JPH0778425B2 - Three-dimensional data interpolation method - Google Patents

Three-dimensional data interpolation method

Info

Publication number
JPH0778425B2
JPH0778425B2 JP1563988A JP1563988A JPH0778425B2 JP H0778425 B2 JPH0778425 B2 JP H0778425B2 JP 1563988 A JP1563988 A JP 1563988A JP 1563988 A JP1563988 A JP 1563988A JP H0778425 B2 JPH0778425 B2 JP H0778425B2
Authority
JP
Japan
Prior art keywords
point cloud
cloud data
point
data
interpolation method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1563988A
Other languages
Japanese (ja)
Other versions
JPH01191011A (en
Inventor
拓博 田中
克也 田中
Original Assignee
オ−クマ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オ−クマ株式会社 filed Critical オ−クマ株式会社
Priority to JP1563988A priority Critical patent/JPH0778425B2/en
Publication of JPH01191011A publication Critical patent/JPH01191011A/en
Publication of JPH0778425B2 publication Critical patent/JPH0778425B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Numerical Control (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、3次元位置測定機等により得られる3次元空
間の点群データにおける3次元データ補間方法に関す
る。
Description: TECHNICAL FIELD The present invention relates to a three-dimensional data interpolation method for point cloud data in a three-dimensional space obtained by a three-dimensional position measuring machine or the like.

(従来の技術) 3次元位置測定機等の測定子を、その1軸を固定した状
態でモデル表面に接触させ、所定間隔で複数回走査させ
ることで、モデル形状の点群データを得ることができ
る。例えば第5図に示すようにX軸を固定,走査(測
定)方向をY軸方向とし、測定間隔aで測定子を7回走
査して所定の補間を行なうことで、図示黒丸の点群デー
タを得ることができる。この点群データは各点が測定方
向に関しては微細な直線区間の連続として結合されてい
る(図示S1,S2,…,S7)のに対し、測定方向と直交する
方向に関しては何ら結合情報が与えられていない。この
ため、測定方向と直交する方向の傾きが小さいとき(図
示θ1245)は十分な形状精度を得ること
ができるが、この傾きが大きいとき(図示θ)は相対
的に点群データ密度が低下してしまい(図示S3とS4との
間)、形状精度を悪化させるという問題がある。そこ
で、点群データ密度が低下した部分の形状精度を高める
ため、例えば第6図に示すように測定間隔をbに狭めて
点群データを得る方法が採られて来た。
(Prior Art) A contact point of a model shape can be obtained by bringing a probe such as a three-dimensional position measuring machine into contact with the model surface with one axis fixed and scanning the model surface a plurality of times at predetermined intervals. it can. For example, as shown in FIG. 5, the X-axis is fixed, the scanning (measuring) direction is the Y-axis direction, the probe is scanned 7 times at the measurement interval a, and predetermined interpolation is performed to obtain the point cloud data of the black circles in the figure. Can be obtained. In this point cloud data, each point is connected as a series of fine straight line sections in the measurement direction (S 1 , S 2 , ..., S 7 in the figure), whereas there is no connection in the direction orthogonal to the measurement direction. No information given. Therefore, when the inclination in the direction orthogonal to the measurement direction is small (θ 1 , θ 2 , θ 4 , θ 5 , θ 6 in the drawing), sufficient shape accuracy can be obtained, but when the inclination is large (in the illustration, θ 3 ) has a problem that the point cloud data density is relatively lowered (between S 3 and S 4 in the figure), and the shape accuracy is deteriorated. Therefore, in order to improve the shape accuracy of the portion where the point cloud data density is reduced, a method has been adopted in which the measurement interval is narrowed to b to obtain the point cloud data, as shown in FIG. 6, for example.

(発明が解決しようとする課題) 上述した方法では、点群データ密度が低下した部分につ
いては十分な効果があるが、それ以外の部分については
いたずらに点群データ量が増加してしまうという欠点が
あった。また、測定距離が増大するため測定時間が掛か
り過ぎるという問題もあった。
(Problem to be Solved by the Invention) In the above-described method, there is a sufficient effect in a portion where the point cloud data density is reduced, but there is a disadvantage that the amount of point cloud data is unnecessarily increased in other portions. was there. In addition, there is also a problem that the measurement time is too long because the measurement distance is increased.

