JP2782867B2 - Manufacturing method of laminated battery - Google Patents

Manufacturing method of laminated battery

Info

Publication number
JP2782867B2
JP2782867B2 JP1320814A JP32081489A JP2782867B2 JP 2782867 B2 JP2782867 B2 JP 2782867B2 JP 1320814 A JP1320814 A JP 1320814A JP 32081489 A JP32081489 A JP 32081489A JP 2782867 B2 JP2782867 B2 JP 2782867B2
Authority
JP
Japan
Prior art keywords
frame
plate
electrode
separator
welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1320814A
Other languages
Japanese (ja)
Other versions
JPH03182065A (en
Inventor
保雄 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP1320814A priority Critical patent/JP2782867B2/en
Publication of JPH03182065A publication Critical patent/JPH03182065A/en
Application granted granted Critical
Publication of JP2782867B2 publication Critical patent/JP2782867B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Hybrid Cells (AREA)

Description

【発明の詳細な説明】 A.産業上の利用分野 この発明は、導電性部材の外周に合成樹脂の絶縁枠体
を形成した電極板、セパレータの外周に合成樹脂の枠体
を形成したセパレータ板などの電池構成部材の枠体部材
を相互に溶着一体化する積層電池の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION A. Industrial Field of the Invention The present invention relates to an electrode plate having a synthetic resin insulating frame formed on the outer periphery of a conductive member, and a separator plate having a synthetic resin frame formed on the outer periphery of a separator. The present invention relates to a method for manufacturing a laminated battery in which frame members of battery constituent members are welded and integrated with each other.

B.発明の概要 本発明は、平板状の電極板とセパレータ板とを交互に
積層し、一体化して成る積層電池の製造方法において、 電極板を、矩形平板状の電極と、電極の外周縁部に一
体に形成された合成樹脂の絶縁枠体と、電極の外周縁部
に沿って、絶縁枠体上に形成された、高さf、横幅bの
溶着リブと、で形成し、セパレータ板を矩形平板状のセ
パレータと、セパレータの外周縁部に一体に形成された
合成樹脂の枠体と、枠体の対抗する一方の両辺に各々設
けた一対の電解液流路と、電解液流路の外側でかつ電極
の外周縁部に沿って、枠体上に形成された、高さd、横
幅bの溶着リブと、枠体の溶着リブの両側に接して、枠
体に形成された、深さe、溝幅aの逃げ溝と、で形成
し、電極板およびセパレータ板の溶着リブの高さf及び
d、横幅b、さらに逃げ溝の深さe、溝幅aの寸法を下
式を満足する関係に形成し、 5/7≦b(f+d)≦3/2(2a e) a≧2/3b 電極板の間に、セパレータ板を挾んで電極板を複数積
層し且つ、相対向する各電極板およびセパレータ板の溶
着リブを加熱溶融すると共に、圧着一体化して、電極と
絶縁枠体と枠体とで囲まれ、且つセパレータで二つに区
分された部分に電池反応室を形成することにより、 電池反応室内に、電解液を枠体に形成した電解液流路
を介して、循環して成る積層電池の製造方法。
B. Summary of the Invention The present invention relates to a method of manufacturing a laminated battery in which flat electrode plates and separator plates are alternately laminated and integrated, wherein the electrode plate is formed of a rectangular flat electrode and an outer peripheral edge of the electrode. A separator plate formed of a synthetic resin insulating frame integrally formed with the portion and welding ribs having a height of f and a width of b formed on the insulating frame along the outer peripheral edge of the electrode; A rectangular plate-shaped separator, a synthetic resin frame integrally formed on the outer peripheral edge of the separator, a pair of electrolytic solution flow paths provided on one of two opposite sides of the frame, and an electrolytic solution flow path. Outside and along the outer peripheral edge of the electrode, a welding rib having a height d and a width b formed on the frame, and formed on the frame in contact with both sides of the welding rib of the frame, Formed by a depth e and a clearance groove having a groove width a, the heights f and d of the welding ribs of the electrode plate and the separator plate, and the width b. Further, the depth e of the relief groove and the dimension of the groove width a are formed so as to satisfy the following expression, and 5/7 ≦ b (f + d) ≦ 3/2 (2a e) a ≧ 2 / 3b A plurality of electrode plates are stacked with the separator plate interposed therebetween, and the welding ribs of the opposing electrode plates and the separator plate are heated and melted together with pressure bonding to be surrounded by the electrodes, the insulating frame and the frame, and A method for manufacturing a laminated battery, comprising: forming a battery reaction chamber in a portion divided into two sections by a separator; and circulating an electrolyte in the battery reaction chamber through an electrolyte flow path formed in a frame.

