JPH0595085A - Semiconductor diffused layer resistance - Google Patents

Semiconductor diffused layer resistance

Info

Publication number
JPH0595085A
JPH0595085A JP25403091A JP25403091A JPH0595085A JP H0595085 A JPH0595085 A JP H0595085A JP 25403091 A JP25403091 A JP 25403091A JP 25403091 A JP25403091 A JP 25403091A JP H0595085 A JPH0595085 A JP H0595085A
Authority
JP
Japan
Prior art keywords
resistance
insulating film
type
layer
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25403091A
Other languages
Japanese (ja)
Other versions
JP2785542B2 (en
Inventor
誠一 ▲高▼橋
Seiichi Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP3254030A priority Critical patent/JP2785542B2/en
Publication of JPH0595085A publication Critical patent/JPH0595085A/en
Application granted granted Critical
Publication of JP2785542B2 publication Critical patent/JP2785542B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To provide a semiconductor diffused layer resistance which is able to inclease a degree of freedom for the circuit design by making thinner an interlayer insulating film so that a threshold voltage of a parasitic MOS transistor including the interlayer insulating film as a gate insulating film, flow of a leak current between resistances can be prevented and a metal wiring can be laid freely on a diffused resistance forming region via the interlayer insulating film. CONSTITUTION:A diffused layer resistance forming region 103 is provided with shallow channel stopper layer 110 of which conductivity-type is opposite to that of a resistance diffused layer 106 which has lower impurity concentration and shallower impurity depth than those of the resistance diffused layer 106. Therefore, metal wirings can be laid freely on the diffused layer resistance forming region 103 via the interlayer insulating film and a degree of freedom for circuit design can be improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体拡散層抵抗に関
し、拡散層−拡散層間の表面反転によるリーク電流を防
止した半導体拡散層抵抗に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor diffusion layer resistance, and more particularly to a semiconductor diffusion layer resistance which prevents leakage current due to surface inversion between diffusion layers.

【0002】[0002]

【従来の技術】バイポーラ集積回路等に用いられる半導
体拡散層抵抗は、多結晶半導体層抵抗に比べ、絶対精
度,相対精度に優れており、特にリニア回路に欠くこと
のできないものとなっている。従来のバイポーラ集積回
路で用いられる拡散層抵抗の上観図を図3(a)に図3
(a)中のA−A1 での断面図を図3(b)に示す。3
01はP- 型半導体基板であり、302は寄生サイリス
タによるラッチアップを防止するためのN+ 型埋込層、
303はN- 型エピタキシャル領域、304はP+ 型絶
縁分離拡散領域、305は絶縁分離酸化膜である。P型
拡散層抵抗306はP+ 型絶縁分離拡散領域304、お
よび絶縁分離酸化膜305で囲まれたN- 型エピタキシ
ャル領域303中にP型不純物を拡散することにより形
成されている。P型不純物の導入方法としては、現在で
はイオン注入法が一般的であり、熱拡散法等に比べ、精
度面および微細化の面で著しく優っている。307はB
PSG(ホウ素リン硅化ガラス)等の層間絶縁膜、30
8はコンタクトホール、309はアルミニウム等の金属
配線である。
2. Description of the Related Art A semiconductor diffusion layer resistor used in a bipolar integrated circuit or the like is superior to a polycrystalline semiconductor layer resistor in absolute accuracy and relative accuracy, and is particularly indispensable for a linear circuit. FIG. 3A is a top view of the diffusion layer resistance used in the conventional bipolar integrated circuit.
A cross-sectional view taken along the line AA 1 in (a) is shown in FIG. Three
01 is a P type semiconductor substrate, 302 is an N + type buried layer for preventing latch-up by a parasitic thyristor,
Reference numeral 303 is an N type epitaxial region, 304 is a P + type insulating isolation diffusion region, and 305 is an insulating isolation oxide film. The P-type diffusion layer resistor 306 is formed by diffusing a P-type impurity into the P + -type insulation isolation diffusion region 304 and the N -type epitaxial region 303 surrounded by the insulation isolation oxide film 305. As a method of introducing the P-type impurity, the ion implantation method is generally used at present, and is significantly superior to the thermal diffusion method and the like in terms of accuracy and miniaturization. 307 is B
Interlayer insulating film such as PSG (boron phosphorus silicate glass), 30
Reference numeral 8 is a contact hole, and 309 is a metal wiring such as aluminum.

