JP2783031B2 - Estimation method of virtual point position by measurement with lighthouse sensor - Google Patents

Estimation method of virtual point position by measurement with lighthouse sensor

Info

Publication number
JP2783031B2
JP2783031B2 JP77592A JP77592A JP2783031B2 JP 2783031 B2 JP2783031 B2 JP 2783031B2 JP 77592 A JP77592 A JP 77592A JP 77592 A JP77592 A JP 77592A JP 2783031 B2 JP2783031 B2 JP 2783031B2
Authority
JP
Japan
Prior art keywords
point
measurement
sequence
sensor
lighthouse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP77592A
Other languages
Japanese (ja)
Other versions
JPH05180633A (en
Inventor
富男 鹿山
元紀 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP77592A priority Critical patent/JP2783031B2/en
Publication of JPH05180633A publication Critical patent/JPH05180633A/en
Application granted granted Critical
Publication of JP2783031B2 publication Critical patent/JP2783031B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、灯台式センサで、計
測光の方向を少しづつ変えることにより対象物の表面を
断続的に走査して、三角測量の原理によりその表面の断
面形状を計測して求めた計測点の点列から、二本の直線
を近似により定めて、それらの直線の交点を求めること
により仮想点の位置を推定するに際し、その推定精度を
向上させ得る方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lighthouse type sensor which intermittently scans the surface of an object by gradually changing the direction of measurement light and measures the cross-sectional shape of the surface by the principle of triangulation. From the point sequence of the measurement points obtained as described above, two straight lines are determined by approximation, and when estimating the position of the virtual point by obtaining the intersection of those straight lines, the method relates to a method that can improve the estimation accuracy. is there.

【0002】[0002]

【従来の技術】灯台式センサは一般に、図5に示すよう
に、光源1が放射する計測光としてのレーザー光2をス
キャン用ミラー3で反射させて対象物4の表面上に照射
し、そこからの反射光を再びスキャン用ミラー3で反射
させた後CCDセンサ5で受光して、その受光位置から
当該灯台式センサと対象物4との距離を三角測量の原理
で計測し、スキャン用ミラー3の角度を少しずつ変化さ
せることにてその照射位置をずらし、対象物4の表面を
断続的に走査して、その表面の二次元断面形状に対応す
る計測点の点列座標データをもたらす。また灯台式セン
サは通常、CCDセンサ5の受光量に基づき図示しない
受光量調節回路で光源1の作動をフィードバック制御し
て、CCDセンサ5の受光量が距離計測に適した範囲内
に収まるように光源1が放射するレーザー光2の強さを
調節している。
2. Description of the Related Art As shown in FIG. 5, a lighthouse type sensor generally reflects a laser beam 2 as a measuring beam emitted from a light source 1 on a scanning mirror 3 and irradiates the laser beam 2 onto a surface of an object 4. After the reflected light from the light source is reflected again by the scanning mirror 3, the light is received by the CCD sensor 5, and the distance between the lighthouse type sensor and the object 4 is measured from the light receiving position by the principle of triangulation, and the scanning mirror is used. The irradiation position is shifted by gradually changing the angle of 3, and the surface of the object 4 is intermittently scanned to obtain point sequence coordinate data of measurement points corresponding to the two-dimensional cross-sectional shape of the surface. In general, the lighthouse type sensor performs feedback control of the operation of the light source 1 based on the amount of light received by the CCD sensor 5 using a light amount adjustment circuit (not shown) so that the amount of light received by the CCD sensor 5 falls within a range suitable for distance measurement. The intensity of the laser light 2 emitted from the light source 1 is adjusted.

【0003】かかる灯台式センサは、例えば自動車車体
の組立精度を計測する際に用いられており、その組立精
度計測は従来、例えばあらかじめ設計上の車体の複数箇
所について、それらの箇所の車体パネルのL字状の二次
元断面形状を持つ部分を基準部位として設定して、それ
らの基準部位の各々につき、L字の一方の辺に対応する
直線状部分のL字の角部側でない端部に計測の始点A
を、また他方の辺に対応する直線状部分のL字の角部側
でない端部に計測の終点Bをそれぞれ設定するととも
に、それらの始点Aおよび終点Bの少なくとも一方を通
り、かつL字の各辺に対応する直線状部分に対する角度
が互いに等しくなるような一本または二本の基準線Lを
設定し、さらにそれらの直線状部分にそれぞれ重なる二
本の直線の交点を仮想点Pとして設定しておき、その
後、図6に示す如き計測手順を実行することによって行
っている。
[0003] Such a lighthouse type sensor is used, for example, when measuring the assembly accuracy of an automobile body, and the assembly accuracy measurement is conventionally performed, for example, at a plurality of positions of a vehicle body designed in advance, by using a body panel at those positions. A portion having an L-shaped two-dimensional cross-sectional shape is set as a reference portion, and for each of those reference portions, an end of the straight portion corresponding to one side of the L-shape, which is not on the corner portion side of the L-shape. Start point A of measurement
And an end point B of the measurement at an end of the linear portion corresponding to the other side, which is not the corner side of the L-shape, and passes at least one of the start point A and the end point B and the L-shape. One or two reference lines L are set such that the angles with respect to the linear portions corresponding to the respective sides are equal to each other, and the intersection of two straight lines respectively overlapping the linear portions is set as a virtual point P. After that, the measurement is performed by executing a measurement procedure as shown in FIG.

【0004】この計測手順にあっては、実際に組み立て
られた一台目の車体の、対象物としての車体パネルの上
記各基準部位について、先ずステップ101 で上記灯台式
センサにより上記始点Aから終点Bまで仮計測を行っ
て、その仮計測で求めた計測点列を画面上に表示し、次
いでステップ102 で、その仮計測によって得たL字状の
計測点列の始点Aおよび終点Bの少なくとも一方を通
り、かつL字の各辺に対応する直線状部分に対する角度
が互いにほぼ等しくなるような一本または二本の仮の基
準線La 、例えば図7に示す如き直線状部分の長さが等
しい計測点PS (s=1,2,3, . . .n)の点列の場合は始点
A(P1 )と終点B(Pn ) とを直線で結んだ一本の仮
の基準線La を設定する。なおこのとき、画面上で水平
方向へ延在するx軸と基準線La とが平行になるように
画面表示の座標変換を行う。
In this measuring procedure, first, in step 101, the above-mentioned starting point A to the ending point are detected by the lighthouse type sensor for each of the reference portions of the vehicle body panel as the object of the first assembled vehicle body. B, the measurement point sequence obtained by the provisional measurement is displayed on the screen. Then, at step 102, at least the start point A and the end point B of the L-shaped measurement point sequence obtained by the provisional measurement are displayed. as one, and the length of the linear single angle such are approximately equal to each other for partial or two of the temporary reference line L a, for example, such as linear portion shown in FIG. 7 corresponding to the respective sides of the L-shaped equals the measurement point P S (s = 1,2,3,. . .n) point start point a (P 1) in the case of rows of the end point B (P n) and a single temporary of which connects with a straight line to set the reference line L a. At this time, and the x-axis and the reference line L a that extends in the horizontal direction on the screen performs a coordinate transformation of the screen display so as to be parallel.

【0005】次いでステップ103 で、その仮の基準線L
a から最も遠い計測点である仮の最遠点Qa を求め、し
かる後ステップ104 で、その仮の最遠点Qa から上記仮
の基準線La へ仮の垂線Ra を引き、次いでL字状に並
んだ計測点列から二つの直線状部分をそれぞれ切り取る
ように画面表示で確認しながら二つのウインドウW1
よびW2 を設定し、その後上記仮の垂線Ra からそれら
のウインドウW1,W2 までの距離L1,L2 およびL3,L
4 を求める。このとき、二つのウインドウW1,W2 の範
囲は、後述する直線近似の精度を高めるため、L字状に
並んだ計測点列からそれらのウインドウW1,W2 で曲線
状部分を含まずに直線状部分のみをなるべく長く切りと
れるように設定する。
Next, at step 103, the temporary reference line L
seeking farthest point Q a provisional is farthest measurement point from a, in thereafter step 104, a vertical line R a provisional from the farthest point Q a of the temporary to the reference line L a of the temporary, then while L-shape with two straight portions from the measurement point sequence aligned confirmed in the screen display as cut each set the two windows W 1 and W 2, perpendicular R a from their window W subsequent the temporary 1 , distances L 1 , L 2 and L 3 , L to W 2
Ask for 4 . In this case, the range of the two windows W 1, W 2, in order to improve the accuracy of linear approximation, which will be described later, does not include a curved portion in L-shaped windows W 1 thereof from the measurement point sequence arrayed in, W 2 Is set so that only the linear portion can be cut as long as possible.