C.従来の技術 近時、電池電力貯蔵システムの開発が促進されてお
り、その一環として亜鉛−臭素電池,亜鉛−塩素電池,
レドックスフロー電池等が開発されている。
C. Conventional technology Recently, the development of a battery power storage system has been promoted, and as a part thereof, a zinc-bromine battery, a zinc-chlorine battery,
Redox flow batteries and the like have been developed.

これらは、高い電圧を取り出すため、電気的直列積層
構成を採っている。亜鉛−臭素電池を例にとって、その
構成概略を説明する。
These employ an electrical series lamination configuration in order to extract a high voltage. The outline of the configuration will be described by taking a zinc-bromine battery as an example.

この亜鉛−臭素電池は、主に電解液循環形であって電
池本体と、電解液貯蔵槽と、これらの間に電解液を循環
させる配管系とから構成されている。
The zinc-bromine battery is mainly of an electrolyte circulation type and is composed of a battery main body, an electrolyte storage tank, and a piping system for circulating an electrolyte between them.

従来、電池本体は、第3図に例示するように電極をバ
イポーラ形とし、これを積層して電気的に直列で構成さ
れている。
Conventionally, a battery main body has bipolar electrodes, as illustrated in FIG. 3, and is electrically connected in series by laminating the electrodes.

第3図において、6は絶縁性の枠体がセパレータの外
周に一体に形成されたセパレータ板、8は絶縁枠体が導
電性部材の外周に一体に形成されたバイポーラ形の電極
板である。
In FIG. 3, reference numeral 6 denotes a separator plate in which an insulating frame is integrally formed on the outer periphery of the separator, and reference numeral 8 denotes a bipolar electrode plate in which the insulating frame is integrally formed on the outer periphery of the conductive member.

この電極板8間にセパレータ板を挾んで両側にスペー
サメッシュ7およびパッキン5を重ねて、単セルを構成
し、この単セルを複数、例えば、30セル積層し、最後に
両端に夫々、集電電極3,積層端板2及び締付端板1を重
ねて、ボルトおよびナットで締めつけて一体に構成して
いる。
A spacer mesh 7 and a packing 5 are stacked on both sides of the electrode plate 8 with a separator plate interposed therebetween to form a single cell, and a plurality of, for example, 30 cells are stacked. The electrode 3, the laminated end plate 2, and the tightening end plate 1 are overlapped and tightened with bolts and nuts to form an integral structure.

このように構成した電池本体内に電解液は、電極板8,
セパレータ板6の枠体およびパッキン5の四隅角部に形
成した正極マニホールド9と負極マニホールド10、さら
にチャンネル13,マイクロチャンネル13aの電解液流路を
介して流入流出する。
Electrolyte is stored in the battery body thus configured in the electrode plate 8,
The positive electrode manifold 9 and the negative electrode manifold 10 formed at the four corners of the frame of the separator plate 6 and the packing 5, and flow into and out of the electrolyte solution flow channel of the channel 13 and the microchannel 13 a.