本発明は上述のような事情から成されたものであり、本
発明の目的は、種々のモデル形状に対して十分な形状精
度を表わす点群データを迅速に得ることができる3次元
データ補間方法を提供することにある。
The present invention has been made under the circumstances as described above, and an object of the present invention is to provide a three-dimensional data interpolation method capable of rapidly obtaining point group data representing sufficient shape accuracy for various model shapes. To provide.

(課題を解決するための手段) 本発明は、3次元位置測定機等により得られる3次元空
間の点群データにおける3次元データ補間方法に関する
ものであり、本発明の上記目的は、測定子をモデル表面
にて所定間隔で複数回走査させることにより得られる3
次元空間の点群データを入力し、隣合った1走査分の前
記点群データの一方の点群データの各点から他方の点群
データの各点を結ぶ線上の点との結合線をそれぞれ求
め、求めた各結合線上に仮想的な補間点群データを作成
するようにすることによって達成される。
(Means for Solving the Problem) The present invention relates to a three-dimensional data interpolation method for point group data in a three-dimensional space obtained by a three-dimensional position measuring machine or the like. 3 obtained by scanning the model surface multiple times at a predetermined interval
The point cloud data of the dimensional space is input, and connecting lines with points on the line connecting each point of one point cloud data of one point scan data of one adjacent scan to each point of the other point cloud data, respectively. This is achieved by obtaining and creating virtual interpolation point group data on each obtained connecting line.

(作用) 本発明の3次元データ補間方法は、測定間隔内に仮想的
な点群データを作成しているので、測定方向と直交する
方向に傾きの大きい部分があっても、その部分の点群デ
ータ密度の低下を防ぐと共に、測定を短時間で行なうこ
とができるものである。
(Operation) Since the three-dimensional data interpolation method of the present invention creates virtual point group data within the measurement interval, even if there is a portion having a large inclination in the direction orthogonal to the measurement direction, the point of that portion It is possible to prevent a decrease in the group data density and perform the measurement in a short time.

(実施例) 第1図は、本発明の3次元データ補間方法を実現する装
置の一例を示すブロック図であり、操作盤1からの指令
により3次元位置測定機等で測定された点群データを入
力し、1走査分の点群データSi(i=1,2,…)を点群デ
ータメモリ3に順次格納し、また、隣合った1走査分の
点群データSi-1,Siの一方の点群データの各点から他方
の点群データの順次隣り合う2点間を結ぶ直線群までの
距離が最短となるその直線群上の点を求め、これら最短
距離となる点同士を結んだ各結合線Cik(k=1,2,…)
で成る結合情報CTm(m=1,2,…)を求めて結合情報メ
モリ4に順次格納し、求めた結合線Cik上に仮想的な補
間点群データDPijk」(j=1,2,……;k=1,2,……)を
作成して補間点群データメモリ5に順次格納し、さら
に、作成した補間点群データDPijkを基に数値制御デー
タを作成して出力する処理装置2で構成されている。
(Embodiment) FIG. 1 is a block diagram showing an example of an apparatus that realizes the three-dimensional data interpolation method of the present invention. Point cloud data measured by a three-dimensional position measuring machine or the like according to a command from the operation panel 1. Is input to sequentially store the point cloud data S i (i = 1, 2, ...) For one scan in the point cloud data memory 3, and the point cloud data S i-1 , for adjacent one scan are stored. The point on the straight line group having the shortest distance from each point of the one point cloud data of S i to the straight line group connecting two adjacent points of the other point cloud data is obtained, and the point having the shortest distance is obtained. Each bond line C ik (k = 1,2, ...)
The connection information CT m (m = 1, 2, ...) Composed of is obtained and sequentially stored in the connection information memory 4, and virtual interpolation point group data DP ijk ”(j = 1, on the obtained connection line C ik . 2, ...; k = 1,2, ...) is created and sequentially stored in the interpolation point cloud data memory 5, and numerical control data is created and output based on the created interpolation point cloud data DP ijk. It is configured by the processing device 2.