【0006】次いでステップ105 で、上記灯台式センサ
により上記始点Aから終点Bまで本計測を行い、次いで
ステップ106 で、その本計測によって得たL字状の計測
点列の始点Aおよび終点Bの少なくとも一方を通り、か
つL字の各辺に対応する直線状部分に対する角度が互い
にほぼ等しくなるような一本または二本の基準線L、例
えば図7に示す如き直線状部分の長さが等しい計測点P
S (s=1,2,3, . . .n)の点列では始点A(P1 )と終点
B(Pn ) とを直線で結んだ一本の基準線Lを設定し、
次いでステップ107 で、その基準線Lから最も遠い計測
点である最遠点Qを求め、しかる後、ステップ108 で、
その最遠点Qから基準線Lに垂線Rを引いて、その垂線
Rからの上記設定した距離L1,L2 およびL3,L4 に基
づき二つのウインドウW1 およびW2 を開き、それらの
ウインドウ内に入った計測点列を切り取ってその点列を
構成する計測点の座標を読出す。
Next, in step 105, the main measurement is performed by the lighthouse sensor from the start point A to the end point B. Then, in step 106, the start point A and the end point B of the L-shaped measurement point sequence obtained by the main measurement are measured. One or two reference lines L passing through at least one and having substantially the same angle with respect to the linear portions corresponding to the respective sides of the L-shape, for example, the lengths of the linear portions as shown in FIG. 7 are equal. Measurement point P
In the point sequence of S (s = 1, 2, 3,... N ), one reference line L connecting the start point A (P 1 ) and the end point B (P n ) by a straight line is set,
Next, at step 107, the farthest point Q, which is the farthest measurement point from the reference line L, is obtained. Thereafter, at step 108,
A perpendicular line R is drawn from the farthest point Q to a reference line L, and two windows W 1 and W 2 are opened based on the distances L 1 , L 2 and L 3 , L 4 from the perpendicular line R. Is cut out, and the coordinates of the measurement points forming the point sequence are read out.

【0007】次いでステップ109 で、上記二つのウイン
ドウW1,W2 内の計測点の座標から最小自乗法によって
それぞれ直線を近似的に求め、次いでステップ110 で、
それらの直線の交点を算出することによって仮想点Pの
位置座標を求め、その後、ステップ111 で、その求めた
仮想点Pの座標を既知の設計上の仮想点Pの座標データ
と比較して車体組立精度を求め、次のステップ112 で、
次に組み立てられた車体の有無を判断して、次の車体が
あればステップ105 へ戻って本計測以下の手順を繰り返
し、次の車体がなくなれば処理を終了する。
Next, in step 109, a straight line is approximately obtained by the least square method from the coordinates of the measurement points in the two windows W 1 and W 2 , and then in step 110,
The position coordinates of the virtual point P are obtained by calculating the intersection of these straight lines, and then, in step 111, the obtained coordinates of the virtual point P are compared with the coordinate data of the virtual point P in the known design, and The assembly accuracy is determined, and in the next step 112,
Next, the presence or absence of the assembled vehicle body is determined, and if there is the next vehicle body, the process returns to step 105 to repeat the procedure after the main measurement, and the process ends if there is no next vehicle body.

【0008】[0008]

【発明が解決しようとする課題】ところで、上記車体組
立精度計測を自動車車体の組立ライン内で、そこで組み
立てられた車体について行う場合には、上記ステップ10
5 の本計測以下の計測手順を所定タクト時間内で行う必
要がある。しかしながら、所定タクト時間内で上記各基
準部位についての形状計測を行い得るように上記走査用
ミラー3の角度変化を速くすると、CCDセンサ5の受
光量の変化速度が速すぎてフィードバック制御が追いつ
かず、車体パネル表面のL字形断面形状の角部の計測に
よってレーザー光2が全反射した際に、受光量が過多と
なってCCDセンサ5が飽和状態となってしまい、かか
る飽和状態で計測された計測点列の領域(飽和領域S)
では計測点の座標が図8に示す如く本来あるべき位置
(図中*印の点でしめす)よりもセンサ7(図では下方
の図外に位置する)から遠いものとして表されているた
め、本来最遠点となるべき点が最遠点とならずにその飽
和領域の一方または両方の端部付近の計測点が最遠点Q
となり、最遠点の位置がばらついてしまう。
In the case where the measurement of the vehicle body assembly accuracy is performed on the vehicle body assembled in an automobile body assembly line, the above-described step 10 is performed.
It is necessary to perform the measurement procedure below the main measurement of 5 within the specified tact time. However, if the angle change of the scanning mirror 3 is increased so that the shape of each of the reference portions can be measured within the predetermined tact time, the change speed of the light receiving amount of the CCD sensor 5 is too fast to keep up with the feedback control. When the laser beam 2 was totally reflected by measuring the corners of the L-shaped cross section of the body panel surface, the amount of received light was excessive and the CCD sensor 5 became saturated, and the measurement was performed in such a saturated state. Measurement point sequence area (saturation area S)
In FIG. 8, the coordinates of the measurement points are shown as being farther from the sensor 7 (located at the lower side in the figure and outside of the figure) than the original position (indicated by the points marked with * in the figure) as shown in FIG. The point that should be the farthest point is not the farthest point, and the measurement point near one or both ends of the saturation region is the farthest point Q
And the position of the farthest point varies.

【0009】これがため上記従来の方法でそのまま本計
測を行うと、仮計測で設定した二つのウインドウW1
よびW2 が当初想定した計測点列に対する位置から大き
くずれてしまい、例えば図8中左方のウインドウW1
如く、ウインドウがL字の一辺に対応する概略直線状の
部分の内の直線部分から外れてL字形断面形状の角部付
近の曲線部分を含んでしまう場合があり、それゆえ上記
従来の推定方法では、その点列に基づいて推定した仮想
点Pの位置が実際の位置からずれてしまい、仮想点位置
の推定精度ひいては組立誤差計測精度を充分高め得ない
という問題があった。
For this reason, if the main measurement is performed as it is in the above-described conventional method, the two windows W 1 and W 2 set in the provisional measurement are greatly displaced from the position with respect to the initially assumed measurement point sequence. Like the window W 1 , the window may deviate from the linear portion of the substantially linear portion corresponding to one side of the L-shape and include a curved portion near the corner of the L-shaped cross-sectional shape. Therefore, in the above-described conventional estimation method, the position of the virtual point P estimated based on the sequence of points is shifted from the actual position, and there is a problem that the estimation accuracy of the virtual point position and thus the assembly error measurement accuracy cannot be sufficiently improved. Was.

【0010】[0010]

【課題を解決するための手段】この発明は、上記従来の
灯台式センサでの計測による仮想点位置推定方法の課題
を有利に解決した方法を提供することを目的とするもの
であり、この発明の推定方法は、灯台式センサで、計測
光の方向を少しづつ変えることにより対象物の表面を断
続的に走査して、三角測量の原理によりその表面の断面
形状を計測して求めた計測点のL字状の点列から、二本
の直線を近似により定めて、それらの直線の交点を求め
ることにより仮想点の位置を推定するに際し、前記二本
の直線でそれぞれ近似する前記計測点の点列の部分を定
めるための二つのウインドウを、その計測点列の始点お
よび終点の少なくとも一方を通り、かつL字の各辺に対
応する直線状部分に対する角度が互いに実質的に等しく
なるような一本または二本の基準線に対し、前記計測点
列中のセンサ飽和領域内で最も近い最近基準点から所定
個数目の計測点を下端として、所定範囲で設定すること
を特徴とするものである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method which advantageously solves the problem of the above-mentioned conventional method of estimating a virtual point position by measurement with a lighthouse type sensor. The method of estimation is to use a lighthouse sensor to scan the surface of the object intermittently by gradually changing the direction of the measurement light, and measure the cross-sectional shape of the surface using the principle of triangulation to obtain the measurement points. From the L-shaped point sequence, two straight lines are determined by approximation, and the position of the virtual point is estimated by finding the intersection of those straight lines. The two windows for defining the portion of the point sequence are arranged so that they pass through at least one of the start point and the end point of the measurement point sequence and have substantially the same angle with respect to the linear portion corresponding to each side of the L-shape. Up to one Whereas two reference lines, as the lower end of the predetermined number-th measurement point from the closest recent reference point sensor saturation region in the measurement point sequence, it is characterized in that set in the predetermined range.