電極板8の導電性部材は、プラスチックにカーボンな
どの導電性物質を混練して形成したカーボンプラスチッ
ク製薄板から形成され、セパレータ板6のセパレータ部
分は、微多孔質膜より成り電極板8およびセパレータ板
6の枠体は、ポリエチレンなどのポリオレフィン系樹脂
から構成されている。
The conductive member of the electrode plate 8 is formed of a carbon plastic thin plate formed by kneading a conductive material such as carbon into plastic, and the separator portion of the separator plate 6 is formed of a microporous film and formed of the electrode plate 8 and the separator. The frame of the plate 6 is made of a polyolefin resin such as polyethylene.

D.発明が解決しようとする課題 上述のように従来の積層電池は、積層電池の両端から
締付けて各電極板およびセパレータ板の枠体等を圧接し
て、各単セルおよび電解液流路を形成しているので、電
池構成部材の各枠体が電解液の作用等でクリープを生
じ、あるいは、電池が置かれた環境の変化による枠体の
収縮膨張により力が弱まり、隣接する各枠体間に隙間が
生じその隙間から液漏れを生ずるという問題がある。
D. Problems to be Solved by the Invention As described above, in the conventional laminated battery, each electrode plate and the frame of the separator plate are pressed against each other by tightening from both ends of the laminated battery, and each unit cell and the electrolyte solution flow path are formed. Because of the formation, each frame body of the battery constituent member causes creep due to the action of the electrolytic solution, or the strength of the frame body shrinks and expands due to a change in the environment in which the battery is placed, so that the strength is weakened, and each adjacent frame body There is a problem that a gap is formed between the gaps and liquid leaks from the gap.

そこで、隣接する電極板およびセパレータ体の各枠体
等同志を熱融着して一体化することが試みられた。この
枠体同志を熱融着させるためには、各枠体に溶着リブを
立て、これを溶融して相互に圧接し溶着せしめるので、
圧接の際この溶融した溶着リブの樹脂が、枠体の側面に
沿ってマニホールドあるいはチャネル内等に入り、電解
液流路を閉塞してしまい、電解液の流れを妨げるという
問題があった。
Therefore, attempts have been made to integrate the adjacent electrode plates and the respective frames of the separator body by heat fusion. In order to heat-weld the frames, welding ribs are set up on each frame, and these are melted and pressed against each other to be welded.
At the time of pressing, the molten resin of the welding ribs enters the manifold or the channel along the side surface of the frame, and closes the electrolytic solution flow path, thereby hindering the flow of the electrolytic solution.

本発明は上述の点に鑑み、電極板およびセパレータ板
の枠部分を熱融着しても、チャネル等の電解液流路をば
りが塞ぐことのないよう良好に積層一体化できる積層電
池の製造方法を新たに提供することを目的とする。
In view of the above, the present invention provides a method of manufacturing a laminated battery that can be laminated and integrated well so that burrs do not block an electrolytic solution flow path such as a channel even when a frame portion of an electrode plate and a separator plate is thermally fused. The purpose is to provide a new method.

E.課題を解決するための手段 本発明の積層電池の製造方法は、電極板、セパレータ
などの相溶着する一方の枠体の結合部分に枠体表面から
の高さf、横軸bの断面矩形状の溶着リブを設け、他方
の枠体の結合部分には、枠体表面からの高さがd、横幅
がdの断面矩形状の溶着リブを設けるとともに、その溶
着リブの両横側部に枠体表面から深さがeで溝幅がaの
断面矩形状の逃げ溝を形成し、さらに相互に溶着する溶
着リブ断面積b(f+d)が、両側の逃げ溝の断面積の
和(2a e)の1.5倍以下の断面積となるように設定し、
逃げ溝の溝幅aが、溶着リブの横幅bの2/3倍となるよ
うに設定し、次に、熱板ヒータ型によって相対向する溶
着リブを加熱溶融し、次に、結合すべき枠体同志を圧着
し、溶融した溶着リブを相互に溶着して積層一体化した
ことを特徴とする。
E. Means for Solving the Problems The method for manufacturing a laminated battery according to the present invention is characterized in that a cross-section of a height f from the surface of the frame and a horizontal axis b is provided at a joint portion of one of the frames to be mutually welded such as an electrode plate and a separator. A rectangular welding rib is provided, and a welding rib having a rectangular cross section having a height d from the surface of the frame and a width of d is provided at a joint portion of the other frame, and both lateral sides of the welding rib are provided. A relief groove having a depth e and a groove width a is formed from the surface of the frame body and having a rectangular cross section. 2a e) Set so that the cross-sectional area is 1.5 times or less,
The groove width a of the clearance groove is set to be 2/3 times the lateral width b of the welding rib, and then the opposite welding ribs are heated and melted by a hot plate heater type, and then the frame to be joined is formed. It is characterized in that the bodies are pressed together, and the fused welding ribs are welded to each other and laminated and integrated.