このような構成において、その動作を第2図のフローチ
ャート及び第3図の点群データの一例で説明すると、操
作盤1からの指令により処理装置2で、3次元位置測定
機等で測定された点群データから1走査分の点群データ
を読込んで点群データメモリ3に格納しステップS1)、
その点群データが1本目であるか否かを確認し(ステッ
プS2)、その点群データが1本目である場合にはステッ
プS1にリターンして上述した動作を繰返す。一方、前記
判断ステップS2において、読込んだ点群データが1本目
でない場合には、前回読込んだ点群データSi-1及び今回
読込んだ点群データSiの一方の点群データ、例えばSi-1
(Si)上の点Q3(P3)から他方の点群データSi(Si-1
までの距離が最短となる他方の点群データSi(Si-1)上
の点P3′(Q3′)を求めて結合線Ci3(Ci4)を求める動
作をすべての点について行ない、求めた各結合線Cik
成る結合情報CTmを結合情報メモリ4に順次格納する
(ステップS3)。なお、形状の角部であると明らかに認
識される点(例えばP2及びQ2),点群データの開始点
(例えばP1及びQ1),終了点(例えばP4及びQ4)におけ
る結合線は最短距離を求めずに各点同士を結合させたも
のCi1,Ci2,Ci5とする。そして、求めた結合線Cik上に仮
想的な補間点群データDPijkを作成して補間点群データ
メモリ5に順次格納する(ステップS4)。そして、全点
群データが終了したか否かを確認し(ステップS5)、全
点群データが終了していない場合にはステップS1にリタ
ーンして上述した動作を繰返し、全点群データが終了し
た場合には、作成した補間点群データDPijkを基に数値
制御データを生成して出力し、全ての処理を終了する。
In such a configuration, its operation will be described with reference to the flowchart of FIG. 2 and the example of the point cloud data of FIG. 3. The operation device 1 measures the operation device 2 with a three-dimensional position measuring machine or the like in accordance with a command. The point cloud data for one scan is read from the point cloud data and stored in the point cloud data memory 3 (step S1),
It is confirmed whether or not the point cloud data is the first line (step S2). If the point cloud data is the first line, the process returns to step S1 and the above-described operation is repeated. On the other hand, in the decision step S2, if the data point group I read is not the first run, the front Kaidoku elaborate point cloud data S i-1 and now Kaidoku elaborate point cloud data S i of one of the point group data, For example S i-1
From point Q 3 (P 3 ) on (S i ) to the other point cloud data S i (S i-1 )
For all points, the operation of finding the connecting line C i3 (C i4 ) by finding the point P 3 ′ (Q 3 ′) on the other point cloud data S i (S i-1 ) with the shortest distance to The connection information CT m composed of the obtained connection lines C ik is sequentially stored in the connection information memory 4 (step S3). It should be noted that at points that are clearly recognized as corners of the shape (for example, P 2 and Q 2 ), at start points (for example, P 1 and Q 1 ) and end points (for example, P 4 and Q 4 ) of the point cloud data. The connecting lines are C i1 , C i2 , and C i5 in which the points are connected without obtaining the shortest distance. Then, virtual interpolation point group data DP ijk is created on the obtained connecting line C ik and sequentially stored in the interpolation point group data memory 5 (step S4). Then, it is confirmed whether or not all the point cloud data is finished (step S5). If all the point cloud data is not finished, the procedure returns to step S1 and the above-mentioned operation is repeated, and the all point cloud data is finished. In this case, the numerical control data is generated and output based on the created interpolation point group data DP ijk , and all the processes are ended.

第4図は、第5図に示した点群データに本発明方法を適
用した場合を示す点群データであり、黒丸と黒丸とを結
ぶ破線及び黒丸と×印とを結ぶ破線が結合線を示し、各
結合線上の白丸が新たに補間された点群データを示す。
このように同一の測定による点群データであるにも拘ら
ず、形状精度の高い点群データを得ることができる。
FIG. 4 is point cloud data showing the case where the method of the present invention is applied to the point cloud data shown in FIG. 5, and the broken line connecting the black circles and the black circles and the broken line connecting the black circles and the X marks are the connecting lines. The white circles on each connecting line indicate the newly interpolated point group data.
As described above, it is possible to obtain the point cloud data with high shape accuracy, although the point cloud data is obtained by the same measurement.

