularly to a resistance of a semiconductor diffusion layer in which a leakage current due to surface inversion between diffusion layers is prevented.

【0002】[0002]

【従来の技術】バイポーラ集積回路等に用いられる半導
体拡散層抵抗は、多結晶半導体層抵抗に比べ、絶対精
度,相対精度に優れており、特にリニア回路に欠くこと
のできないものとなっている。従来のバイポーラ集積回
路で用いられる拡散層抵抗の上観図を図3(a)に図3
(a)中のA−A1 での断面図を図3(b)に示す。3
01はP- 型半導体基板であり、302は寄生サイリス
タによるラッチアップを防止するためのN+ 型埋込層、
303はN- 型エピタキシャル領域、304はP+ 型絶
縁分離拡散領域、305は絶縁分離酸化膜である。P型
拡散層抵抗306はP+ 型絶縁分離拡散領域304、お
よび絶縁分離酸化膜305で囲まれたN- 型エピタキシ
ャル領域303中にP型不純物を拡散することにより形
成されている。P型不純物の導入方法としては、現在で
はイオン注入法が一般的であり、熱拡散法等に比べ、精
度面および微細化の面で著しく優っている。307はB
PSG(ホウ素リン硅化ガラス)等の層間絶縁膜、30
8はコンタクトホール、309はアルミニウム等の金属
配線である。
2. Description of the Related Art Semiconductor diffused layer resistors used in bipolar integrated circuits and the like are superior in absolute accuracy and relative accuracy to polycrystalline semiconductor layer resistors, and are particularly indispensable for linear circuits. FIG. 3A is a top view of a diffusion layer resistor used in a conventional bipolar integrated circuit.
FIG. 3B is a cross-sectional view taken along line AA 1 in FIG. 3
01 is a P type semiconductor substrate, 302 is an N + type buried layer for preventing latch-up due to a parasitic thyristor,
Reference numeral 303 denotes an N type epitaxial region, 304 denotes a P + type isolation / diffusion region, and 305 denotes an isolation oxide film. The P-type diffusion layer resistor 306 is formed by diffusing a P-type impurity into the P + -type isolation / diffusion region 304 and the N -type epitaxial region 303 surrounded by the isolation / oxide film 305. At present, as a method for introducing a P-type impurity, an ion implantation method is generally used, and is significantly superior to a thermal diffusion method or the like in terms of precision and miniaturization. 307 is B
An interlayer insulating film such as PSG (borophosphosilicate glass), 30
8 is a contact hole, and 309 is a metal wiring such as aluminum.

【0003】[0003]

【発明が解決しようとする課題】近年の集積回路では、
微細化が進み、それに供って層間絶縁膜も薄くなってき
ている。一方、電源電圧は相変わらず、5V系が主流で
あり、バイポーラ集積回路では12V系、40V系など
の中・高耐圧系のものも依然として存在している。この
ため、従来の拡散層抵抗の構造では、例えば、図3
(a)に示した端子Bに電源電圧がかかり、端子Cがグ
ラウンドに接続されると、層間絶縁膜307が薄いため
に、抵抗形成領域のN- 型エピタキシャル層表面がP型
反転を起こし、抵抗−抵抗間にリーク電流が流れてしま
うという不具合が生じていた。
SUMMARY OF THE INVENTION In recent integrated circuits,
As the miniaturization progresses, the interlayer insulating film is becoming thinner. On the other hand, the power supply voltage is still the 5V system as usual, and there are still bipolar integrated circuits of the medium / high withstand voltage system such as the 12V system and the 40V system. Therefore, in the conventional structure of the diffusion layer resistor, for example, FIG.
When a power supply voltage is applied to the terminal B shown in FIG. 9A and the terminal C is connected to the ground, the surface of the N -type epitaxial layer in the resistance forming region undergoes P-type inversion because the interlayer insulating film 307 is thin. There has been a problem that a leak current flows between the resistors.