F.作用 上述のような手段により、熱板溶着の際、溶融した溶
着リブより生ずるばりは、全て逃げ溝内に入り、溢れ出
ることなく各枠体同志が一体化する。従って、チャネル
等の電解液流路をばりが閉塞するようなことをなくすと
いう作用を奏する。
F. Function By the above-described means, when welding the hot plate, all the burrs generated from the molten welding ribs enter the escape groove, and the frames are integrated without overflowing. Therefore, an effect is achieved that the burrs do not block the electrolytic solution flow path such as a channel.

なお、上述の作用は、本発明を亜鉛−臭素電池に適用
した場合ばかりでなく、亜鉛−塩素電池,レドックスフ
ロー電池等の積層電池に適用した場合にも同様の作用を
奏する。
In addition, the above-mentioned operation | movement produces | generates not only the case where this invention is applied to a zinc-bromine battery, but also the same effect | action is applied when it applies to a laminated battery, such as a zinc-chlorine battery and a redox flow battery.

G.実施例 実施例1 以下、本発明の積層電極の製造方法の一実施例を第1
図及び第2図によって説明する。
G. Examples Example 1 Hereinafter, an example of the method for manufacturing a laminated electrode according to the present invention will be described with reference to the first example.
This will be described with reference to FIGS.

なお、この第1図及び第2図において、前述した第3
図に対応する部分には同一符号を附すこととし、その詳
細な説明を省略する。
Note that, in FIGS. 1 and 2, the third
The same reference numerals are given to portions corresponding to the drawings, and detailed description thereof will be omitted.

第1図の要部縦断面図で、8bは、電極板の電極部の外
周に設けた、熱板溶着法で積層一体化前の枠体、12はセ
パレータの外周に設けた、熱板溶着法で積層一体化前の
枠体である。
FIG. 1 is a longitudinal sectional view of a main part of FIG. 1, wherein 8b is a frame provided on the outer periphery of the electrode portion of the electrode plate before lamination and integration by hot plate welding, and 12 is provided on the outer periphery of the separator by hot plate welding. The frame before lamination and integration by the method.

この電極板の枠体8bには、その両面部に表裏対称状に
断面矩形状の溶着リブ14を2本並列に突設する。そし
て、各溶着リブ14の高さをfとし、その横幅をbとす
る。
In the frame 8b of the electrode plate, two welding ribs 14 having a rectangular cross section are symmetrically protruded on both sides thereof in parallel. The height of each welding rib 14 is f, and its width is b.