【0003】[0003]

【発明が解決しようとする課題】近年の集積回路では、
微細化が進み、それに供って層間絶縁膜も薄くなってき
ている。一方、電源電圧は相変わらず、5V系が主流で
あり、バイポーラ集積回路では12V系、40V系など
の中・高耐圧系のものも依然として存在している。この
ため、従来の拡散層抵抗の構造では、例えば、図3
(a)に示した端子Bに電源電圧がかかり、端子Cがグ
ラウンドに接続されると、層間絶縁膜307が薄いため
に、抵抗形成領域のN- 型エピタキシャル層表面がP型
反転を起こし、抵抗−抵抗間にリーク電流が流れてしま
うという不具合が生じていた。
SUMMARY OF THE INVENTION In recent integrated circuits,
With the progress of miniaturization, the interlayer insulating film has been thinned accordingly. On the other hand, the power supply voltage remains the same, and the mainstream is 5V, and there are still bipolar integrated circuits of 12V type, 40V type, and medium / high withstand voltage type. Therefore, in the conventional diffusion layer resistance structure, for example, as shown in FIG.
When the power supply voltage is applied to the terminal B shown in (a) and the terminal C is connected to the ground, the surface of the N type epitaxial layer in the resistance forming region causes P type inversion because the interlayer insulating film 307 is thin, There has been a problem that a leak current flows between the resistors.

【0004】従来技術では、この不具合を解決するため
に図4に示すように抵抗−抵抗間に絶縁分離酸化膜を設
けて表面反転が起こらないようにしているが、この方法
では素子の微細化を妨げることになる。
In the prior art, in order to solve this problem, an insulating isolation oxide film is provided between the resistors to prevent surface inversion as shown in FIG. 4, but with this method, the element is miniaturized. Will be hindered.

【0005】本発明の目的は、層間絶縁膜が薄化した場
合の寄生MOSトランジスタのしきい値電圧の低下を抑
え、リーク電流を防止することができる半導体集積回路
用の半導体拡散層抵抗を提供することにある。
An object of the present invention is to provide a semiconductor diffusion layer resistor for a semiconductor integrated circuit, which can suppress a decrease in threshold voltage of a parasitic MOS transistor when an interlayer insulating film is thinned and prevent a leak current. To do.

【0006】[0006]

【課題を解決するための手段】本発明の半導体拡散層抵
抗は第1導電型の絶縁分離領域あるいは絶縁分離用酸化
膜で囲まれた第2導電型の抵抗形成領域と、第1導電型
不純物を拡散した拡散層抵抗領域と、拡散層抵抗領域よ
りもその不純物深さが浅く、かつその不純物濃度が低い
第2導電型のチャネルストッパ層を備えてなる。
A semiconductor diffusion layer resistance of the present invention comprises a first conductivity type insulation isolation region or a second conductivity type resistance formation region surrounded by an insulation isolation oxide film, and a first conductivity type impurity. And a second conductivity type channel stopper layer having a shallower impurity depth and a lower impurity concentration than the diffusion layer resistance region.

【0007】[0007]

【実施例】次に本発明について図面を参照して説明す
る。図1(a)は本発明の一実施例の半導体拡散層抵抗
の構造断面図である。101はP- 型半導体基板、10
2はラッチアップ防止用N+ 型埋込層、103はN-
エピタキシャル領域、104はP+ 型絶縁分離領域、1
05は絶縁分離酸化膜、106はP型拡散抵抗領域であ
る以上は図3に示した従来の拡散層抵抗と同じである。
The present invention will be described below with reference to the drawings. FIG. 1A is a structural cross-sectional view of a semiconductor diffusion layer resistor according to an embodiment of the present invention. 101 is a P type semiconductor substrate, 10
2 is an N + type buried layer for preventing latch-up, 103 is an N type epitaxial region, 104 is a P + type insulating isolation region, 1
Reference numeral 05 denotes an insulating isolation oxide film, and 106 denotes a P-type diffusion resistance region, which is the same as the conventional diffusion layer resistance shown in FIG.