(発明の効果) 以上のように本発明の3次元データ補間方法によれば、
種々のモデル形状に対して形状精度の高い点群データを
迅速に得ることができるので、生産性の向上を図り、加
工精度の高い製品を低コストで供給することができるよ
うになる。
As described above, according to the three-dimensional data interpolation method of the present invention,
Since it is possible to quickly obtain point cloud data with high shape accuracy for various model shapes, it is possible to improve productivity and supply products with high processing accuracy at low cost.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明の3次元データ補間方法を実現する装
置の一例を示すブロック図、第2図はその動作を説明す
るフローチャート、第3図は本発明の補間方法を説明す
る点群データの一例を示す斜視図、第4図は本発明の補
間方法が適用された点群データの一例を示す斜視図、第
5図及び第6図は従来の補間方法による点群データの一
例を示す斜視図である。 1……操作盤、2……処理装置、3……点群データメモ
リ、4……結合情報メモリ、5……補間点群データメモ
リ。
FIG. 1 is a block diagram showing an example of an apparatus for realizing the three-dimensional data interpolation method of the present invention, FIG. 2 is a flow chart for explaining its operation, and FIG. 3 is point cloud data for explaining the interpolation method of the present invention. FIG. 4 is a perspective view showing an example of point cloud data to which the interpolation method of the present invention is applied, and FIGS. 5 and 6 show an example of point cloud data by the conventional interpolation method. It is a perspective view. 1 ... Operation panel, 2 ... Processing device, 3 ... Point cloud data memory, 4 ... Combined information memory, 5 ... Interpolation point cloud data memory.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】測定子をモデル表面にて所定間隔で複数回
走査させることにより得られる3次元空間の点群データ
を入力し、隣合った1走査分の前記点群データの一方の
点群データの各点から他方の点群データの各点を結ぶ線
上の点との結合線をそれぞれ求め、求めた各結合線上に
仮想的な補間点群データを作成するようにしたことを特
徴とする3次元データ補間方法。
1. Point cloud data of a three-dimensional space obtained by scanning a probe on a model surface a plurality of times at predetermined intervals, and inputting one point cloud of the point cloud data for one adjacent scan. It is characterized in that a connection line with each point of the data and a point on the line connecting each point of the other point cloud data is obtained, and virtual interpolation point cloud data is created on each obtained connection line. Three-dimensional data interpolation method.
JP1563988A 1988-01-26 1988-01-26 Three-dimensional data interpolation method Expired - Lifetime JPH0778425B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1563988A JPH0778425B2 (en) 1988-01-26 1988-01-26 Three-dimensional data interpolation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1563988A JPH0778425B2 (en) 1988-01-26 1988-01-26 Three-dimensional data interpolation method

Publications (2)

Publication Number Publication Date
JPH01191011A JPH01191011A (en) 1989-08-01
JPH0778425B2 true JPH0778425B2 (en) 1995-08-23

Family

ID=11894289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1563988A Expired - Lifetime JPH0778425B2 (en) 1988-01-26 1988-01-26 Three-dimensional data interpolation method

Country Status (1)

Country Link
JP (1) JPH0778425B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2698977B2 (en) * 1988-02-05 1998-01-19 ファナック株式会社 Program creation method and program data input device
JPH03276205A (en) * 1990-03-26 1991-12-06 Okuma Mach Works Ltd Digitized data processor
JP5970868B2 (en) * 2012-03-05 2016-08-17 株式会社豊田中央研究所 Dummy measuring device
WO2022024177A1 (en) * 2020-07-27 2022-02-03 日本電信電話株式会社 Position measurement method and position measurement device

Also Published As

Publication number Publication date
JPH01191011A (en) 1989-08-01

Similar Documents

Publication Publication Date Title
EP0391532B1 (en) Apparatus for measuring three-dimensional curved surface shapes
US5388318A (en) Method for defining a template for assembling a structure
JPH0778425B2 (en) Three-dimensional data interpolation method
EP0459106A1 (en) Coordinate system correcting apparatus for machine tool
JPH02125375A (en) Position detecting device
JPH0545347A (en) Automatic ultrasonic flaw detecting method
JPH0312511A (en) Teaching method for shape measurement procedure
JPH0682287B2 (en) Robot scanning control method
JP2539043B2 (en) Display method of shape measurement result
JP2971596B2 (en) Free-form surface measurement method
JPH0619992A (en) Cad system
JPH1145107A (en) Measuring method for calculating virtual pin corner position at curved surface corner part
JP2971622B2 (en) Free-form surface measurement method
JPH0312512A (en) Teaching method for shape measuring procedure
JP2786348B2 (en) Digitizing control device
JPH01191012A (en) Three-dimensional data correcting method
JP3727148B2 (en) Skinning curved surface generation method and apparatus, and recording medium recording a program for generating the curved surface
JP2601835B2 (en) How to check software potential lines
JPH10311710A (en) Dimension-measuring method
JPH07200875A (en) Display position changing method for three-dimensional model
JP3057178B2 (en) Conversion method of CAD data in 3D model
JPH11201746A (en) Shape data generating device for profile inspection block
JPH03115805A (en) Ct-type measuring device
JPH0426690B2 (en)
JPH09223249A (en) Method for editing three-dimensional shape model