また、セパレータ板の枠体12は、電極板の枠体8bより
も肉厚に形成したもので、ほぼ中央に電解液の流路とな
る断面矩形状の溝から構成されたチャネル13が形成され
ている。セパレータ板の枠体12の表裏には、チャネル13
を挾んで両側に、電極板の枠体8bに重ね合わせたとき、
その溶着リブ14と対応する位置に溶着リブ15を突設す
る。また、溶着リブ15の両横側部には、熱板溶着時に生
ずるばりを逃がし溜めるための断面矩形状の逃げ溝16を
穿設する。そして、溶着リブ15の枠体12の表面からの高
さを、dとし、その横幅をdとする。
Further, the frame 12 of the separator plate is formed to be thicker than the frame 8b of the electrode plate, and a channel 13 composed of a rectangular cross-sectional groove serving as a flow path for the electrolyte is formed substantially at the center. ing. Channels 13 are provided on the front and back of the frame 12 of the separator plate.
When sandwiched on both sides of the electrode frame 8b of the electrode plate,
A welding rib 15 is provided at a position corresponding to the welding rib 14. Further, on both lateral sides of the welding rib 15, a relief groove 16 having a rectangular cross section for releasing a flash generated at the time of hot plate welding is formed. The height of the welding rib 15 from the surface of the frame 12 is d, and the width thereof is d.

また、逃げ溝16の枠体12の表面からの深さをeとし、
その溝幅をaとする。そして、チャンネル13の横幅をG
とし、その両側部から、それぞれ距離cだけ隔てて逃げ
溝16が位置するように構成する。
Further, the depth of the escape groove 16 from the surface of the frame 12 is e,
Let the groove width be a. Then, set the width of channel 13 to G
The escape groove 16 is located at a distance c from each side.

これとともに各部寸法が下式を満足するように構成す
る。
At the same time, the dimensions of each part are configured to satisfy the following formula.

b(f+d)≦3/2(2a e) … a≧2/3(b) … b≧0.8mm … 次に、上述のように構成した電極板の枠体8bとセパレ
ータ板の枠体12とを、熱板溶着法で積重一体化する方法
を説明する。
b (f + d) ≦ 3/2 (2a e) a ≧ 2/3 (b) b ≧ 0.8 mm Next, the frame 8b of the electrode plate and the frame 12 of the separator plate configured as described above are used. Are stacked and integrated by hot plate welding.

まず、第1図に鎖線で示すように熱板ヒータ型17によ
って、各溶着リブ14,15の先端部を溶融する。次に、第
2図に示す如く圧着して溶着する。
First, as shown by a chain line in FIG. 1, the front ends of the welding ribs 14 and 15 are melted by a hot plate heater mold 17. Next, as shown in FIG.

この溶着の際、各溶着リブ14,15のばりが逃げ溝16に
入り込んで、これを満足し、チャンネル13内に入り込ま
ないようになって溶着する。
At the time of this welding, the burrs of the welding ribs 14 and 15 enter the escape groove 16, satisfying this, and do not enter the channel 13, and are welded.

なお、前述べた,及び式を満足しない寸法構成
による場合には、各溶着リブ14,15のばりが、マイクロ
チャンネル13内に流れ込み、これを閉塞するようにな
る。
In the case of a dimensional configuration that does not satisfy the above-mentioned and formulas, the burrs of the welding ribs 14 and 15 flow into the microchannel 13 and block it.

例えば、本実施例の構成として、上述の,,式
を満足する数値として、a=3mm,b=1.5mm,d=1.0mm,e
=0.5mm,f=1.0mmとし、cをできるだけ小さな値となる
ように設定したものを10組用意し、熱板溶着してテスト
した結果、10組中9組が良好に溶着され、チャンネル13
をばりが塞ぐようなことはなかった。
For example, in the configuration of the present embodiment, a = 3 mm, b = 1.5 mm, d = 1.0 mm, e
= 0.5 mm, f = 1.0 mm, and c were set to be as small as possible. Ten sets were prepared and tested by hot plate welding. As a result, nine out of ten sets were welded well and the channel 13
The burrs did not block.

しかし、本実施例と比較のため、a=1.5mm,e=0.3mm
他を本実施例と同じ寸法であるb=1.5mm,d=1.0mm,f=
1.0mmとして、10組用意し、熱板溶着してテストした結
果、10組中9組までがチャンネル13内にばりが入ってこ
れを閉塞してしまっていた。
However, for comparison with this embodiment, a = 1.5 mm, e = 0.3 mm
The other dimensions are the same as those of the present embodiment, b = 1.5 mm, d = 1.0 mm, f =
As a result of preparing 10 sets of 1.0 mm and welding them with a hot plate, up to 9 sets out of 10 sets had burrs in the channel 13 and blocked them.