【0011】またこの発明の第2の推定方法は、灯台式
センサで、計測光の方向を少しづつ変えることにより対
象物の表面を断続的に走査して、三角測量の原理により
その表面の断面形状を計測して求めた計測点のL字状の
点列から、二本の直線を近似により定めて、それらの直
線の交点を求めることにより仮想点の位置を推定するに
際し、前記二本の直線でそれぞれ近似する前記計測点の
点列の部分を定めるための二つのウインドウを、その計
測点列の始点および終点の少なくとも一方を通り、かつ
L字の各辺に対応する直線状部分に対する角度が互いに
実質的に等しくなるような一本または二本の基準線に対
し、前記計測点列中で最も遠い最遠基準点から所定距離
その基準線に近ずいた、その基準線に平行な直線と前記
計測点列との交点を下端として、所定範囲で設定するこ
とを特徴とするものである。
According to a second estimation method of the present invention, a lighthouse-type sensor intermittently scans the surface of an object by changing the direction of measurement light little by little, and cross-sections the surface by the principle of triangulation. From the L-shaped point sequence of the measurement points obtained by measuring the shape, two straight lines are determined by approximation, and when estimating the position of the virtual point by obtaining the intersection of those straight lines, Two windows for defining a point sequence portion of the measurement points each approximated by a straight line are formed by passing through at least one of a start point and an end point of the measurement point sequence and forming an angle with respect to a linear portion corresponding to each side of the L-shape. Is one line or two reference lines that are substantially equal to each other, a straight line parallel to the reference line, which is closer to the reference line by a predetermined distance from the farthest reference point in the measurement point sequence. And the intersection of the measurement point sequence As the lower end, it is characterized in that set in the predetermined range.

【0012】[0012]

【作用】上記したこの発明の第1の仮想点位置推定方法
によれば、対象物表面の向きに起因する灯台式センサの
受光量の過多によって、灯台式センサで対象物の表面形
状を計測して求めた計測点の点列中に飽和領域が生じて
も、その飽和領域内で位置が安定している、基準線に対
する最近点を最近基準点とし、その最近基準点から所定
個数目の計測点を下端として二つのウインドウの位置を
定めるので、二つのウインドウでそれぞれL字状の計測
点列中の直線状部分を確実に捕捉し得て、仮想点位置の
推定精度を向上させることができる。
According to the first virtual point position estimating method of the present invention described above, the surface shape of the object is measured by the lighthouse sensor due to an excessive amount of light received by the lighthouse sensor due to the direction of the surface of the object. Even if a saturated region occurs in the point sequence of the measurement points obtained by the above, the nearest point to the reference line whose position is stable in the saturated region is set as the nearest reference point, and a predetermined number of measurements from the nearest reference point Since the positions of the two windows are determined with the point as the lower end, the linear portions in the L-shaped measurement point sequence can be reliably captured by the two windows, and the estimation accuracy of the virtual point position can be improved. .

【0013】また上記したこの発明の第2の仮想点位置
推定方法によれば、対象物表面の向きに起因する灯台式
センサの受光量の過多によって、灯台式センサで対象物
の表面形状を計測して求めた計測点の点列中に飽和領域
が生じても、その基準線に対する最遠点を最遠基準点と
し、その最遠基準点から所定距離基準線に近ずいた、基
準線に平行な直線と、計測点列との交点を下端として、
二つのウインドウの位置を定めるので、L字の各辺に対
応する直線状部分に対する角度が実質的に等しくなる基
準線に平行なその直線と計測点列との交点の位置は本来
の最遠点からほぼ等距離に位置することから、二つのウ
インドウでそれぞれL字状の計測点列中の直線状部分を
確実に捕捉し得て、仮想点位置の推定精度を向上させる
ことができる。
According to the second virtual point position estimating method of the present invention described above, the surface shape of the object is measured by the lighthouse sensor due to an excessive amount of light received by the lighthouse sensor due to the direction of the surface of the object. Even if a saturated region occurs in the point sequence of the measurement points obtained as described above, the furthest point with respect to the reference line is set as the furthest reference point, and the reference line which is closer to the predetermined distance reference line from the furthest reference point is With the intersection of the parallel straight line and the measurement point sequence as the lower end,
Since the positions of the two windows are determined, the position of the intersection between the straight line parallel to the reference line and the sequence of measurement points at which the angle to the linear portion corresponding to each side of the L-shape is substantially equal is the original farthest point , The linear portions in the L-shaped sequence of measurement points can be reliably captured by the two windows, and the estimation accuracy of the virtual point position can be improved.

【0014】[0014]

【実施例】以下に、この発明の実施例を図面に基づき詳
細に説明する。図1は、上記第1の発明の仮想点位置推
定方法を先に記した自動車車体の組立ライン内での組み
立てられた車体の組立精度の計測に適用した一実施例の
実施に用いる車体組立精度計測装置を例示する構成図で
あり、この実施例の方法では、概略従来の方法と同様、
あらかじめ車体の複数箇所について、それらの箇所の車
体パネルの概略L字状の二次元断面形状を持つ部分を基
準部位として設定し、それらの基準部位の各々につきL
字の各辺に対応する直線状部分をそれぞれ近似した二本
の直線の交点を仮想点として設定しておき、組立ライン
内では所定タクト時間内に、実際に組み立てられた車体
の車体パネル6の上記各基準部位について二箇所の直線
状部分のL字の角部側でない端部にそれぞれ設定した計
測の始点と終点との間の表面の二次元断面形状を灯台式
センサ7で計測し、その計測結果から各基準部位につき
得られた計測点の点列の直線状部分を二つのウインドウ
で切り取って、それら切り取った直線状部分から二本の
直線をそれぞれ近似により定め、それらの直線の交点を
演算で求めることにより仮想点Pの位置を推定し、それ
ら推定により求めた複数の仮想点の位置と設計上の車体
での上記仮想点の位置とを比較して位置誤差を求める、
という手順で車体組立精度計測を行う。
Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 shows a vehicle body assembly accuracy used in the embodiment of the present invention in which the virtual point position estimating method of the first invention is applied to the measurement of the assembly accuracy of the assembled vehicle body in the assembly line of the vehicle body described above. FIG. 2 is a configuration diagram illustrating a measuring device, and in the method of this embodiment, as in the case of the conventional method,
For a plurality of locations of the vehicle body, a portion having a roughly L-shaped two-dimensional cross-sectional shape of the vehicle body panel at those locations is set as a reference portion, and L is set for each of the reference portions.
The intersection of two straight lines approximating the linear portions corresponding to each side of the character is set as a virtual point, and the body panel 6 of the actually assembled body is set within a predetermined tact time in the assembly line. The lighthouse sensor 7 measures the two-dimensional cross-sectional shape of the surface between the start point and the end point of the measurement set at the ends of the two linear portions, which are not the corners, of the two linear portions for each of the reference portions. From the measurement results, cut out the linear part of the point sequence of the measurement points obtained for each reference part with two windows, determine two straight lines from these cut linear parts by approximation, and determine the intersection of those straight lines. The position of the virtual point P is estimated by calculation, and the position of the plurality of virtual points obtained by the estimation is compared with the position of the virtual point on the designed vehicle body to obtain a position error.
Car body assembly accuracy is measured in the following procedure.