【0004】従来技術では、この不具合を解決するため
に図4に示すように抵抗−抵抗間に絶縁分離酸化膜を設
けて表面反転が起こらないようにしているが、この方法
では素子の微細化を妨げることになる。
In the prior art, in order to solve this problem, an insulating oxide film is provided between the resistors as shown in FIG. 4 so as to prevent surface inversion. Will be hindered.

【0005】本発明の目的は、層間絶縁膜が薄化した場
合の寄生MOSトランジスタのしきい値電圧の低下を抑
え、リーク電流を防止することができる半導体集積回路
用の半導体拡散層抵抗を提供することにある。
An object of the present invention is to provide a semiconductor diffusion layer resistor for a semiconductor integrated circuit which can suppress a decrease in threshold voltage of a parasitic MOS transistor when an interlayer insulating film is thinned and can prevent a leak current. Is to do.

【0006】[0006]

【課題を解決するための手段】本発明の半導体拡散層抵
抗は第1導電型の絶縁分離領域あるいは絶縁分離用酸化
膜で囲まれた第2導電型の拡散層抵抗形成領域と、第1
導電型不純物を拡散した拡散層抵抗領域と、第2導電型
拡散層抵抗形成領域よりも高い不純物濃度であるが
1導電型不純物を拡散した拡散層抵抗領域よりもその不
純物深さが浅く、かつその不純物濃度が低い第2導電型
のチャネルストッパ層を備えてなる。
According to the present invention, there is provided a semiconductor diffusion layer resistor comprising a first conductivity type insulating isolation region or a second conductivity type diffusion layer resistance forming region surrounded by an insulating oxide film;
A diffusion layer resistance region in which impurities of the conductivity type are diffused; and a impurity concentration higher than that of the diffusion layer resistance formation region of the second conductivity type .
A second conductivity type channel stopper layer having a shallower impurity depth and a lower impurity concentration than the diffusion layer resistance region in which the one conductivity type impurity is diffused is provided.

【0007】[0007]

【実施例】次に本発明について図面を参照して説明す
る。図1(a)は本発明の一実施例の半導体拡散層抵抗
の構造断面図である。101はP- 型半導体基板、10
2はラッチアップ防止用N- 型埋込層、103はN-
エピタキシャル領域、104はP- 型絶縁分離領域、1
05は絶縁分離酸化膜、106はP型拡散抵抗領域であ
以上は図3に示した従来の拡散層抵抗と同じであ
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present invention will be described with reference to the drawings. FIG. 1A is a structural sectional view of a semiconductor diffusion layer resistor according to one embodiment of the present invention. 101 is a P - type semiconductor substrate, 10
2 is an N type buried layer for preventing latch-up, 103 is an N type epitaxial region, 104 is a P type insulating isolation region, 1
Reference numeral 05 denotes an insulating isolation oxide film, and reference numeral 106 denotes a P-type diffusion resistance region . The above is the same as the conventional diffusion layer resistance shown in FIG.

【0008】本発明の特徴はN- 型チャネルストッパ領
域110を有することにある。このチャネルストッパ領
域はその不純物深さが抵抗領域106よりも浅く、不純
物濃度は低くなっている。107は層間絶縁膜、108
はコンタクトホール、109は金属配線層である。図1
(b)は図1(a)中のa−a1 断面およびb−b1
面の深さ方向のプロファイルを示したものである。本プ
ロファイルからわかるように、従来エピタキシャル領域
であった部分(b−b1 断面)にN型チャネルストッパ
領域を形成したために表面の不純物濃度が高くなってお
り、表面反転が起こりにくくなっている。例えば従来例
のエピタキシャル層濃度を5×1015cm-3、本発明の
N型チャネルストッパ領域の表面濃度を1×1017cm
-3と仮定した場合、層間絶縁膜107および307をゲ
ート絶縁膜とする寄生MOSトランジスタのしきい値電
圧の差は、理論値で約35Vも本発明の方が高い値を取
ることになる。
A feature of the present invention resides in that an N type channel stopper region 110 is provided. This channel stopper region has a shallower impurity depth than the resistance region 106 and a lower impurity concentration. 107 is an interlayer insulating film, 108
Is a contact hole, and 109 is a metal wiring layer. FIG.
(B) shows the depth profile of a-a 1 cross section and b-b 1 cross section in FIG. 1 (a). As can be seen from this profile, since the N-type channel stopper region was formed in the portion (bb- 1 cross section) which was the conventional epitaxial region, the impurity concentration on the surface was high, and surface inversion was unlikely to occur. For example, the concentration of the epitaxial layer of the conventional example is 5 × 10 15 cm −3 , and the surface concentration of the N-type channel stopper region of the present invention is 1 × 10 17 cm −3 .
Assuming −3 , the threshold voltage difference between the parasitic MOS transistors having the interlayer insulating films 107 and 307 as gate insulating films is about 35 V in theoretical value, which is higher in the present invention.