【0008】本発明の特徴はN- 型チャネルストッパ領
域110を有することにある。このチャネルストッパ領
域はその不純物深さが抵抗領域106よりも浅く、不純
物濃度は低くなっている。107は層間絶縁膜、108
はコンタクトホール、109は金属配線層である。図1
(b)は図1(a)中のa−a1 断面およびb−b1
面の深さ方向のプロファイルを示したものである。本プ
ロファイルからわかるように、従来エピタキシャル領域
であった部分(b−b1 断面)にN型チャネルストッパ
領域を形成したために表面の不純物濃度が高くなってお
り、表面反転が起こりにくくなっている。例えば従来例
のエピタキシャル層濃度を5×1015cm-3、本発明の
N型チャネルストッパ領域の表面濃度を1×1017cm
-3と仮定した場合、層間絶縁膜107および307をゲ
ート絶縁膜とする寄生MOSトランジスタのしきい値電
圧の差は、理論値で約35Vも本発明の方が高い値を取
ることになる。
A feature of the present invention is to have an N type channel stopper region 110. The impurity depth of this channel stopper region is shallower than that of the resistance region 106, and the impurity concentration is low. 107 is an interlayer insulating film, 108
Is a contact hole, and 109 is a metal wiring layer. Figure 1
(B) shows the depth profile of a-a 1 cross section and b-b 1 cross section in FIG. 1 (a). As can be seen from this profile, since the N-type channel stopper region was formed in the portion that was a conventional epitaxial region (b-b 1 cross section), the impurity concentration on the surface was high, and surface inversion did not occur easily. For example, the epitaxial layer concentration of the conventional example is 5 × 10 15 cm −3 , and the surface concentration of the N-type channel stopper region of the present invention is 1 × 10 17 cm 3.
Assuming -3 , the theoretical threshold value of the difference between the threshold voltages of the parasitic MOS transistors having the interlayer insulating films 107 and 307 as their gate insulating films is about 35 V, which is higher in the present invention.

【0009】一方、a−a1 断面のプロファイルを見る
とわかるように、P型抵抗の底面部での接合は、P型抵
抗の不純物深さがN型チャネルストッパの深さより深い
ため、P型抵抗層とN- 型エピタキシャル層との接合に
なっており、接合容量は抵抗領域の側面部では多少増加
するものの、底面部では従来と変わらない値を取ること
ができる。しかも、一般的に抵抗層の深さは0.2〜
0.5μmと短いのに対し、抵抗層の幅は数μmという
一桁高い値であるため、単位長さ当たりの抵抗領域の側
面部と底面部の面積比は1:10〜1:30となり、側
面部の寄生容量の増加はほとんど無視することができ
る。近年の高速デバイスでは寄生容量の増加によるRC
時定数の増加が問題となるが、本発明では、従来技術と
ほぼ同等の寄生容量に抑えることができる。
On the other hand, as can be seen from the profile of the aa 1 cross section, the junction at the bottom of the P-type resistor has a P-type resistor whose impurity depth is deeper than the depth of the N-type channel stopper. It is a junction between the resistance layer and the N type epitaxial layer, and although the junction capacitance increases a little on the side surface of the resistance region, it can take the same value as the conventional value on the bottom surface. Moreover, the depth of the resistance layer is generally 0.2 to
Although the width of the resistance layer is as short as 0.5 μm, which is a value several orders of magnitude higher than the width of the resistance layer, the area ratio of the side surface portion to the bottom surface portion of the resistance region per unit length is 1:10 to 1:30. The increase in parasitic capacitance on the side surface can be almost ignored. In high-speed devices of recent years, RC due to increase in parasitic capacitance
Although the increase of the time constant becomes a problem, in the present invention, the parasitic capacitance can be suppressed to almost the same as that of the conventional technique.

【0010】図2は本発明の第2の実施例を示す断面図
である。実施例1ではN型のチャネルストッパ層は、拡
散抵抗形成領域全面に不純物を導入して形成していたの
に対し、本実施例では、抵抗−抵抗間に選択的に不純物
を導入してN型チャネルストッパ層210を形成してお
り、N型チャネルストッパ層210とP型拡散層204
が直接接合をつくらないようになっている。このため、
接合容量は従来技術と全く等しい値となり、また接合耐
圧も実施例1に比べ向上する。抵抗形成領域の面積は実
施例1に比べれば多少増大するが、絶縁分離酸化膜を用
いた従来技術に比較すれば小さく抑えることが可能であ
る。
FIG. 2 is a sectional view showing a second embodiment of the present invention. In the first embodiment, the N-type channel stopper layer is formed by introducing impurities into the entire surface of the diffusion resistance forming region, whereas in the present embodiment, the N-type channel stopper layer is formed by selectively introducing impurities between the resistors. The N-type channel stopper layer 210 is formed, and the N-type channel stopper layer 210 and the P-type diffusion layer 204 are formed.
Does not make a direct bond. For this reason,
The junction capacitance has the same value as that of the conventional technique, and the junction breakdown voltage is improved as compared with the first embodiment. Although the area of the resistance forming region is slightly increased as compared with the first embodiment, it can be suppressed to be smaller than that of the conventional technique using the insulating isolation oxide film.