【0015】しかして、かかる手順を行うためここにお
ける車体組立精度計測装置は、例えば図5に示すものと
同様に構成された灯台式センサ7と、例えば通常のマイ
クロコンピュータにて構成された制御部8と、例えば通
常のマイクロコンピュータにて構成されたセンサ出力信
号変換部9と、例えば読出し書込み可能メモリにて構成
された点列データ格納メモリ10と、例えば通常のマイク
ロコンピュータにて構成された処理部11と、例えば通常
の読出し専用メモリにて構成された設定値格納メモリ12
とを具え、ここで灯台式センサ7は、上記車体組立ライ
ンの車体組立ステーションの後工程に、実際に組み立て
られた車体の車体パネル6の上記各基準部位につき計測
可能なように複数設置され、制御部8は、灯台式センサ
7のスキャン用ミラーの振り角度や振り速度を制御する
とともに光源の発光強度を前記の如くフィードバック制
御し、センサ出力信号変換部9は、灯台式センサ7の出
力信号を計測点の点列の座標データに変換し、点列デー
タ格納メモリ10は、センサ出力信号変換部9が出力した
点列座標データを格納し、処理部11は、その点列データ
格納メモリ10内の点列座標データを読み出してそれに基
づき点列データの判断と仮想点位置の推定処理と車体組
立精度判定とを行う。
In order to perform such a procedure, the apparatus for measuring the accuracy of assembling the vehicle body in this case comprises, for example, a lighthouse type sensor 7 constructed in the same manner as that shown in FIG. 5 and a control unit comprising, for example, a normal microcomputer. 8, a sensor output signal converter 9 composed of, for example, a normal microcomputer, a point sequence data storage memory 10 composed of, for example, a readable and writable memory, and a process composed of, for example, a general microcomputer. Unit 11 and a set value storage memory 12 composed of, for example, a normal read-only memory
Here, a plurality of lighthouse sensors 7 are provided in a post-process of the vehicle body assembly station of the vehicle body assembly line so as to be able to measure each of the reference portions of the vehicle body panel 6 of the actually assembled vehicle body, The control unit 8 controls the swing angle and the swing speed of the scanning mirror of the lighthouse sensor 7 and feedback-controls the light emission intensity of the light source as described above. The sensor output signal conversion unit 9 outputs the output signal of the lighthouse sensor 7. Is converted into coordinate data of the point sequence of the measurement point, the point sequence data storage memory 10 stores the point sequence coordinate data output by the sensor output signal conversion unit 9, and the processing unit 11 stores the point sequence data storage memory 10 The point sequence coordinate data is read out, and the determination of the point sequence data, the estimation process of the virtual point position, and the determination of the vehicle body assembly accuracy are performed based on the data.

【0016】そして設定値格納メモリ12は、あらかじめ
設定された、各基準部位についての設計上の車体パネル
6上での各計測点PS (sは計測点の番号; s =1,2,3, .
. .n)の位置とそれら計測点に基づく仮想点位置の座
標および、それらの計測点の内の計測の始点Aすなわち
計測点P1 および終点BすなわちP2 の少なくとも一方
を通り、かつL字の各辺に対応する直線状部分に対する
角度が互いに実質的に等しくなるような一本または二本
の基準線Lに対し、その計測点列中で本来最遠点となる
点から、各直線状部分までの計測点の個数s1,s2 と、
直線近似の精度を充分高めるとともに直線状部分のみを
切り取るために各ウインドウ内に含ませるべき計測点の
個数s3,s4 とを格納しており、それらを所要に応じて
処理部11に提供する。
The set value storage memory 12 stores preset measurement points P S (s is the number of the measurement point; s = 1, 2, 3) on the designed vehicle body panel 6 for each reference portion. ,.
..n) and the coordinates of the virtual point positions based on the measurement points, and at least one of the measurement start point A, ie, the measurement point P 1 and the end point B, ie, P 2 , of these measurement points, and is L-shaped With respect to one or two reference lines L whose angles with respect to the linear portions corresponding to the respective sides are substantially equal to each other, each linear The number of measurement points s 1 and s 2 up to the part,
Stores the number of measurement points s 3 and s 4 to be included in each window in order to sufficiently increase the accuracy of the linear approximation and cut out only the linear part, and provides them to the processing unit 11 as necessary. I do.

【0017】上記の如く構成されたこの車体組立精度計
測装置は、図2のフローチャートに示す手順に従って、
以下の如くしてこの実施例に基づく仮想点位置の推定お
よびそれに基づく車体の組立精度計測を行う。すなわち
ここでは、先ずステップ121で、制御部8が各基準部位
に対応する灯台式センサ7に、レーザー光での走査によ
って、上記車体組立ラインの車体組立ステーションで実
際に組み立てられた一台目の車体の、対象物としての車
体パネルの上記各基準部位について、上記あらかじめ設
定した始点Aから終点Bまで組立精度計測のため断面形
状計測を行う本計測を行わせ、それによって灯台式セン
サ7が、通常は、各計測点について適宜設定された閾値
を一部のみで越えるような充分細い山形波形となるビデ
オ信号を逐次出力し、そのビデオ信号を、センサ出力信
号変換部9が、先ず上記閾値を用いて逐次二値化信号に
変換し、その二値化信号が1である画素の位置から断面
形状を表す各計測点PS の直交座標値を求めて、例えば
図3に示す如き点列の座標データに変換し、その点列デ
ータを点列データ格納メモリ10が、各計測点の座標値を
記述したテーブルとして一旦格納する。
The vehicle body assembling accuracy measuring apparatus having the above-described structure is constructed in accordance with the procedure shown in the flowchart of FIG.
Estimation of the virtual point position based on this embodiment and measurement of the assembly accuracy of the vehicle body based thereon are performed as follows. That is, here, first, in step 121, the control unit 8 scans the lighthouse type sensor 7 corresponding to each reference portion with the lighthouse type sensor 7 by scanning with a laser beam, and the first unit actually assembled at the vehicle body assembly station of the vehicle body assembly line. With respect to each of the reference portions of the vehicle body panel as the target object of the vehicle body, the main measurement for performing the cross-sectional shape measurement for the assembly accuracy measurement from the previously set start point A to the end point B is performed. Normally, a video signal having a sufficiently narrow chevron waveform that only partially exceeds a threshold appropriately set for each measurement point is sequentially output, and the sensor output signal converter 9 first converts the video signal into the threshold. converted to sequential binarized signal using shows the binarized signal is determined orthogonal coordinate values of each measuring point P S representing the sectional shape from a position of the pixel is 1, in FIG. 3, for example Converting the coordinate data of the feeder point sequence, the point sequence data point sequence data storage memory 10 temporarily stores a table describing the coordinates of each measuring point.

【0018】ところで、上記車体組立精度計測を自動車
車体の組立ライン内で、そこで組み立てられた車体につ
いて行う場合には、上記ステップ121 の本計測以下の計
測手順を所定タクト時間内で行う必要がある。しかしな
がら、所定タクト時間内で上記各基準部位についての形
状計測を行い得るように上記走査用ミラー3の角度変化
を速くすると、CCDセンサ5の受光量の変化速度が速
すぎてフィードバック制御が追いつかず、車体パネル表
面のL字形断面形状の角部の計測によってレーザー光2
が全反射した際に、受光量が過多となってCCDセンサ
5が飽和状態となり、かかる飽和状態ではビデオ信号が
幅広の山形波形となるためそのビデオ信号が閾値を越え
る位置がずれてしまい、その飽和状態で計測された計測
点列の領域(飽和領域S)では計測点の座標が図3に示
す如く本来あるべき位置(図中*印の点でしめす)より
もセンサ7(図では下方の図外に位置する)から遠い
(基準線Lに対しては近い)ものとして表される。
When the vehicle body assembly accuracy measurement is performed on the vehicle body assembled in the assembly line of the vehicle body, it is necessary to perform the measurement procedure following the main measurement in step 121 within a predetermined tact time. . However, if the angle change of the scanning mirror 3 is increased so that the shape of each of the reference portions can be measured within the predetermined tact time, the change speed of the light receiving amount of the CCD sensor 5 is too fast to keep up with the feedback control. The laser beam 2 by measuring the corners of the L-shaped cross section of the body panel surface.
When the light is totally reflected, the amount of received light becomes excessive and the CCD sensor 5 becomes saturated. In such a saturated state, the video signal has a wide mountain-shaped waveform, so that the position where the video signal exceeds the threshold value is shifted. In the area of the measurement point sequence measured in the saturated state (saturation area S), the coordinates of the measurement points are lower than the original position (indicated by the mark * in the figure) as shown in FIG. (Located outside the figure) and far (closer to the reference line L).