【0009】一方、a−a1 断面のプロファイルを見る
とわかるように、P型抵抗の底面部での接合は、P型抵
抗の不純物深さがN型チャネルストッパの深さより深い
ため、P型抵抗層とN- 型エピタキシャル層との接合に
なっており、接合容量は抵抗領域の側面部では多少増加
するものの、底面部では従来と変わらない値を取ること
ができる。しかも、一般的に抵抗層の深さは0.2〜
0.5μmと短いのに対し、抵抗層の幅は数μmという
一桁高い値であるため、単位長さ当たりの抵抗領域の側
面部と底面部の面積比は1:10〜1:30となり、側
面部の寄生容量の増加はほとんど無視することができ
る。近年の高速デバイスでは寄生容量の増加によるRC
時定数の増加が問題となるが、本発明では、従来技術と
ほぼ同等の寄生容量に抑えることができる。
On the other hand, as you can see the profile of a-a 1 section, the junction of the bottom surface portion of the P-type resistor, the impurity depth of the P-type resistor is deeper than the depth of the N-type channel stopper, a P-type The junction is formed between the resistance layer and the N -type epitaxial layer. Although the junction capacitance slightly increases at the side surface of the resistance region, the junction capacitance can take the same value as the conventional one at the bottom surface. In addition, the resistance layer generally has a depth of 0.2 to
Since the width of the resistance layer is an order of magnitude higher than several μm, whereas the width is as short as 0.5 μm, the area ratio between the side surface and the bottom surface of the resistance region per unit length is 1:10 to 1:30. The increase in the parasitic capacitance on the side surface can be almost ignored. In recent high-speed devices, RC due to an increase in parasitic capacitance
Although an increase in the time constant poses a problem, in the present invention, the parasitic capacitance can be suppressed to substantially the same level as in the related art.

【0010】図2は本発明に関連する技術の拡散抵抗の
を示す断面図である。本発明の実施例ではN型のチャ
ネルストッパ層は、拡散抵抗形成領域全面に不純物を導
入して形成していたのに対し、関連する技術の例では、
抵抗−抵抗間に選択的に不純物を導入してN型チャネル
ストッパ層210を形成しており、N型チャネルストッ
パ層210とP型拡散層204が直接接合をつくらない
ようになっている。このた合耐圧は実施例に比べ向上
するが抵抗形成領域の面積は本発明の実施例にべ多
少増大する。ただし、その増大の程度は絶縁分離酸化膜
を用いた従来技術に比較すれば小さく抑えることが可能
である。
FIG. 2 shows the diffusion resistance of the technique related to the present invention.
It is sectional drawing which shows an example . Channel stopper layer of N-type in the embodiment of the present invention, while has been formed by introducing the impurity diffusion resistors forming the entire region, in the example of the related art,
The N-type channel stopper layer 210 is formed by selectively introducing an impurity between the resistors, so that the N-type channel stopper layer 210 and the P-type diffusion layer 204 are not directly joined. This was junction breakdown voltage is improved compared with the examples, but the area of the resistor forming region is specific base multi <br/> little increase to an embodiment of the present invention. However, the degree of the increase can be kept small as compared with the prior art using the insulating isolation oxide film.