【0011】[0011]

【発明の効果】以上説明したように本発明は、第1導電
型の拡散層抵抗を形成する第2導電型の領域に、第1導
電型の抵抗拡散層よりも不純物濃度が低くかつ不純物深
さが浅い第2導電型のチャネルストッパ層を設けること
により、層間絶縁膜が薄化した場合の寄生MOSトラン
ジスタのしきい値電圧の低下を抑え、リーク電流を防止
することができるという効果を有する。従って、層間絶
縁膜を介して拡散抵抗形成領域上に自由に金属配線を通
すことができ、回路設計の自由度が向上する。
As described above, according to the present invention, in the second conductivity type region forming the first conductivity type diffusion layer resistance, the impurity concentration is lower and the impurity depth is lower than that of the first conductivity type resistance diffusion layer. By providing the second-conductivity-type channel stopper layer having a shallow thickness, it is possible to suppress a decrease in the threshold voltage of the parasitic MOS transistor when the interlayer insulating film is thinned and to prevent a leak current. .. Therefore, the metal wiring can be freely passed through the diffusion resistance forming region via the interlayer insulating film, and the degree of freedom in circuit design is improved.

【0012】また、抵抗拡散層の底面部はチャネルスト
ッパ層とは接合を形成しないので接合容量は従来と同程
度に抑えることができ、集積回路の高速化を妨げること
はない。
Further, since the bottom surface of the resistance diffusion layer does not form a junction with the channel stopper layer, the junction capacitance can be suppressed to the same level as in the conventional case, and the speedup of the integrated circuit is not hindered.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の半導体チップの断面図およ
びそのa−a1 およびb−b1 での抵抗拡散層およびチ
ャネルストッパ層の不純物プロファイル。
Impurity profile of the resistive diffusion layer and the channel stopper layer in FIG. 1 of the semiconductor chip of an embodiment of the present invention cross-sectional view and its a-a 1 and b-b 1.

【図2】本発明の他の実施例の半導体チップの断面図で
ある。
FIG. 2 is a sectional view of a semiconductor chip according to another embodiment of the present invention.

【図3】従来の半導体拡散層抵抗形成領域の上面模式図
およびA−A1 断面図である。
FIG. 3 is a schematic top view and a sectional view taken along line AA 1 of a conventional semiconductor diffusion layer resistance forming region.

【図4】抵抗間のリーク電流を防ぐための従来技術を示
す半導体チップの断面図である。
FIG. 4 is a sectional view of a semiconductor chip showing a conventional technique for preventing a leak current between resistors.

【符号の説明】[Explanation of symbols]

101,201,301,401 P- 型半導体基板 102,202,302,402 N+ 型埋め込み層 103,203,303,403 N- 型エピタキシ
ャル領域 104,204,304,404 P+ 型絶縁分離拡
散領域 105,205,305,405 絶縁分離酸化膜 106,206,306,406 P型拡散抵抗領域 107,207,307,407 層間絶縁膜 108,208,308,408 コンタクトホール 109,209,309,409 金属配線 110,210 N型チャネルストッパ層
101, 201, 301, 401 P type semiconductor substrate 102, 202, 302, 402 N + type buried layer 103, 203, 303, 403 N type epitaxial region 104, 204, 304, 404 P + type insulating isolation diffusion region 105, 205, 305, 405 Insulation isolation oxide film 106, 206, 306, 406 P-type diffusion resistance region 107, 207, 307, 407 Inter-layer insulation film 108, 208, 308, 408 Contact hole 109, 209, 309, 409 Metal Wiring 110, 210 N-type channel stopper layer