【0019】また、上記計測工程に配置された車体の各
基準部位に対する灯台式センサ7の位置は、基準部位の
全体に亘って確実にビデオ信号が得られるよう、設計上
の車体パネルのL字の角部の頂点と灯台式センサ7とを
結ぶ直線に対しL字の各辺に対応する部分が対称に位置
するように設定されているので、CCDセンサ5は常
に、L字形断面形状の角部に位置する、基準線Lに対し
本来最遠点となる点Qに対応する実際の計測点で最も飽
和することになる。このため、灯台式センサ7に余程の
位置ずれがないかぎり、その点Qに対応する実際の計測
点が基準線Lに対し最も近い点すなわち最近基準点とし
て求められることになり、従ってこの最近基準点の位置
は極めて安定している。
The position of the lighthouse type sensor 7 with respect to each reference portion of the vehicle body arranged in the measurement step is determined by an L-shaped design of the vehicle body panel so that a video signal can be reliably obtained over the entire reference portion. Is set so that the portion corresponding to each side of the L-shape is located symmetrically with respect to the straight line connecting the vertex of the corner portion and the lighthouse type sensor 7, so that the CCD sensor 5 always has the L-shaped cross-sectional shape. In this case, the saturation will be highest at the actual measurement point corresponding to the point Q which is originally the farthest point with respect to the reference line L. Therefore, as long as the lighthouse sensor 7 does not have a considerable displacement, the actual measurement point corresponding to the point Q is determined as the closest point to the reference line L, that is, the latest reference point. The position of the reference point is extremely stable.

【0020】かかる事実に鑑み、この実施例の方法で
は、先ず次のステップ122 で、上記本計測で求めたL字
状の計測点列の始点Aおよび終点Bの少なくとも一方を
通り、かつL字の各辺に対応する直線状部分に対する角
度が互いにほぼ等しくなるような一本または二本の基準
線L、例えば図3に示す如き直線状部分の長さが等しい
計測点PS (s=1,2,3, . . .n)の点列の場合は始点A
(P1 )と終点B(Pn )とを直線で結んだ一本の基準
線Lを設定する。なおこのとき、画面上で水平方向へ延
在するx軸と基準線Lとが平行になるように画面表示の
座標変換を行う。
In view of this fact, in the method of this embodiment, in the next step 122, at least one of the starting point A and the ending point B of the L-shaped measurement point sequence obtained by the main measurement is passed and the L-shaped one such angle relative linear portion are substantially equal to each other corresponding to the sides or two of the reference line L, such as the measurement point is equal to the length of the linear portion as shown in FIG. 3 P S (s = 1 , 2,3,... N)
One reference line L connecting (P 1 ) and the end point B (P n ) with a straight line is set. At this time, the coordinate conversion of the screen display is performed so that the x-axis extending in the horizontal direction on the screen and the reference line L are parallel.

【0021】次いでステップ123 で、上記本計測で求め
たL字状の計測点列のセンサ飽和領域内でその基準線L
から最も近い計測点である最近基準点、例えば図3中で
は点Tを求める。なお、この最近基準点は、その計測点
列中のセンサ飽和領域の両端付近に通常位置する二つの
極小点間の極大点に対応するので、その極大点を求める
ことにて容易かつ確実に求めることができる。しかる後
ステップ124 にて、その最近基準点Tから上記あらかじ
め設定した個数s1,s2 番目の計測点を下端とし、その
下端の計測点から上記あらかじめ設定した個数s3,s4
番目の計測点を上端として、例えば図3に示す如く二つ
のウインドウW1 およびW2 を開き、それらのウインド
ウ内に入った計測点列を切り取ってその点列を構成する
計測点の座標を読出す。
Next, in step 123, the reference line L is set within the sensor saturation region of the L-shaped measurement point sequence obtained by the main measurement.
The closest reference point which is the closest measurement point to the target, for example, a point T in FIG. It should be noted that this latest reference point corresponds to the maximum point between the two minimum points that are normally located near both ends of the sensor saturation region in the measurement point sequence, so that the maximum point is easily and reliably obtained. be able to. Thereafter, in step 124, the previously set numbers s 1 and s 2 are set to the lower end from the latest reference point T, and the previously set numbers s 3 and s 4 are set to the lower end of the measurement points.
Th the upper measurement point, for example, open two windows W 1 and W 2 as shown in FIG. 3, read the coordinates of the measurement points constituting the point sequence cut measurement point sequence comes within their windows put out.

【0022】次いでステップ125 で、上記二つのウイン
ドウW1,W2 内の計測点の座標から最小自乗法によって
それぞれ直線を近似的に求め、次いでステップ126 で、
それらの直線の交点を算出することによって仮想点Pの
位置座標を求め、その後、ステップ127 で、その求めた
仮想点Pの座標を既知の設計上の仮想点Pの座標データ
と比較して車体組立精度を求め、次のステップ128 で、
次に組み立てられた車体の有無を判断して、次の車体が
あればステップ121 へ戻って本計測以下の手順を繰り返
し、次の車体がなくなれば処理を終了する。
Next, at step 125, a straight line is approximately obtained by the least square method from the coordinates of the measurement points in the two windows W 1 and W 2 , and then at step 126
By calculating the intersection of these straight lines, the position coordinates of the virtual point P are obtained. Thereafter, in step 127, the obtained coordinates of the virtual point P are compared with the coordinate data of the virtual point P in the known design, and the vehicle body is determined. The assembly accuracy is determined, and in the next step 128,
Next, the presence or absence of the assembled vehicle body is determined, and if there is a next vehicle body, the process returns to step 121 to repeat the procedure after the main measurement, and the process ends if there is no next vehicle body.

【0023】上述の如くしてこの実施例の方法によれ
ば、所定タクト時間内で上記各基準部位についての形状
計測を行い得るように灯台式センサ7の走査用ミラーの
角度変化を速くした場合に、CCDセンサの受光量の変
化速度が速すぎてフィードバック制御が追いつかず、車
体パネル6の表面のL字形の角部でセンサ受光量が過多
の飽和領域が生じて、その飽和領域で計測点の位置が実
際よりもセンサから遠いものとして求められてしまう場
合でも、センサ飽和領域内で位置が安定している点であ
る最近基準点Tを求め、その最近基準点Tの位置を基準
として二つのウインドウW1,W2 を開くので、直線状部
分のみで、かつ充分な数の計測点を用いて直線近似を行
うことになるため、車体パネル6の表面の実際の断面形
状に対する計測点の点列が表す断面形状の誤差を減少さ
せることができ、ひいては仮想点Pの位置の推定精度を
向上させ得て、車体組立精度の計測精度を向上させるこ
とができる。
As described above, according to the method of this embodiment, the change in the angle of the scanning mirror of the lighthouse sensor 7 is accelerated so that the shape of each of the reference portions can be measured within a predetermined takt time. In addition, the speed of change of the amount of received light of the CCD sensor is too fast to keep up with the feedback control, and a saturated region where the amount of received light of the sensor is excessive at the L-shaped corner of the surface of the vehicle body panel 6 occurs. Even if the position is determined as being farther from the sensor than the actual position, the latest reference point T, which is a point whose position is stable in the sensor saturation region, is determined, and the position of the latest reference point T is used as a reference. One of so opening the window W 1, W 2, only the linear portion, and a sufficient number to become possible to perform linear approximation using the measurement point, the measurement points to the actual cross-sectional shape of the surface of the body panel 6 Column can be reduced the error of cross-section represented by obtained by thus improving the estimation accuracy of the position of the virtual point P, it is possible to improve the measurement accuracy of the vehicle body assembling accuracy.