【0011】[0011]

【発明の効果】以上説明したように本発明は、第1導電
型の拡散層抵抗を形成する第2導電型の領域に、第1導
電型の抵抗拡散層よりも不純物濃度が低くかつ不純物深
さが浅い第2導電型のチャネルストッパ層を設けること
により、層間絶縁膜が薄化した場合の寄生MOSトラン
ジスタのしきい値電圧の低下を抑え、リーク電流を防止
することができるという効果を有する。従って、層間絶
縁膜を介して拡散抵抗形成領域上に自由に金属配線を通
すことができ、回路設計の自由度が向上する。
As described above, according to the present invention, the impurity concentration is lower and the impurity depth is lower in the second conductivity type region where the first conductivity type diffusion layer resistance is formed than in the first conductivity type resistance diffusion layer. By providing a shallow second-conductivity-type channel stopper layer, the threshold voltage of the parasitic MOS transistor can be prevented from lowering when the interlayer insulating film is thinned, and leakage current can be prevented. . Therefore, the metal wiring can be freely passed over the diffusion resistance forming region via the interlayer insulating film, and the degree of freedom in circuit design is improved.

【0012】また、抵抗拡散層の底面部はチャネルスト
ッパ層とは接合を形成しないので接合容量は従来と同程
度に抑えることができ、集積回路の高速化を妨げること
はない。
Further, since the bottom surface of the resistance diffusion layer does not form a junction with the channel stopper layer, the junction capacitance can be suppressed to the same level as in the prior art, and does not hinder the speeding up of the integrated circuit.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例の半導体チップの断面図およ
びそのa−a1 およびb−b1 での抵抗拡散層およびチ
ャネルストッパ層の不純物プロファイル。
Impurity profile of the resistive diffusion layer and the channel stopper layer in FIG. 1 of the semiconductor chip of an embodiment of the present invention cross-sectional view and its a-a 1 and b-b 1.

【図2】本発明の他の実施例の半導体チップの断面図で
ある。
FIG. 2 is a sectional view of a semiconductor chip according to another embodiment of the present invention.

【図3】従来の半導体拡散層抵抗形成領域の上面模式図
およびA−A1 断面図である。
Figure 3 is a schematic top view and A-A 1 cross-sectional view of a conventional semiconductor diffusion layer resistance formation region.

【図4】抵抗間のリーク電流を防ぐための従来技術を示
す半導体チップの断面図である。
FIG. 4 is a sectional view of a semiconductor chip showing a conventional technique for preventing a leak current between resistors.

【符号の説明】[Explanation of symbols]

101,201,301,401 P- 型半導体基板 102,202,302,402 N+ 型埋め込み層 103,203,303,403 N- 型エピタキシ
ャル領域 104,204,304,404 P+ 型絶縁分離拡
散領域 105,205,305,405 絶縁分離酸化膜 106,206,306,406 P型拡散抵抗領域 107,207,307,407 層間絶縁膜 108,208,308,408 コンタクトホール 109,209,309,409 金属配線 110,210 N型チャネルストッパ層
101, 201, 301, 401 P type semiconductor substrate 102, 202, 302, 402 N + type buried layer 103, 203, 303, 403 N type epitaxial region 104, 204, 304, 404 P + type isolation / diffusion region 105, 205, 305, 405 Insulation / isolation oxide film 106, 206, 306, 406 P-type diffusion resistance region 107, 207, 307, 407 Interlayer insulation film 108, 208, 308, 408 Contact hole 109, 209, 309, 409 Metal Wiring 110, 210 N-type channel stopper layer