ただ、上述のような逃げ溝16の形状でも、この逃げ溝
16とチャンネル13との間の距離cを極めて大きくする
と、チャンネル13へのばりの侵入を防止できるが、これ
では、枠体8b,12をそれだけ大きくせねばならず、電池
本体が大型化するので、実現できない。
However, even if the shape of the escape groove 16 as described above is used,
If the distance c between the channel 16 and the channel 13 is made extremely large, it is possible to prevent the burrs from entering the channel 13, but in this case, the frame bodies 8b and 12 must be made so large, and the battery body becomes large. , Can not be realized.

実施例2 溶着リブの段面積;b(f+d) 逃げ溝の断面 ;2ae の比を変化させたものを各々10組用意し、熱板溶着して
テストし、チャネルなどをばりが塞ぐことのない良好な
結果を得たものの数を示す。
Example 2 Step area of welding rib; b (f + d) Cross section of escape groove; 10 sets each having a different ratio of 2ae were prepared and tested by hot plate welding to prevent channels and the like from being blocked by burrs. Shows the number of good results.

なお、段面積の比が1.6以上になると、逃げ溝の段面
積が大きく成り過ぎて枠体部分に凹部が生じてしまっ
た。
When the ratio of the step area was 1.6 or more, the step area of the escape groove became too large, and a recess was formed in the frame portion.

また、逃げ溝の溝幅aは、溶着リブの横幅bの2/3以
上であればよい。溝幅aが、溶着リブの横軸bの2/3よ
り小さくなると、溶着リブの樹脂が逃げ溝内を埋めず
に、逃げ溝内に空間が生じてしまい、融着が不十分とな
る。
Further, the groove width a of the clearance groove may be at least 2/3 of the lateral width b of the welding rib. If the groove width a is smaller than 2/3 of the horizontal axis b of the welding rib, the resin of the welding rib does not fill the clearance groove, and a space is generated in the clearance groove, resulting in insufficient fusion.

H.発明の効果 以上詳述したように、本発明の積層電池の製造方法に
よれば、電極板およびセパレータ板などの電池構成部材
の相溶着する一方の枠体の結合部分に高さf、横幅bの
断面矩形の溶着リブを設け、他方の枠体の結合部分には
溶着リブの両横側部にそれぞれ逃げ溝を設け、高さがd
で、横幅がbの断面矩形状の溶着リブを設けるととも
に、その両横側部に深さeで溝幅aの断面矩形状の逃げ
溝を設け、しかも相溶着する溶着リブの断面積b(f+
d)が、逃げ溝の断面積の和(2a e)の1.5倍以下とな
るように、また、逃げ溝の横幅aが、溶着リブの横幅b
の2/3以上となるように設定し、次に、熱板ヒータ型に
よって相対向する溶着リブを加熱溶融し、次に、結合す
べき枠体同志を圧着し、より生ずるばりを、全て逃げ溝
内に納めることができ、チャネル内にばりが入り込まな
い良好な溶着をすることができるという効果がある。
H. Effects of the Invention As described in detail above, according to the method for manufacturing a laminated battery of the present invention, the height f is set at the joint portion of one of the frame members to which the battery components such as the electrode plate and the separator plate are welded to each other. A welding rib having a rectangular cross section with a width b is provided, and a relief groove is provided at each of the joining portions of the other frame body on both lateral sides of the welding rib, and the height is d.
Thus, a welding rib having a rectangular cross section having a width b is provided, and a relief groove having a rectangular cross section having a depth e and a groove width a is provided on both lateral sides thereof, and furthermore, the cross-sectional area b ( f +
d) is not more than 1.5 times the sum (2a e) of the cross-sectional area of the clearance groove, and the width a of the clearance groove is equal to the width b of the welding rib.
Is set so that it is 2/3 or more, and then the welding ribs facing each other are heated and melted by a hot plate heater type, and then the frames to be joined are press-bonded, and all the burrs generated are released. It can be accommodated in the groove, and has an effect that good welding can be performed without burrs entering the channel.