【0024】図4は、上記第2の発明の仮想点位置推定
方法を先に記した自動車車体の組立ライン内での組み立
てられた車体の組立精度の計測に適用した一実施例にお
けるウインドウの設定方法を示すものであり、この方法
では、先に記した実施例と同様の車体組立精度計測装置
を用いて、車体組立精度計測を自動車車体の組立ライン
内で、そこで組み立てられた車体について行うが、特に
ウインドウW1,W2 の設定のために、設定値格納メモリ
12が、あらかじめ設定された、各基準部位についての設
計上の車体パネル6上での各計測点PS (sは計測点の番
号; s =1,2,3,. . . n)の位置と、計測点に基づく仮
想点位置の座標(図4ではPS1〜PS4の代わりに*印の
点を含む)との他に、それらの計測点の内の計測の始点
Aすなわち計測点P1 および終点BすなわちP2 の少な
くとも一方を通り、かつL字の各辺に対応する直線状部
分に対する角度が互いに実質的に等しくなるような一本
または二本の基準線Lに対し、その計測点列中で本来最
遠点となる点(図4では*印の点Q)から、両直線状部
分の下端を通る、基準線Lに平行な直線までの距離DG
と、二つのウインドウの対角線長さk1,k2 とを格納し
ており、それらを所要に応じて処理部11に提供する。こ
こで、上記距離DG は、基準部位のL字形の角部の半径
をr、L字の各辺に対応する直線状部分のなす角をθと
すると、次式
FIG. 4 shows a window setting in one embodiment in which the virtual point position estimating method according to the second aspect of the present invention is applied to the measurement of the assembly accuracy of the assembled vehicle body in the assembly line of the vehicle body described above. In this method, the vehicle body assembly accuracy measurement is performed on the vehicle body assembled in an automobile body assembly line by using the same vehicle body assembly accuracy measurement device as in the above-described embodiment. In particular, for setting the windows W 1 and W 2 , a set value storage memory
12 is a preset position of each measurement point P S (s is the number of the measurement point; s = 1, 2, 3,... N) on the designed vehicle body panel 6 for each reference portion. In addition to the coordinates of the virtual point position based on the measurement points (in FIG. 4, the points marked with * are included instead of P S1 to P S4 ), the start point A of measurement among those measurement points, ie, the measurement point P 1 and through at least one of the end point B i.e. P 2, and with respect to one or two reference lines L as the angle relative to the linear portion corresponding to each side of the L-shaped are substantially equal to each other, the measurement Distance D G from a point that is originally the farthest point in the sequence of points (point Q marked with * in FIG. 4) to a straight line that passes through the lower ends of both straight portions and is parallel to the reference line L
And the diagonal lengths k 1 and k 2 of the two windows, and provide them to the processing unit 11 as needed. Here, the distance D G is the radius of the corner portion of the reference part L-shaped r, when the angle of the linear portion corresponding to each side of the L-shaped and theta, the following equation

【数1】DG =r・(1−sin θ/2) により求めることができる。## EQU1 ## D G = r · (1−sin θ / 2)

【0025】しかしてここでは、先の実施例における図
2に示す手順と概略同様の手順で計測を実行することと
し、そのステップ121 で灯台式センサ7により各基準部
位の本計測を行い、次のステップ122 で、ステップ121
の本計測で求めたL字状の計測点列の始点Aおよび終点
Bの少なくとも一方を通り、かつL字の各辺に対応する
直線状部分に対する角度が互いにほぼ等しくなるような
一本または二本の基準線L、例えば図4に示す如き直線
状部分の長さが等しくない計測点PS (s=1,2,3, . . .
n)の点列の場合は、始点A(P1 )を通る直線と終点B
(Pn ) を通る直線との二本の基準線Lを設定する。な
おこのとき、画面上で水平方向へ延在するx軸と基準線
Lとが平行になるように画面表示の座標変換を行う。
Here, it is assumed that the measurement is performed in a procedure substantially similar to the procedure shown in FIG. 2 in the previous embodiment, and in step 121, the main measurement of each reference portion is performed by the lighthouse sensor 7, and Step 122 of Step 121
One or two lines passing through at least one of the start point A and the end point B of the L-shaped measurement point sequence obtained in the main measurement and having substantially the same angle with respect to a linear portion corresponding to each side of the L-shape. It is not equal to the length measurement point of the reference line L, such as the linear portion as shown in FIG. 4 of this P S (s = 1,2,3,. ..
In the case of the point sequence of n), a straight line passing through the start point A (P 1 ) and the end point B
Two reference lines L with a straight line passing through (P n ) are set. At this time, the coordinate conversion of the screen display is performed so that the x-axis extending in the horizontal direction on the screen and the reference line L are parallel.

【0026】次いでステップ123 において、先の実施例
の如く最近基準点Tを求める代わりに、上記本計測で求
めた計測点列(図4では*印の点の代わりに、飽和領域
S中の点PS1〜PS4を含む)中で上記基準線Lから最も
遠い点である最遠基準点Uを求めて、その最遠基準点U
から上記距離DG だけ基準線Lに近ずいた、その基準線
Lに平行な直線LG を設定し、その直線LG と本計測で
求めた計測点列との交点C1,C2 を求める。ここで、上
記直線LG は基準線Lに平行なため、その直線LG と計
測点列との交点の位置は本来の最遠点からほぼ等距離に
位置し、しかも上記最遠基準点Uと基準線Lとの距離
は、本来の最遠点と基準線Lとの距離より僅かに短いの
で、その最遠基準点Uから上記距離DG だけ基準線Lに
近ずいた直線LG と計測点列との交点である上記の点C
1,C2 は、両直線状部分の下端より各々僅かに直線状部
分内に入った位置に位置することになる。
Next, in step 123, instead of finding the latest reference point T as in the previous embodiment, a series of measurement points obtained by the above main measurement (in FIG. P S1 including to P S4) seeking farthest reference point U is the point farthest from the reference line L in its farthest reference point U
From was near cerebrospinal above distance D G only the reference line L, sets the straight L G parallel to the reference line L, and the intersection point C 1, C 2 of the measurement point sequence obtained in this measurement and the straight line L G Ask. Here, the straight line L G, because parallel to the reference line L, the position of intersection of the straight line L G and the measurement point sequence is located approximately equidistant from the original farthest point, yet the farthest reference point U the distance between the reference line L, because the original slightly shorter than the distance between the farthest point and the reference line L, and the straight line L G was near cerebrospinal its from the farthest reference point U by the distance D G reference line L The above point C which is the intersection with the measurement point sequence
1 and C 2 are located at positions slightly inside the linear portions from the lower ends of both linear portions.

【0027】次いでステップ124 で、上記交点C1,C2
をそれぞれ内方端とするとともに、それらの交点C1,C
2 から上記対角線長さk1,k2 だけ離間した計測点D1,
2 をそれぞれ外方端として、二つのウインドウW1,W
2 を開き、それらのウインドウ内に入った計測点列を切
り取ってその点列を構成する計測点の座標を読出す。そ
してその後は、先の実施例のステップ125 以降と同様に
して仮想点位置の推定および車体組立精度の計測を行
う。
Next, at step 124, the intersections C 1 and C 2
Are the inner ends, and their intersections C 1 , C
The measurement point D 1 , which is separated from 2 by the diagonal lengths k 1 and k 2
D 2 as outer end each, two windows W 1, W
2 is opened, the measurement point sequence included in those windows is cut out, and the coordinates of the measurement points forming the point sequence are read out. After that, the estimation of the virtual point position and the measurement of the vehicle body assembly accuracy are performed in the same manner as in step 125 and subsequent steps of the previous embodiment.

【0028】かかる方法によれば、所定タクト時間内で
上記各基準部位についての形状計測を行い得るように灯
台式センサ7の走査用ミラーの角度変化を速くした場合
に、CCDセンサの受光量の変化速度が速すぎてフィー
ドバック制御が追いつかず、車体パネル6の表面のL字
形の角部でセンサ受光量が過多の飽和領域が生じて、そ
の飽和領域で計測点の位置が実際よりもセンサから遠い
ものとして求められてしまう場合でも、基準線Lから最
も遠い点である最遠基準点Uを求め、その最遠基準点U
の位置を基準として、直線状部分の下端より僅かに基準
線Lに近い位置を下端として二つのウインドウW1,W2
を開くので、直線状部分のみで、かつ充分な数の計測点
を用いて直線近似を行うことになるため、車体パネル6
の表面の実際の断面形状に対する計測点の点列が表す断
面形状の誤差を減少させることができ、ひいては仮想点
Pの位置の推定精度を向上させ得て、車体組立精度の計
測精度を向上させることができる。
According to this method, when the angle change of the scanning mirror of the lighthouse sensor 7 is increased so that the shape of each of the reference portions can be measured within a predetermined tact time, the amount of light received by the CCD sensor is reduced. The change speed is too fast to keep up with the feedback control, and a saturated region where the amount of light received by the sensor is excessive at the L-shaped corner of the surface of the vehicle body panel 6, and the position of the measurement point in the saturated region is higher than that of the actual sensor. Even if it is determined that the reference point is far from the reference line L, the farthest reference point U that is the farthest point from the reference line L is determined.
, Two windows W 1 , W 2 with the lower end being a position slightly closer to the reference line L than the lower end of the linear portion.
, A straight line approximation is performed using only a straight portion and using a sufficient number of measurement points.
The error of the cross-sectional shape represented by the point sequence of the measurement points with respect to the actual cross-sectional shape of the surface of the surface can be reduced, and thus, the estimation accuracy of the position of the virtual point P can be improved, and the measurement accuracy of the body assembly accuracy can be improved. be able to.