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 第1導電型の絶縁分離領域あるいは絶縁
分離用酸化膜で囲まれた第2導電型の半導体領域に所望
の形状に第1導電型の不純物を拡散してなる半導体拡散
層抵抗において、前記第2導電型の抵抗形成領域に、抵
抗形成領域よりも高濃度の第2導電型不純物を導入した
チャネルストッパ層を有することを特徴とする半導体拡
散層抵抗。
1. A semiconductor diffusion layer resistor formed by diffusing a first conductivity type impurity into a desired shape in a first conductivity type insulation isolation region or a second conductivity type semiconductor region surrounded by an insulation isolation oxide film. 2. The semiconductor diffusion layer resistance according to the item 2, wherein the second conductivity type resistance forming region has a channel stopper layer into which a second conductivity type impurity having a higher concentration than that of the resistance forming region is introduced.
【請求項2】 前記チャネルストッパ層は、第1導電型
の拡散層抵抗領域よりも、その不純物濃度が低く、かつ
その不純物深さが浅いことを特徴とする請求項1記載の
半導体拡散層抵抗。
2. The semiconductor diffusion layer resistance according to claim 1, wherein the channel stopper layer has a lower impurity concentration and a shallower impurity depth than those of the diffusion layer resistance region of the first conductivity type. ..
【請求項3】 前記チャネルストッパ層は、第1導電型
の抵抗拡散層とは接合をつくらないように、抵抗−抵抗
間に選択的に設けられていることを特徴とする請求項1
記載の半導体拡散層抵抗。
3. The channel stopper layer is selectively provided between resistors so as not to form a junction with the resistance diffusion layer of the first conductivity type.
The semiconductor diffusion layer resistance described.
JP3254030A 1991-10-02 1991-10-02 Semiconductor diffusion layer resistance Expired - Lifetime JP2785542B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3254030A JP2785542B2 (en) 1991-10-02 1991-10-02 Semiconductor diffusion layer resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3254030A JP2785542B2 (en) 1991-10-02 1991-10-02 Semiconductor diffusion layer resistance

Publications (2)

Publication Number Publication Date
JPH0595085A true JPH0595085A (en) 1993-04-16
JP2785542B2 JP2785542B2 (en) 1998-08-13

Family

ID=17259266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3254030A Expired - Lifetime JP2785542B2 (en) 1991-10-02 1991-10-02 Semiconductor diffusion layer resistance

Country Status (1)

Country Link
JP (1) JP2785542B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001021412A1 (en) * 1999-09-21 2001-03-29 Nippon Sheet Glass Co., Ltd. Cross under metal interconnection structure of self scanning light-emitting device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0358469A (en) * 1989-07-26 1991-03-13 Nec Corp Semiconductor integrated circuit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0358469A (en) * 1989-07-26 1991-03-13 Nec Corp Semiconductor integrated circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001021412A1 (en) * 1999-09-21 2001-03-29 Nippon Sheet Glass Co., Ltd. Cross under metal interconnection structure of self scanning light-emitting device
US6507057B1 (en) 1999-09-21 2003-01-14 Nippon Sheet Glass Co., Ltd. Cross under metal wiring structure for self-scanning light-emitting device

Also Published As

Publication number Publication date
JP2785542B2 (en) 1998-08-13

Similar Documents

Publication Publication Date Title
US4879584A (en) Semiconductor device with isolation between MOSFET and control circuit
US4826780A (en) Method of making bipolar transistors
US4948748A (en) Manufacture of a substrate structure for a composite semiconductor device using wafer bonding and epitaxial refill
US4589004A (en) Semiconductor device monolithically comprising a V-MOSFET and bipolar transistor isolated from each other
US6313508B1 (en) Semiconductor device of high-voltage CMOS structure and method of fabricating same
KR890013770A (en) Semiconductor device and manufacturing method
US5508545A (en) Semiconductor device including a pair of transistors having a common channel region, and method of making the same
US6180986B1 (en) Semiconductor device and method of manufacturing the same
US4443808A (en) Semiconductor device
JP2785542B2 (en) Semiconductor diffusion layer resistance
JP2000068372A (en) Semiconductor device and manufacture thereof
JPH07273320A (en) Semiconductor device
JPH0311107B2 (en)
US5008724A (en) Semiconductor device
JP2871352B2 (en) Semiconductor device
USRE34025E (en) Semiconductor device with isolation between MOSFET and control circuit
JP2727910B2 (en) Semiconductor integrated circuit device
JPH09283747A (en) Lateral field effect transistor
JPH02170571A (en) Semiconductor device and manufacture thereof
JPH01189955A (en) Semiconductor device
EP0317133B1 (en) Semiconductor device for controlling supply voltage fluctuations
JPH0222858A (en) Semiconductor device
EP1172848A1 (en) Integrated semiconductor structure
JPH065708B2 (en) Semiconductor integrated circuit device
JPH0469433B2 (en)

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980428