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 第1導電型の絶縁分離領域あるいは絶縁
分離用酸化膜で囲まれた第2導電型の半導体拡散層抵抗
形成領域に所望の形状に第1導電型の不純物を拡散して
なる半導体拡散層抵抗において、前記第2導電型の半導
体拡散層抵抗形成領域に、この第2導電型の半導体拡散
抵抗形成領域よりも高い不純物濃度であるが前記第1
導電型の不純物を拡散してなる半導体拡散層抵抗領域よ
りも低濃度でかつその不純物深さが浅い第2導電型不純
物を導入したチャネルストッパ層を有することを特徴と
する半導体拡散層抵抗。
An impurity of a first conductivity type is diffused in a desired shape into a second conductivity type semiconductor diffusion layer resistance forming region surrounded by a first conductivity type insulation isolation region or a second conductivity type semiconductor diffusion layer. in semiconductor diffusion layer resistance, the semiconductor diffusion layer resistance formation region of the second conductivity type semiconductor diffusion of the second conductivity type
Although the impurity concentration is higher than that of the layer resistance forming region, the first
A semiconductor diffusion layer resistor comprising a channel stopper layer doped with a second conductivity type impurity having a lower concentration and a shallower impurity depth than a semiconductor diffusion layer resistance region formed by diffusing a conductivity type impurity.
【請求項2】 前記チャネルストッパ層は、第2導電型
半導体拡散層抵抗形成領域全面に不純物の導入を行っ
て形成されることを特徴とする請求項1記載の半導体拡
散層抵抗。
2. The semiconductor diffusion layer resistance according to claim 1, wherein said channel stopper layer is formed by introducing an impurity into the entire surface of the semiconductor diffusion layer resistance formation region of the second conductivity type.
JP3254030A 1991-10-02 1991-10-02 Semiconductor diffusion layer resistance Expired - Lifetime JP2785542B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3254030A JP2785542B2 (en) 1991-10-02 1991-10-02 Semiconductor diffusion layer resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3254030A JP2785542B2 (en) 1991-10-02 1991-10-02 Semiconductor diffusion layer resistance

Publications (2)

Publication Number Publication Date
JPH0595085A JPH0595085A (en) 1993-04-16
JP2785542B2 true JP2785542B2 (en) 1998-08-13

Family

ID=17259266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3254030A Expired - Lifetime JP2785542B2 (en) 1991-10-02 1991-10-02 Semiconductor diffusion layer resistance

Country Status (1)

Country Link
JP (1) JP2785542B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4362905B2 (en) 1999-09-21 2009-11-11 富士ゼロックス株式会社 Self-scanning light-emitting device, light source for writing, and optical printer

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2606380B2 (en) * 1989-07-26 1997-04-30 日本電気株式会社 Semiconductor integrated circuit

Also Published As

Publication number Publication date
JPH0595085A (en) 1993-04-16

Similar Documents

Publication Publication Date Title
US4809056A (en) Semiconductor device having a silicon on insulator structure
US4948748A (en) Manufacture of a substrate structure for a composite semiconductor device using wafer bonding and epitaxial refill
US5323053A (en) Semiconductor devices using epitaxial silicides on (111) surfaces etched in (100) silicon substrates
US5923985A (en) MOS field effect transistor and its manufacturing method
US5344785A (en) Method of forming high speed, high voltage fully isolated bipolar transistors on a SOI substrate
KR890013770A (en) Semiconductor device and manufacturing method
JPH09266248A (en) Semiconductor device
US8115273B2 (en) Deep trench isolation structures in integrated semiconductor devices
US4903109A (en) Semiconductor devices having local oxide isolation
EP0008903B1 (en) Semiconductor integrated circuit device
US4713681A (en) Structure for high breakdown PN diode with relatively high surface doping
JPH05347412A (en) Semiconductor integrated circuit
JP2785542B2 (en) Semiconductor diffusion layer resistance
US4443808A (en) Semiconductor device
EP0981163A1 (en) Semiconductor power device with insulated circuit and process for its manufacture
JP3161091B2 (en) Semiconductor integrated circuit device
US5068710A (en) Semiconductor device with multilayer base contact
EP0317133B1 (en) Semiconductor device for controlling supply voltage fluctuations
JPH02170571A (en) Semiconductor device and manufacture thereof
JPH03169080A (en) Field effect transistor
KR0128036B1 (en) Structure of low power devcie and its manufacturing method
JP2845469B2 (en) Semiconductor device
JPH0493084A (en) Semiconductor device and manufacture thereof
JPH0420258B2 (en)
JPS6333306B2 (en)

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980428