【0029】さらにこの方法によれば、上記の如きCC
Dセンサの飽和状態が特に著しいため、例えば図4中P
S1〜PS4で示す如き飽和領域S中の計測点が欠落してし
まったような場合でも、求めることができた計測点列中
の最遠基準点Uを基準として二つのウインドウW1,W2
を開くことができるので、仮想点Pの位置の推定ひいて
は車体組立精度の計測を確実に行うことができる。
Further, according to this method, the above CC
Since the saturation state of the D sensor is particularly remarkable, for example, P in FIG.
Even when the measurement points in the saturation area S are missing as shown by S1 to P S4 , the two windows W 1 , W are determined based on the farthest reference point U in the obtained measurement point sequence. Two
Can be opened, the position of the virtual point P can be estimated, and the measurement of the vehicle body assembly accuracy can be reliably performed.

【0030】そしていずれの実施例の方法によっても、
上記各設定値を一旦設定値格納メモリ12に格納しておけ
ば、処理部11が自動的にウインドウの設定を行うので、
従来の方法のように、計測装置の操作者によってウイン
ドウの設定範囲が変わるため設定の習熟度の差から仮想
点位置の推定結果に差が出るというような不都合が生じ
ることがない。
Then, according to the method of any of the embodiments,
Once the above set values are once stored in the set value storage memory 12, the processing unit 11 automatically sets the window.
Unlike the conventional method, since the setting range of the window changes depending on the operator of the measuring device, there is no inconvenience such as a difference in the estimation result of the virtual point position due to a difference in the skill of setting.

【0031】なお、いずれの方法においても、灯台式セ
ンサ7による計測時に飽和領域が生じなかった場合に
は、従来方法と同様に最遠点Qを基準として二つのウイ
ンドウを開いて計測点列を切り取り、その切り取った点
列につき直線近似を行って仮想点Pの位置を推定しても
良い。また、ウインドウの設定範囲を定める上記計測点
個数s3,s4 や上記対角線長さk1,k2 に、装置の測定
精度やパネルの加工精度を考慮して一定の許容範囲を設
けても良い。
In any of the methods, if no saturation region occurs during the measurement by the lighthouse sensor 7, two windows are opened based on the farthest point Q as in the conventional method, and the measurement point sequence is formed. The position of the virtual point P may be estimated by performing a straight line approximation on the cut-out point sequence. In addition, a certain allowable range may be provided for the number of measurement points s 3 and s 4 and the diagonal lengths k 1 and k 2 that determine the setting range of the window in consideration of the measurement accuracy of the device and the processing accuracy of the panel. good.

【0032】以上、図示例に基づき説明したが、この発
明は上述の例に限定されるものでなく、例えば、一つの
マイクロコンピュータを上記実施例における制御部8と
処理部11とで共用するようにして良い。またこの発明の
方法は、車体組立ライン外での、車体組立精度計測や車
体パネル単体の形状精度計測に適用することもでき、さ
らに、車体パネル以外の対象物の計測にも適用すること
ができる。
Although the present invention has been described with reference to the illustrated examples, the present invention is not limited to the above examples. For example, one microcomputer may be shared by the control unit 8 and the processing unit 11 in the above embodiment. Good to In addition, the method of the present invention can be applied to measurement of body assembly accuracy and shape accuracy of a body panel alone outside a body assembly line, and can also be applied to measurement of an object other than a body panel. .

【0033】[0033]

【発明の効果】かくして上記第1の発明によれば、対象
物表面の向きに起因する灯台式センサの受光量の過多に
よって、灯台式センサで対象物の表面形状を計測して求
めた計測点の点列中に飽和領域が生じても、その飽和領
域内で位置が安定している、基準線に対する最近点を最
近基準点とし、その最近基準点から所定個数目の計測点
を下端として二つのウインドウの位置を定めるので、二
つのウインドウでL字状の計測点列中の直線状部分を確
実に捕捉し得て、仮想点位置の推定精度を向上させるこ
とができる。
As described above, according to the first aspect of the invention, the measuring point obtained by measuring the surface shape of the object with the lighthouse sensor due to the excessive amount of light received by the lighthouse sensor due to the direction of the surface of the object. Even if a saturated region occurs in the point sequence, the nearest point to the reference line whose position is stable within the saturated region is defined as the nearest reference point, and a predetermined number of measurement points from the nearest reference point is defined as the lower end. Since the positions of the two windows are determined, the linear portion in the L-shaped measurement point sequence can be reliably captured by the two windows, and the estimation accuracy of the virtual point position can be improved.

【0034】また上記第2の発明によれば、対象物表面
の向きに起因する灯台式センサの受光量の過多によっ
て、灯台式センサで対象物の表面形状を計測して求めた
計測点の点列中に飽和領域が生じても、基準線に対する
最遠点を最遠基準点とし、その最遠基準点から所定距離
基準線に近ずいた、基準線に平行な直線と、計測点列と
の交点を下端として、二つのウインドウの位置を定める
ので、二つのウインドウでL字状の計測点列中の直線状
部分を確実に捕捉し得て、仮想点位置の推定精度を向上
させることができる。
According to the second aspect of the present invention, the point of the measurement point obtained by measuring the surface shape of the object with the lighthouse sensor due to the excessive amount of light received by the lighthouse sensor due to the direction of the surface of the object. Even if a saturation region occurs in the row, the furthest point with respect to the reference line is set as the farthest reference point, and a straight line parallel to the reference line, which is closer to the reference line from the farthest reference point by a predetermined distance, and a measurement point sequence Since the position of the two windows is determined with the intersection point of as the lower end, the linear portion in the L-shaped measurement point sequence can be reliably captured by the two windows, and the estimation accuracy of the virtual point position can be improved. it can.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1の発明の仮想点位置推定方法を自動車車体
の組立ライン内での組み立てられた車体の組立精度の計
測にそれぞれ適用した一実施例および、第2の発明の仮
想点位置推定方法を自動車車体の組立ライン内での組み
立てられた車体の組立精度の計測に適用した一実施例に
用いる車体組立精度計測装置を例示する構成図である。
FIG. 1 shows an embodiment in which a virtual point position estimating method according to the first invention is applied to measurement of assembly accuracy of an assembled vehicle body in an assembly line of an automobile body, and a virtual point position estimation method according to a second invention. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a configuration diagram illustrating a body assembly accuracy measuring device used in an embodiment in which the method is applied to measurement of assembly accuracy of an assembled body in an assembly line of an automobile body.

【図2】上記車体組立精度計測装置が上記第1の発明の
実施例の方法に基づき仮想点位置推定および車体組立精
度計測を実行する際の処理手順を示すフローチャートで
ある。
FIG. 2 is a flowchart showing a processing procedure when the vehicle body assembly accuracy measuring device executes a virtual point position estimation and a vehicle body assembly accuracy measurement based on the method of the embodiment of the first invention.

【図3】上記車体組立精度計測装置が車体パネルの基準
部位の計測を行って得た計測点列の状態および該装置が
上記第1の発明の実施例の方法に基づきその計測点列か
ら仮想点の位置を推定する方法をそれぞれ示す説明図で
ある。
FIG. 3 is a diagram showing a state of a measurement point sequence obtained by measuring the reference portion of the vehicle body panel by the vehicle body assembly accuracy measuring device, and the device is imagined from the measurement point sequence based on the method of the first embodiment of the present invention. It is explanatory drawing which shows the method of estimating the position of a point, respectively.

【図4】上記車体組立精度計測装置が車体パネルの基準
部位の計測を行って得た計測点列の状態および該装置が
上記第2の発明の実施例の方法に基づきその計測点列か
ら仮想点の位置を推定する方法をそれぞれ示す説明図で
ある。
FIG. 4 is a view showing a state of a measurement point sequence obtained by measuring the reference portion of the vehicle body panel by the vehicle body assembly accuracy measuring device, and the device is imagined from the measurement point sequence based on the method of the second embodiment of the present invention; It is explanatory drawing which shows the method of estimating the position of a point, respectively.

【図5】従来例および上記両実施例の方法で用いる灯台
式センサーの構成を示す説明図である。
FIG. 5 is an explanatory view showing a configuration of a lighthouse type sensor used in the method of the conventional example and the above-mentioned both examples.

【図6】灯台式センサでの計測結果に基づき仮想点位置
推定および車体組立精度計測を実行する際の従来の方法
による処理手順を示すフローチャートである。
FIG. 6 is a flowchart showing a processing procedure according to a conventional method when estimating a virtual point position and measuring vehicle body assembly accuracy based on a measurement result of a lighthouse type sensor.