また、上述の手段によれば、溶着リブの溶融結合部が
浮き上がることもなく、全体に亘って確実に溶着できる
ので、積層電池の良好な液漏れ防止シールを、長期に亘
って維持できるという効果がある。
Further, according to the above-mentioned means, since the fusion bonding portion of the welding rib can be reliably welded over the entire surface without being lifted, a good liquid leakage prevention seal of the laminated battery can be maintained for a long time. There is.

さらに、上述のような手段で、一体化して電池本体を
造るので、ボルト,ナット等の締結部材を使って電池本
体の両端部から締め付けて一体化するための締付端板が
不用となるので、電池本体の重量を軽減できるという効
果がある。
Further, since the battery body is integrally formed by the above-described means, a fastening end plate for tightening and integrating the battery body from both ends using fastening members such as bolts and nuts is unnecessary. This has the effect of reducing the weight of the battery body.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の積層電池の製造方法の一実施例を説明
するための枠体要部の縦断面図、第2図はその枠体の溶
着状態を示す要部の縦断面図、第3図は従来の積層電池
の一つである亜鉛−臭素電池の電池本体を例示する要部
分解斜視図である。 8……電極板、8a……電極部、8b……枠体、14……溶着
リブ、15……溶着リブ、16……逃げ溝。
FIG. 1 is a longitudinal sectional view of a main part of a frame for explaining an embodiment of a method of manufacturing a laminated battery according to the present invention. FIG. 2 is a vertical sectional view of a main part showing a welded state of the frame. FIG. 3 is an exploded perspective view illustrating a main part of a battery body of a zinc-bromine battery, which is one of the conventional stacked batteries. 8 ... electrode plate, 8a ... electrode part, 8b ... frame, 14 ... welding rib, 15 ... welding rib, 16 ... escape groove.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】平板状の電極板とセパレータ板とを交互に
積層し、一体化して成る積層電池の製造方法において、 前記電極板を、矩形平板状の電極と、該電極の外周縁部
に一体に形成された合成樹脂の絶縁枠体と、該電極の外
周縁部に沿って、該絶縁枠体上に形成された、高さf、
横幅bの溶着リブと、で形成し、 前記セパレータ板を矩形平板状のセパレータと、該セパ
レータの外周縁部に一体に形成された合成樹脂の枠体
と、該枠体の対抗する一方の両辺に各々設けた一対の電
解液流路と、該電解液流路の外側でかつ前記電極の外周
縁部に沿って、前記枠体上に形成された、高さd、横幅
bの溶着リブと、前記枠体の溶着リブの両側に接して、
前記枠体に形成された、深さe、溝幅aの逃げ溝と、で
形成し、 前記電極板およびセパレータ板の溶着リブの高さf及び
d、横幅b、さらに逃げ溝の深さe、溝幅aの寸法を下
式を満足する関係に形成し、 5/7≦b(f+d)≦3/2(2a e) a≧2/3b 前記電極板の間に、前記セパレータ板を挾んで該電極板
を複数積層し且つ、相対向する各電極板およびセパレー
タ板の溶着リブを加熱溶融すると共に、圧着一体化し
て、前記電極と絶縁枠体と枠体とで囲まれ、且つ前記セ
パレータで二つに区分された部分に電池反応室を形成
し、 該電池反応室内に、電解液を前記枠体に形成した電解液
流路を介して、循環して成る積層電池の製造方法。
1. A method of manufacturing a laminated battery comprising a plate-shaped electrode plate and a separator plate alternately laminated and integrated, wherein the electrode plate is provided on a rectangular plate-shaped electrode and an outer peripheral portion of the electrode. A synthetic resin insulating frame formed integrally, and a height f formed on the insulating frame along the outer peripheral edge of the electrode;
A welding plate having a width b, wherein the separator plate is a rectangular plate-like separator, a synthetic resin frame integrally formed on an outer peripheral edge of the separator, and one of two opposite sides of the frame. A pair of electrolytic solution flow paths respectively provided, and a welding rib having a height d and a width b formed on the frame body outside the electrolytic solution flow path and along the outer peripheral edge of the electrode. , In contact with both sides of the welding rib of the frame,
And a relief groove having a depth e and a groove width a formed in the frame body. The groove width a is formed so as to satisfy the following equation: 5/7 ≦ b (f + d) ≦ 3/2 (2a e) a ≧ 2 / 3b The separator plate is sandwiched between the electrode plates. A plurality of electrode plates are laminated, and the welding ribs of the opposing electrode plates and separator plate are heated and melted, and pressed and integrated to be surrounded by the electrodes, the insulating frame and the frame, and the separator A method for manufacturing a laminated battery, comprising: forming a battery reaction chamber in a divided section; and circulating an electrolyte through the electrolyte flow path formed in the frame in the battery reaction chamber.
JP1320814A 1989-12-11 1989-12-11 Manufacturing method of laminated battery Expired - Lifetime JP2782867B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1320814A JP2782867B2 (en) 1989-12-11 1989-12-11 Manufacturing method of laminated battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1320814A JP2782867B2 (en) 1989-12-11 1989-12-11 Manufacturing method of laminated battery

Publications (2)

Publication Number Publication Date
JPH03182065A JPH03182065A (en) 1991-08-08
JP2782867B2 true JP2782867B2 (en) 1998-08-06

Family

ID=18125530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1320814A Expired - Lifetime JP2782867B2 (en) 1989-12-11 1989-12-11 Manufacturing method of laminated battery

Country Status (1)

Country Link
JP (1) JP2782867B2 (en)

Also Published As

Publication number Publication date
JPH03182065A (en) 1991-08-08

Similar Documents

Publication Publication Date Title
KR0136040B1 (en) Bipolar battery and assembling method
US7794870B2 (en) Battery suitable for preparation of battery module
JP6715278B2 (en) Fuel cell stack
US7291423B2 (en) Prismatic sealed battery
KR20200070944A (en) Elastomer cell frame for fuel cell and manufacturing method thereof and unit cell comprising thereof
JP6817361B2 (en) Dummy cell manufacturing method and dummy cell manufacturing equipment
JP2782867B2 (en) Manufacturing method of laminated battery
JP6715277B2 (en) Fuel cell stack and dummy cell for fuel cell stack
JP2890853B2 (en) Manufacturing method of laminated battery
KR20200132294A (en) Elastomer cell frame for fuel cell and Manufacturing method thereof and Fuel cell stack comprising thereof
US3679485A (en) Fuel cell battery for reacting gaseous reactants in fuel cells operated with liquid electrolyte
JP2890852B2 (en) Manufacturing method of laminated battery
JP6633114B2 (en) Method of manufacturing fuel cell stack and dummy cell
JPH10261423A (en) Fuel cell
US11404742B2 (en) Battery module
JP4091769B2 (en) Square sealed battery
JP2004031194A (en) Laminated cells and battery pack
JP6911784B2 (en) Battery module and manufacturing method of battery module
KR101963998B1 (en) Fuel cell stack
JP2569541B2 (en) Separator for fuel cell
JPS6158159A (en) Secondary battery
JP7152963B2 (en) Storage module and manufacturing method thereof
JP2692271B2 (en) Manufacturing method of lead storage battery
JP2505007Y2 (en) Electrolyte circulation type laminated battery
JPH02148580A (en) Electrolyte circulation layer-built cell