【図7】灯台式センサーが車体パネルの基準部位の計測
を行って得た計測点列の本来の状態およびその計測点列
から上記従来の方法に基づき仮想点の位置を推定する方
法をそれぞれ示す説明図である。
FIG. 7 shows an original state of a measurement point sequence obtained by measuring a reference portion of a vehicle body panel by a lighthouse type sensor, and a method of estimating a position of a virtual point based on the conventional method from the measurement point sequence. FIG.

【図8】灯台式センサーが車体パネルの基準部位の計測
を行って得た計測点列の、センサ飽和領域での不具合時
の状態およびその計測点列から上記従来の方法に基づき
仮想点の位置を推定する方法をそれぞれ示す説明図であ
る。
FIG. 8 shows a position of a virtual point based on the state of a failure in a sensor saturation region of a measurement point sequence obtained by measuring a reference portion of a vehicle body panel by a lighthouse type sensor and the measurement point sequence based on the conventional method. It is explanatory drawing which shows the method of estimating respectively.

【符号の説明】[Explanation of symbols]

6 車体パネル 7 灯台式センサ 8 制御部 9 センサ出力信号変換部 10 点列データ格納メモリ 11 処理部 12 設定値格納メモリ L 基準線 La 直線 Pa 計測点 P1 始点 Pn 終点 P 仮想点 Q 最遠点 S 飽和領域 T 最近基準点 U 最遠基準点 W1,W2 ウインドウ6 body panel 7 Lighthouse formula point sensor 8 control unit 9 sensor output signal converter 10 column data storage memory 11 processor 12 setting value storage memory L reference line L a straight line P a measurement point P 1 starting P n end points P virtual point Q the farthest point S the saturation region T recent reference point U farthest reference point W 1, W 2 windows

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) G01B 11/00 - 11/30 G06T 7/60──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 6 , DB name) G01B 11/00-11/30 G06T 7/60

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 灯台式センサで、計測光の方向を少しづ
つ変えることにより対象物の表面を断続的に走査して、
三角測量の原理によりその表面の断面形状を計測して求
めた計測点のL字状の点列から、二本の直線を近似によ
り定めて、それらの直線の交点を求めることにより仮想
点の位置を推定するに際し、 前記二本の直線でそれぞれ近似する前記計測点の点列の
部分を定めるための二つのウインドウを、その計測点列
の始点および終点の少なくとも一方を通り、かつL字の
各辺に対応する直線状部分に対する角度が互いに実質的
に等しくなるような一本または二本の基準線に対し、前
記計測点列中のセンサ飽和領域内で最も近い最近基準点
から所定個数目の計測点を下端として、所定範囲で設定
することを特徴とする、灯台式センサでの計測による仮
想点位置推定方法。
1. A lighthouse-type sensor intermittently scans the surface of an object by gradually changing the direction of measurement light,
From the L-shaped point sequence of the measurement points obtained by measuring the cross-sectional shape of the surface according to the principle of triangulation, two straight lines are determined by approximation, and the intersection of those straight lines is obtained to obtain the position of the virtual point. When estimating, two windows for defining a point sequence portion of the measurement points that are respectively approximated by the two straight lines pass through at least one of a start point and an end point of the measurement point sequence, and each of the L-shaped With respect to one or two reference lines whose angles with respect to the linear portions corresponding to the sides are substantially equal to each other, a predetermined number of the closest reference points in the sensor saturation region in the measurement point sequence from the closest reference point A method for estimating a virtual point position by measurement with a lighthouse sensor, wherein the measurement point is set in a predetermined range with a lower end as a measurement point.
【請求項2】 灯台式センサで、計測光の方向を少しづ
つ変えることにより対象物の表面を断続的に走査して、
三角測量の原理によりその表面の断面形状を計測して求
めた計測点のL字状の点列から、二本の直線を近似によ
り定めて、それらの直線の交点を求めることにより仮想
点の位置を推定するに際し、 前記二本の直線でそれぞれ近似する前記計測点の点列の
部分を定めるための二つのウインドウを、その計測点列
の始点および終点の少なくとも一方を通り、かつL字の
各辺に対応する直線状部分に対する角度が互いに実質的
に等しくなるような一本または二本の基準線に対し、前
記計測点列中で最も遠い最遠基準点から所定距離その基
準線に近ずいた、その基準線に平行な直線と前記計測点
列との交点を下端として、所定範囲で設定することを特
徴とする、灯台式センサでの計測による仮想点位置推定
方法。
2. A lighthouse type sensor intermittently scans the surface of an object by gradually changing the direction of measurement light,
From the L-shaped point sequence of the measurement points obtained by measuring the cross-sectional shape of the surface according to the principle of triangulation, two straight lines are determined by approximation, and the intersection of those straight lines is obtained to obtain the position of the virtual point. When estimating, two windows for defining a point sequence portion of the measurement points that are respectively approximated by the two straight lines pass through at least one of a start point and an end point of the measurement point sequence, and each of the L-shaped With respect to one or two reference lines whose angles with respect to the linear portions corresponding to the sides are substantially equal to each other, a predetermined distance from the farthest reference point in the measurement point sequence is not close to the reference line. A method for estimating a virtual point position by measurement with a lighthouse sensor, wherein a predetermined point is set with an intersection of a straight line parallel to the reference line and the sequence of measurement points as a lower end.
JP77592A 1992-01-07 1992-01-07 Estimation method of virtual point position by measurement with lighthouse sensor Expired - Fee Related JP2783031B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP77592A JP2783031B2 (en) 1992-01-07 1992-01-07 Estimation method of virtual point position by measurement with lighthouse sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP77592A JP2783031B2 (en) 1992-01-07 1992-01-07 Estimation method of virtual point position by measurement with lighthouse sensor

Publications (2)

Publication Number Publication Date
JPH05180633A JPH05180633A (en) 1993-07-23
JP2783031B2 true JP2783031B2 (en) 1998-08-06

Family

ID=11483077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP77592A Expired - Fee Related JP2783031B2 (en) 1992-01-07 1992-01-07 Estimation method of virtual point position by measurement with lighthouse sensor

Country Status (1)

Country Link
JP (1) JP2783031B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6324489B1 (en) * 1999-10-29 2001-11-27 Safegate International Ab Aircraft identification and docking guidance systems
JP4925961B2 (en) * 2007-07-31 2012-05-09 株式会社日立ハイテクノロジーズ Pattern measuring device
JP2013117451A (en) * 2011-12-02 2013-06-13 Emu Kobo:Kk Position attitude estimation mark and position attitude estimation device using the same

Also Published As

Publication number Publication date
JPH05180633A (en) 1993-07-23

Similar Documents

Publication Publication Date Title
US7202957B2 (en) Three-dimensional visual sensor
US5104227A (en) Apparatus for measuring three-dimensional curved surface shapes
JP4810763B2 (en) Distance measuring device
JP2958456B1 (en) Traveling vehicle distance measurement device
JP2006038843A (en) Method for calibrating distance image sensor
JP2006151125A (en) On-vehicle image processing device
JP2783031B2 (en) Estimation method of virtual point position by measurement with lighthouse sensor
JP2823450B2 (en) Circuit pattern dimension measurement method
JP2002189518A (en) Position measurement system for automated guided vehicle
JP2808959B2 (en) Estimation method of virtual point position by measurement with lighthouse sensor
JP3228436B2 (en) How to increase the number of interference fringes
JPH07111346B2 (en) Method for detecting displacement of construct and target plate used therefor
JPH06210580A (en) Workpiece gripping compensating device
JPH09257414A (en) Object position detector
JP3049375B2 (en) Component positioning method and device
JP3013254B2 (en) Shape measurement method
JPH07120238A (en) Measurement by three-dimensional measuring device
JPH10105719A (en) Optical measurement method for hole position
JPH11190611A (en) Three-dimensional measuring method and three-dimensional measuring processor using this method
JPH0778425B2 (en) Three-dimensional data interpolation method
JPH07248220A (en) Self-analyzing method of article-detecting apparatus
JPH06246592A (en) Attaching accuracy measuring method
JP3013255B2 (en) Shape measurement method
JPH0622720B2 (en) Automatic coating device using teaching robot
JP2827639B2 (en) Bar discrimination method in image processing

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees